62
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tunable photocatalytic and magnetic properties in Y and transition metals (TM = Mn, Co, Ni, Cu, Zn) co-doped BiFeO3: DFT + U study*

, , , &
Pages 212-222 | Received 12 Jun 2023, Accepted 06 Aug 2023, Published online: 28 Nov 2023

References

  • Y. Gu et al., Photocatalytic hydrogen production of Nd/Co Co-doped BiFeO3 nanoparticles with a cellular architecture, Front. Nanotechnol. 3, 640861 (2021). DOI: 10.3389/fnano.2021.640861.
  • M. Sahni et al., Effect of Yb/Co co-dopants on surface chemical bonding states of BiFeO3 nanoparticles with promising photocatalytic performance in dye degradation, J. Phys. Chem. Solids 152 (8), 109926 (2021). DOI: 10.1016/j.jpcs.2020.109926.
  • A. Mukherjee et al., Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles, Appl. Nanosci. 2 (3), 305 (2012). DOI: 10.1007/s13204-012-0114-8.
  • D. H. Kuang et al., Effects of Y doping on multiferroic properties of sol-gel deposited BiFeO3 thin films, J. Mater. Sci: Mater. Electron. 26 (5), 3001 (2015). DOI: 10.1007/s10854-015-2789-6.
  • L. Luo et al., Multiferroic properties of Y-doped BiFeO3, J. Alloys Compd. 540 (29), 36 (2012). DOI: 10.1016/j.jallcom.2012.06.106.
  • Y. Lin, Q. Jiang, and H. Deng, Preparation of Y3+ and transition metal ions codoped-BiFeO3 with enhanced magnetism and photocatalytic properties, J. Solid State Chem. 303, 122450 (2021). DOI: 10.1016/j.jssc.2021.122450.
  • G. M. Elisabet et al., Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3, J. Phys. Condens. Matter. 30, 285701 (2018).
  • S. Neogi, and R. Ghosh, Origin of irreversible to reversible transition in acetone detection for Y-doped BiFeO3 perovskite, J. Appl. Phys. 128 (14), 144501 (2020). DOI: 10.1063/5.0023131.
  • N. Satar et al., Facile green synthesis of ytrium-doped BiFeO3 with highly efficient photocatalytic degradation towards methylene blue, Ceram. Int. 45 (13), 15964 (2019). DOI: 10.1016/j.ceramint.2019.05.105.
  • J. Xu et al., Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics, J. Appl. Phys. 114 (15), 154103 (2013). DOI: 10.1063/1.4825216.
  • D. Kuang et al., Structural, optical and magnetic studies of (Y, Co) co-substituted BiFeO3 thin films, J. Alloys Compd. 671, 192 (2016). DOI: 10.1016/j.jallcom.2016.02.081.
  • A. Mukherjee et al., Enhanced magnetic and electrical properties of Y and Mn co-doped BiFeO3 nanoparticles, Phys. B 448, 199 (2014). DOI: 10.1016/j.physb.2014.03.082.
  • D. V. Thang, Enhanced ferroelectricity and ferromagnetism of (Y, Ni) co-doped BiFeO3, Materials 56, 2518 (2018).
  • Y. Jia et al., Nitrogen doped BiFeO3 with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light, Chem. Eng. J. 337, 709 (2018). DOI: 10.1016/j.cej.2017.12.137.
  • L. G. Betancourt-Cantera et al., Enhanced photocatalytic activity of BiFeO3 for water remediation via the addition of Ni2+, Mater. Res. Bull. 132, 111012 (2020). DOI: 10.1016/j.materresbull.2020.111012.
  • B. Samran, P. Krongkitsiri, and S. Chaiwichian, Effect of copper dopants on visible-light-driven photocatalytic activity of BiFeO3 photocatalysts, Mod. Environ. Sci. Eng. 4 (3), 234 (2018).
  • M. Sahni et al., Structural, optical and photocatalytic properties of Ni doped BiFeO3 nanoparticles, Mater. Today: Proc. 49 (8), 3015 (2022). DOI: 10.1016/j.matpr.2020.10.234.
  • A. Dubey et al., Role of cooperative factors in the photocatalytic activity of Ba and Mn doped BiFeO3 nanoparticles, Nanoscale Adv. 3 (20), 5830 (2021). DOI: 10.1039/d1na00420d.
  • W. Mao et al., Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 584, 520 (2014). DOI: 10.1016/j.jallcom.2013.09.117.
  • J. S. Park et al., Enhanced ferromagnetic properties in Ho and Ni co-doped BiFeO3 ceramics, J. Appl. Phys. 115 (1), 013904 (2014). DOI: 10.1063/1.4860296.
  • Y. J. Yoo et al., Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics, J. Magn. Magn. Mater. 374, 669 (2015). DOI: 10.1016/j.jmmm.2014.09.034.
  • A. K. Vishwakarma et al., Band gap engineering of Gd and Co doped BiFeO3 and their application in hydrogen production through photoelectrochemical route, Int. J. Hydrogen Energy 42 (36), 22677 (2017). DOI: 10.1016/j.ijhydene.2017.07.153.
  • M. Hasan et al., Saturation magnetization and band gap tuning in BiFeO3 nanoparticles via co-substitution of Gd and Mn, J. Alloys Compd. 687, 701 (2016). DOI: 10.1016/j.jallcom.2016.06.171.
  • X. Gao et al., Structural, magnetic behaviors and temperature-dependent Raman scattering spectra of Y and Zr codoped BiFeO3 ceramics, J. Adv. Dielect. 05 (03), 1550025 (2015). DOI: 10.1142/S2010135X15500253.
  • S. Irfan et al., Band-gap engineering and enhanced photocatalytic activity of Sm and Mn doped BiFeO3 nanoparticles, J. Am. Ceram. Soc. 100 (1), 31 (2017). DOI: 10.1111/jace.14487.
  • G. Arya et al., Observation of enhanced multiferroic, magnetoelectric and photocatalytic properties in Sm-Co codoped BiFeO3 nanoparticles, J. Alloys Compd. 723, 983 (2017). DOI: 10.1016/j.jallcom.2017.06.325.
  • L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA + U framework, Phys. Rev. B 73 (19), 195107 (2006). DOI: 10.1103/PhysRevB.73.195107.
  • A. Puhan et al., Facile single phase synthesis of Sr, Co co-doped BiFeO3 nanoparticles for boosting photocatalytic and magnetic properties, Appl. Surf. Sci. 493, 593 (2019). Applied Surface Science, DOI: 10.1016/j.apsusc.2019.07.002.
  • Y. Yang, L. Kang, and H. Li, Enhancement of photocatalytic hydrogen production of BiFeO3 by Gd3+ doping, Ceram. Int. 45 (6), 8017 (2019). DOI: 10.1016/j.ceramint.2018.12.150.
  • A. Rag, B. Am, and C. Eja, Enhancement of dielectric, ferromagnetic and electrochemical properties of BiFeO3 nanostructured films through rare earth metal doping, Ceram. Int. 46 (2), 1962 (2020).
  • Y. Sun et al., First principles study of the magnetic properties and charge transfer of Ni-doped BiFeO3, J. Magn. Magn. Mater. 449, 10 (2018). DOI: 10.1016/j.jmmm.2017.09.063.
  • Q. Y. Rong et al., Magnetic properties in BiFeO3 doped with Cu and Zn first-principles investigation, J. Alloys Compd. 674, 463 (2016). DOI: 10.1016/j.jallcom.2016.03.032.
  • S. Grover et al., Co-substituted BiFeO3: electronic, ferroelectric, and thermodynamic properties from first principles. 2022.
  • A. Jnbs et al., Structural, optical, and magnetic evaluation of Co-, Ni-, and Mn-modified multiferroic BiFeO3 ceramics, Ceram. Int. 17 (47), 24564 (2021).
  • T. Wang et al., Structural, Optical and Magnetic modulation in Mn and Mg co-doped BiFeO3 films grown on Si substrates, Mater. Lett. 199 (7), 116 (2017). DOI: 10.1016/j.matlet.2017.04.068.
  • Z. Li et al., Enhanced photocatalytic and magnetic recovery performance of Co-doped BiFeO3 based on MOFs precursor, J. Solid State Chem. 279, 120978 (2019). DOI: 10.1016/j.jssc.2019.120978.
  • A. D. Mani, and I. Soibam, Influence of diamagnetic Zn on structural, ferroelectric and ferromagnetic properties of BiFe1-xZnxO3 (0% ≤ x ≤ 8%), Phys. B Condens. Matter. 560, 97 (2019). DOI: 10.1016/j.physb.2019.02.042.
  • L. Jian et al., Influence of Zn doping on structural, optical and magnetic properties of BiFeO3 films fabricated by the sol–gel technique, Mater. Lett. 133, 49 (2014). DOI: 10.1016/j.matlet.2014.06.142.
  • V. A. Reddy, N. P. Pathak, and R. Nath, Enhanced magnetoelectric coupling in transition-metal-doped BiFeO3 thin films, Solid State Commun. 171 (10), 40 (2013). DOI: 10.1016/j.ssc.2013.07.032.
  • Y. Zhao, X. Ma, and P. Xu, Removal of Elemental mercury in flue gas with H2O2 solution catalyzed by Zn-doped BiFeO3, Energy Fuels 32 (5), 6056 (2018). DOI: 10.1021/acs.energyfuels.8b00484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.