41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dominant role of in defect on carrier distribution and photocatalytic activity for BiVO4

, , , , , & show all
Pages 377-385 | Received 15 Jun 2023, Accepted 05 Aug 2023, Published online: 28 Nov 2023

Reference

  • S. Lardhi, L. Cavallo, and M. Harb, Significant impact of exposed facets on the BiVO4 material performance for photocatalytic water splitting reactions, J. Phys. Chem. Lett. 11 (14), 5497 (2020). DOI: 10.1021/acs.jpclett.0c01234.
  • X. J. Shi et al., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures, Nat. Commun. 5 (1), 4775 (2014). DOI: 10.1038/ncomms5775.
  • J. Wei et al., Mulberry-like BiVO4 architectures: synthesis, characterization and their application in photocatalysis, CrystEngComm 23 (22), 4028 (2021). DOI: 10.1039/D1CE00374G.
  • R. Lin et al., Enhanced photocatalytic hydrogen production activity via dual modification of MOF and reduced graphene oxide on CdS, Chem Commun (Camb) 50 (62), 8533 (2014). DOI: 10.1039/c4cc01776e.
  • M. Wang et al., Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange, J. Rare Earths 31 (9), 878 (2013). DOI: 10.1016/S1002-0721(12)60373-1.
  • L. W. Shan et al., Enhanced photocatalytic activity with a heterojunction between BiVO4 and BiOI, J. Alloys Comp 721, 784 (2017). DOI: 10.1016/j.jallcom.2017.06.041.
  • L. Shan et al., Unveiling the intrinsic band alignment and robust water oxidation features of hierarchical BiVO4 phase junction, Chem. Eng. J 436, 131516 (2022). DOI: 10.1016/j.cej.2021.131516.
  • L. W. Shan et al., Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chinese J. Chem. Eng. 22 (8), 909 (2014). DOI: 10.1016/j.cjche.2014.06.015.
  • Y. F. Zhang et al., The controllably synthesized octadecahedron‐BiVO4 with exposed {111} facets, Eur. J. Inorg. Chem. 2017 (23), 2990 (2017). DOI: 10.1002/ejic.201700165.
  • Y. Q. Liang et al., Highly improved quantum efficiencies for thin film BiVO4 photoanodes, J. Phys. Chem. C 115 (35), 17594 (2011). DOI: 10.1021/jp203004v.
  • L. W. Shan et al., Efficient facet regulation of BiVO4 and its photocatalytic motivation, J. Alloys Comp 804, 385 (2019). DOI: 10.1016/j.jallcom.2019.07.051.
  • X. Dong et al., Increasing doping solubility of RE3+ ions in fergusonite BiVO4 via pressure-induced phase transition, J. Phys. Chem. C 125 (40), 22388 (2021). DOI: 10.1021/acs.jpcc.1c07746.
  • J. Q. Li et al., Two-step hydrothermal process for synthesis of F-doped BiVO4 spheres with enhanced photocatalytic activity, J. Alloys Comp 581, 40 (2013). DOI: 10.1016/j.jallcom.2013.06.141.
  • M. Zhou et al., Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting, ACS Nano. 8 (7), 7088 (2014). DOI: 10.1021/nn501996a.
  • S. K. Pilli et al., Cobalt-phosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for solar water oxidation, Energy Environ. Sci. 4 (12), 5028 (2011). DOI: 10.1039/c1ee02444b.
  • Y. Yuan et al., Effects of oxygen vacancy on the mechanical, electronic and optical properties of monoclinic BiVO4, J. Mater. Sci. 52 (14), 8546 (2017). DOI: 10.1007/s10853-017-1069-7.
  • G. Kresse, and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (16), 11169 (1996). DOI: 10.1103/PhysRevB.54.11169.
  • J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18), 3865 (1996). DOI: 10.1103/PhysRevLett.77.3865.
  • Y.-X. Tan et al., Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and s-vacancy, ACS Catal. 11 (5), 2492 (2021). DOI: 10.1021/acscatal.0c05703.
  • Y. Zhao et al., The significance of crystal morphology controlling in semiconductor-based photocatalysis: A case study on BiVO4 photocatalyst, Cryst. Growth Des 17 (6), 2923 (2017). DOI: 10.1021/acs.cgd.7b00291.
  • X. Zhong et al., In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation, J. Mater. Chem. A 6 (22), 10456 (2018). DOI: 10.1039/C8TA01377B.
  • H. M. Luo et al., Structural and photoelectrochemical properties of BiVO4 thin films, J. Phys. Chem. C 112 (15), 6099 (2008). DOI: 10.1021/jp7113187.
  • H. Y. Jiang et al., Porous olive-like BiVO4: Alcoho-hydrothermal preparation and excellent visible-light-driven photocatalytic performance for the degradation of phenol, Appl. Catal. B: Environ 105 (3-4), 326 (2011). DOI: 10.1016/j.apcatb.2011.04.026.
  • A. C. Ulpe et al., O/F-substitution in BiVO4: Defect structures, phase stability and optical properties, Solid State Sci 75, 39 (2018). DOI: 10.1016/j.solidstatesciences.2017.11.007.
  • M. Wang et al., Effective visible light-active boron and europium co-doped BiVO4 synthesized by sol–gel method for photodegradion of methyl orange, J. Hazard. Mater. 262, 447 (2013). DOI: 10.1016/j.jhazmat.2013.08.063.
  • L. Shan et al., Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting, J. Colloid Interface Sci. 653 (Pt A), 94 (2024). DOI: 10.1016/j.jcis.2023.09.059.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.