98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of piezoelectric effect and thermally stimulated depolarization current of poly (vinyl chloride–co-vinyl acetate–co-2-hydroxypropyl acrylate)/poly (vinylidene fluoride-trifluoroethylene) polymer blend

, ORCID Icon, , &
Pages 202-223 | Received 08 Jan 2023, Accepted 07 Apr 2023, Published online: 29 Jul 2023

References

  • M. Sung, K. Shin, and W. J. S. Moon, A micro-machined hydrophone employing a piezoelectric body combined on the gate of a field-effect transistor, Sens. Actuators, A 237, 155 (2016). DOI: 10.1016/j.sna.2015.11.025.
  • T. B. Xu, Z. Y. Cheng, and Q. Zhang, High-performance micromachined unimorph actuators based on electrostrictive poly (vinylidene fluoride–trifluoroethylene) copolymer, Appl. Phys. Lett. 80 (6), 1082 (2002). DOI: 10.1063/1.1448661.
  • L. Persano et al., High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene), Nature Com. 4 (1), 1 (2013).
  • D. Li Jun et al., Polymer piezoelectric energy harvesters for low wind speed, Appl. Phys. Lett. 104 (1), 12902 (2014). DOI: 10.1063/1.4861187.
  • Y. Liu et al., Observation of a negative thermal hysteresis in relaxor ferroelectric polymers, Adv. Funct. Mater. 30 (25), 2000648 (2020). DOI: 10.1002/adfm.202000648.
  • Z. Zhou et al., Enhanced piezoelectric and acoustic performances of poly (vinylidene fluoride-trifluoroethylene) films for hydroacoustic applications, Phys. Chem. Chem. Phys. 22 (10), 5711 (2020). DOI: 10.1039/c9cp06553a.
  • A. Laudari et al., Polarization Modulation in Ferroelectric Organic Field-Effect Transistors, Phys. Rev. Appl. 10 (1), 14011 (2018). DOI: 10.1103/PhysRevApplied.10.014011.
  • T. Fahmy et al., Relaxation Map analysis of Poly (Vinyl Chloride-co-Vinyl Acetate-co-2-Hydroxypropyl Acrylate)/Poly (Acrylonitrile-Butadiene-Styrene) Polymer Blend, Int. J. Eng. Res. 11 (9), 1371 (2018).
  • M. T. Ahmed et al., Characteristic and thermal stimulated depolarization current of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxy propyl acrylate) Znonanocomposite, J. Phys. 5, 585 (2017).
  • M. T. Ahmed, and T. Fahmy, Study of the relaxation phenomenon of poly (vinyl chloride-co-vinylacetate-co-2-hydroxypropyl acrylate)/poly (methyl methacrylate) blends using TSDC-TS technique: dipole-dipole interaction approach, J. Korean Phy. Soc. 59 (1), 98 (2011). DOI: 10.3938/jkps.59.98.
  • M. Migahed, and M. T. Ahmed, Dielectric relaxation behavior studies in amorphous terpolymer of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) using dielectric spectroscopy and thermally stimulated current techniques, Engineering 43 (4), 1053 (2004). DOI: 10.1081/PPT-200030020.
  • J. C. Meredith et al., Combinatorial characterization of cell interactions with polymer surfaces, J. Biomed. Mater. Res. A 66 (3), 483 (2003). DOI: 10.1002/jbm.a.10004.
  • T. Fahmy, Dielectric relaxation spectroscopy of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/poly (acrylonitrile-butadiene-styrene) polymer blend, Engineering 46 (1), 7 (2007). DOI: 10.1080/03602550600915136.
  • W. Elsharkawy et al., Effect of γ-irradiation on thermally stimulated depolarization current spectra of polyethylene-grafted-poly (Acrylic acid), Radiat. Eff. Defects Solids 177 (7–8), 671 (2022). DOI: 10.1080/10420150.2022.2073880.
  • A. Sarhan, and T. Fahmy, Optical properties, antibacterial activity, and relaxation behavior investigation of chitosan/green synthesized silver nanoparticles by thermally stimulated depolarization current technique, Polym. Sci. Ser. B 63 (5), 578 (2021). DOI: 10.1134/S1560090421050110.
  • W. Elsharkawy, Z. M. Elqahtani, and T. Fahmy, Rate Theory and Relaxation Map Analysis of Iodine-Doped Poly (Ethyl Methacrylate) composite films using Thermally Stimulated Depolarization Current-Thermal Sampling (TSDC-TS) Technique, Egypt. J. Chem. 0 (0), 0 (2021). DOI: 10.21608/ejchem.2021.69217.3516.
  • M. I. Abdelhamid et al., Investigation of the structure and piezoelectricity of poly (vinylidene fluoride–trifluroethylene) copolymer doped with different dyes, Int. J. Polymer. Mat. Polymer.. Biomaterials 61 (7), 505 (2012). DOI: 10.1080/00914037.2011.593063.
  • S. Guo et al., Structural changes and phase behavior of electron-irradiated poly (vinylidene-trifluoroethylene) copolymers, Mater. Chem. Phys. 83 (2–3), 298 (2004). DOI: 10.1016/j.matchemphys.2003.09.049.
  • A. P. Indolia, and M. Gaur, Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites, J. Therm. Anal. Calorim. 113 (2), 821 (2013). DOI: 10.1007/s10973-012-2834-0.
  • P. Saxena, and M. Gaur, Thermally stimulated depolarization study in polyvinylidenefluoride–polysulfone polyblend films, J. Appl. Polym. Sci. 118 (6), 3715 (2010). DOI: 10.1002/app.32520.
  • B. Bai et al., Thermally stimulated depolarization current in ferroelectric blends of copolymers of vinylidene fluoride with trifluoroethylene, Ferroelectrics 297 (1), 75 (2003). DOI: 10.1080/713642474.
  • L. Ibos, A. Bernès, and C. Lacabanne, Annealing or storage influence on pyroelectricity of ferroelectric PVDF and P (VDF-TrFE) copolymer, Ferroelectrics 320 (1), 15 (2005). DOI: 10.1080/00150190590966739.
  • X. Wang et al., Multiple relaxation in uniaxially stretched P (VDF-TrFE) films after crosslinking, IEEE Trans. Dielect. Electr. Insul. 24 (4), 2531 (2017). DOI: 10.1109/TDEI.2017.006296.
  • M. Shehzad, and T. Malik, Antiferroelectric behavior of P (VDF-TrFE) and P (VDF-TrFE-CTFE) ferroelectric domains for energy harvesting, ACS Appl. Energy Mater. 1 (6), 2832 (2018). DOI: 10.1021/acsaem.8b00478.
  • A. Arrigoni et al., P (VDF-TrFE) nanofibers: structure of the ferroelectric and paraelectric phases through IR and Raman spectroscopies, RSC Adv. 10 (62), 37779 (2020). DOI: 10.1039/d0ra05478j.
  • J. L. Lutkenhaus et al., Confinement effects on crystallization and curie transitions of poly (vinylidene fluoride-co-trifluoroethylene), Macromolecules 43 (8), 3844 (2010). DOI: 10.1021/ma100166a.
  • V. S. Vinila, and J. Isac, Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10. 5+ δ nanosystems Design, Fabrication, and Characterization of Multifunctional Nanomaterials. (Elsevier, 2022), 319–341
  • S. Das et al., Tuning the nonlinear susceptibility and linear parameters upon annealing Ag 60− x Se 40 Te x nanostructured films for nonlinear and photonic applications, Mater. Adv. 3 (20), 7640 (2022). DOI: 10.1039/D2MA00646D.
  • M. M. Elmahdy et al., Thermal degradation and optical characteristics of plasticized poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) terpolymer, J. Mater. Sci: Mater. Electron. 33 (30), 23639 (2022). DOI: 10.1007/s10854-022-09124-6.
  • M. Füllbrandt, P. J. Purohit, and A. Schönhals,. Combined FTIR and dielectric investigation of poly (vinyl acetate) adsorbed on silica particles, Macromolecules 46 (11), 4626 (2013). DOI: 10.1021/ma400461p.
  • T. Fahmy et al., Optical properties of poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate)/(acrylonitrile-butadiene-styrene) blends, Int. J. Eng. Res. 11, 1405 (2018).
  • A. Galíková et al., Thermal degradation of poly (vinyl chloride-co-vinyl acetate) and its laser-derived analogue, Thermochim. Acta 447 (1), 75 (2006). DOI: 10.1016/j.tca.2006.04.012.
  • L. Li et al., Studies on the transformation process of PVDF from α to β phase by stretching, RSC Adv. 4 (8), 3938 (2014). DOI: 10.1039/C3RA45134H.
  • D. Mandal, K. J. Kim, and J. S. Lee, Simple synthesis of palladium nanoparticles, β-phase formation, and the control of chain and dipole orientations in palladium-doped poly (vinylidene fluoride) thin films, Langmuir 28 (28), 10310 (2012). DOI: 10.1021/la300983x.
  • A. Sasmal et al., Nano-ZnO decorated ZnSnO 3 as efficient fillers in PVDF matrixes: Toward simultaneous enhancement of energy storage density and efficiency and improved energy harvesting activity, Nanoscale 12 (40), 20908 (2020). DOI: 10.1039/d0nr02057e.
  • L. Xie et al., Properties and applications of flexible poly (vinylidene fluoride)-based piezoelectric materials, Crystals 11 (6), 644 (2021). DOI: 10.3390/cryst11060644.
  • H. Wang et al., Piezoelectric, dielectric, and elastic properties of poly (vinylidene fluoride/trifluoroethylene), J. Appl. Phys. 74 (5), 3394 (1993). DOI: 10.1063/1.354566.
  • A. Habib et al., Enhancement of optical and piezoelectric properties of P (Vinylidene fluoride-hexafluoropropylene)/N, N-Dimethyl-4-nitro-4-Stilbenamine composites for optoelectronic applications, Poly.-Plast. Technol. Mater. 61 (18), 2001 (2022). DOI: 10.1080/25740881.2022.2086817.
  • K. Tashiro et al., Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: application to poly (vinylidene fluoride) form I, Macromolecules 13 (3), 691 (1980). DOI: 10.1021/ma60075a040.
  • Y. Huang et al., Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly (vinylidene fluoride) with pure β crystals, Nat. Commun. 12 (1), 1 (2021). DOI: 10.1038/s41467-020-20662-7.
  • M. Migahed et al., Compatibility of polyacrylonitrile-butadiene with polyvinylchloride as explored by thermally stimulated depolarization current, Polym. Test. 12 (4), 335 (1993). DOI: 10.1016/0142-9418(93)90039-R.
  • M. Ahmed, and T. Fahmy, Alpha relaxation study of poly (vinyl chloride co-vinylacetate-co-2-hydroxypropyl acrylate), Polymer-Plast. Technol. Mater. 44 (8–9), 1559 (2005). DOI: 10.1080/03602550500209507.
  • M. T. Ahmed et al., Thermal sampling and compensation phenomena of PVVH/ZnO nanocomposite polymer using TSDC technique, Modern Chem. 5, 60 (2017).
  • D. K. Das-Gupta, Molecular processes in polymer electrets, J. Electrostat. 51–52, 159 (2001). DOI: 10.1016/S0304-3886(01)00090-0.
  • R. M. Faria, J. G. Neto, and O. N. Oliveira, Thermal studies VDF/TRFE copolymers, J. Phys. D: Appl. Phys. 27 (3), 611 (1994). DOI: 10.1088/0022-3727/27/3/029.
  • X. Zhang, Z. Peng, and W. Chan, Thermally stimulated depolarization current in annealed, quenched and γ-irradiated VDF/TrFE copolymers, Ferroelectrics 264 (1), 15 (2001). DOI: 10.1080/00150190108008540.
  • C. Bucci, R. Fieschi, and G. Guidi, Ionic thermocurrents in dielectrics, Phys. Rev. 148 (2), 816 (1966). DOI: 10.1103/PhysRev.148.816.
  • M. Migahed et al., TSDC and the role of space charge in polyacrylonitrile/methylacrylate copolymer films, J. Appl. Polym. Sci. 53 (10), 1315 (1994). DOI: 10.1002/app.1994.070531005.
  • A. Torres et al., Thermally stimulated depolarization currents in PVDF-α: a dipolar interaction approach toβ andγ transitions, J. Mater. Sci. 22 (5), 1623 (1987). DOI: 10.1007/BF01132383.
  • M. Zieliński, T. Swiderski, and M. J. Kryszewski, Thermal sampling in polymers with distributed relaxations: PMMA, Polymer 19 (8), 883 (1978). DOI: 10.1016/0032-3861(78)90192-1.
  • S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes; the Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. McGraw-Hill Book Company 1941
  • T. Fahmy, and M. T. Ahmed, Alpha relaxation study in poly (vinyl chloride)/poly (ethyl methacrylate) blends using thermally stimulated currents, Polym. Int. 49 (7), 669 (2000). DOI: 10.1002/1097-0126(200007)49:7<669::AID-PI412>3.0.CO;2-Y.
  • M. Migahed, M. Ishra, and T. Fahmy, Rate theory and cooperative structural relaxation in amorphous polymer blends as revealed by a thermal sampling study, J. Phys. D: Appl. Phys. 27 (10), 2216 (1994). DOI: 10.1088/0022-3727/27/10/035.
  • S. I. Chen, A thermally-stimulated-current study of ethylene-methyl-methacrylate copolymers, Journal of Materials Science. 28 (14), 3823 (1993). DOI: 10.1007/BF00353185.
  • J. P. Ibar, Application of compensation phenomena to the thermal analysis characterization of polymers: introducing the degree of disorder (DOD) number, Polym. Eng. Sci. 31 (20), 1467 (1991). DOI: 10.1002/pen.760312005.
  • S. Khrapunov, The enthalpy-entropy compensation phenomenon. Limitations for the use of some basic thermodynamic equations, Curr. Protein Pept. Sci. 19 (11), 1088 (2018). DOI: 10.2174/1389203719666180521092615.
  • A. Pan et al., Enthalpy–entropy compensation (EEC) effect: a revisit, J. Phys. Chem. B 119 (52), 15876 (2015). DOI: 10.1021/acs.jpcb.5b09925.
  • A. Cornish-Bowden, Entropy-Enthalpy Compensation, Protein–Ligand Interactions, ed. H. Gohlke, (Weinheim: Wiley–Blackwell, 2012), pp. 33–43.
  • B. J. Read, Mechanical relaxation in isotactic polypropylene, Polymer 30 (8), 1439 (1989). DOI: 10.1016/0032-3861(89)90213-9.
  • J. M. Fox et al., The molecular origin of enthalpy/entropy compensation in biomolecular recognition, Annu. Rev. Biophys. 47, 223 (2018). DOI: 10.1146/annurev-biophys-070816-033743.
  • S. P. Moulik, B. Naskar, and A. K. Rakshit, Current status of enthalpy-entropy compensation phenomenon, Curr. Sci. 117 (8), 1286 (2019). DOI: 10.18520/cs/v117/i8/1286-1291.
  • T. Fahmy et al., TSDC of Irradiated and Non-Irradiated Cellulose Acetate, Egypt. J. Chem. 64 (5), 2453 (2021).
  • R. W. Keyes, Volumes of activation for diffusion in solids, Chem. Phys. 29 (3), 467 (1958). DOI: 10.1063/1.1744525.
  • B. B. Sauer, and P. Avakian, Cooperative relaxations in amorphous polymers studied by thermally stimulated current depolarization, Polymer 33 (24), 5128 (1992). DOI: 10.1016/0032-3861(92)90793-V.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.