70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The mechanism of formation of bismuth-doped barium titanate ceramics via sol gel

, ORCID Icon & ORCID Icon
Pages 386-395 | Received 27 Jul 2023, Accepted 13 Sep 2023, Published online: 28 Nov 2023

References

  • J. Dumková et al., Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs, Part Fibre Toxicol. 14 (1), 55 (2017). DOI: 10.1186/s12989-017-0236-y.
  • K. Raj, and A. P. Das, Lead pollution: Impact on environment and human health and approach for a sustainable solution, J. Environ. Chem. Ecotoxicol. 5, 79 (2023). DOI: 10.1016/j.enceco.2023.02.001.
  • E. A. Falcão et al., Synthesis and structural characterization of PVDF-based lead-free ceramic composites, Ferroelectrics 611 (1), 129 (2023). DOI: 10.1080/00150193.2023.2201776.
  • J. Wu, Perovskite lead-free piezoelectric ceramics, J. Appl. Phys. 127 (19), 190901 (2020). DOI: 10.1063/5.0006261.
  • S. Zhang et al., Lead-free ferroelectric materials: Prospective applications, J. Mater. Res. 36 (5), 985 (2021). DOI: 10.1557/s43578-021-00180-y.
  • N. Preetha, S. Padmavathi, and B. Mahalakshmi, Dielectric properties of barium titanate using different preparation techniques, in Recent Trends in Materials, edited by K. Geetha, F.M. Gonzalez-Longatt, H.M. Wee (Springer Proceedings in Materials, Springer, Singapore, 2022), Vol. 18, pp 463–471. DOI: 10.1007/978-981-19-5395-8_35.
  • A. Rached et al., Structural, optical and electrical properties of barium titanate, Mat. Chem. Phys. 267, 124600 (2021). DOI: 10.1016/j.matchemphys.2021.124600.
  • A. S. Bhalla, and A. Saxena, Ferroelectricity: 100 years on, Phys. World 33 (11), 38 (2021). DOI: 10.1088/2058-7058/33/11/31.
  • Z. Li et al., Enhancing properties of lead-free ferroelectric BaTiO3 through doping, J. Eur. Ceram. Soc. 42 (12), 4693 (2022). DOI: 10.1016/j.jeurceramsoc.2022.05.023.
  • A. Jain, Y. G. Wang, and L. N. Shi, Recent developments in BaTiO3 based lead-free materials for energy storage applications, J. Alloys Compd. 928, 167066 (2022). DOI: 10.1016/j.jallcom.2022.167066.
  • H. Mahmud et al., Giant effect on structural, magnetic, electrical, and optical properties of lead-free Ba0.6Sr0.4Ti1-xAlxO3 ceramics via Sr and Al Co-doping engineering, Mater. Res. Express 9 (11), 112001 (2022). DOI: 10.1088/2053-1591/ac9c87.
  • A. Dixit, R. S. Katiyar, and D. C. Agrawal, Enhanced tunability and relaxor characteristics in calcium substituted barium zirconium titanate thin films, Int. Ferroelectrics 91 (1), 48 (2007). DOI: 10.1080/10584580701315156.
  • P. S. Dobal, and R. S. Katiyar, Studies on ferroelectric perovskites and Bi-layered compounds using micro-Raman spectroscopy, J. Raman Spectrosc. 33 (6), 405 (2002). DOI: 10.1002/jrs.876.
  • N. Ertekin, and S. Rezaee, Lithium-doped barium titanate as advanced cells of ReRAMs technology, J. Electron. Mater. 52 (2), 1575 (2023). DOI: 10.1007/s11664-022-10124-9.
  • P. S. Dobal et al., Raman study of overlap of phase transitions in Zr-doped Barium Titanate ceramics Proc. SPIE 4333, Smart Structures and Materials 2001: Active Materials: Behavior and Mechanics, 4333, 111., 2001 DOI: 10.1117/12.432747.
  • L. E. Cross, Ferroelectric ceramics: Tailoring properties for specific applications, in Ferroelectric Ceramics, edited by N. Setter, E.L. Colla (Monte Verità, Birkhäuser Basel, 1993), pp 1–85. DOI: 10.1007/978-3-0348-7551-6_1.
  • D. Singh, A. Dixit, and P. S. Dobal, Ferroelectricity and ferromagnetism in Fe-doped barium titanate ceramics, Ferroelectrics 573 (1), 63 (2021). DOI: 10.1080/00150193.2021.1890464.
  • R. S. Katiyar * et al., Effect of Zr doping on dielectric and ferroelectric properties of BaTiO3 thin films, Int. Ferroelectrics 70 (1), 45 (2005). DOI: 10.1080/10584580590926666.
  • A. Dixit et al., Studies on the relaxor behavior of sol–gel derived Ba(ZrxTi1-x)O3 (x = 0.30 to 0.70) thin films, J. Mater. Sci. 41 (1), 87 (2006). DOI: 10.1007/s10853-005-5929-1.
  • A. Dixit et al., Relaxor behavior in sol–gel deposited BaZr(0.40)Ti(0.60)O3 thin film, Appl. Phys. Lett. 82 (16), 2679 (2003). DOI: 10.1063/1.1568166.
  • P. S. Dobal et al., Micro-Raman scattering and dielectric investigations of phase transition behaviour in BaTiO3-BaZrO3 system, J. Appl. Phys 89 (12), 8085 (2001). DOI: 10.1063/1.1369399.
  • D. Singh et al., Structural, dielectric and ferroelectric characterizations of sol–gel derived strontium doped barium titanate nanoceramics, IOP Conf. Ser.: Mater. Sci. Eng. 1272 (1), 012026 (2022). DOI: 10.1088/1757-899X/1272/1/012026.
  • K. Tewatia et al., Factors affecting morphological and electrical properties of barium titanate: A brief review, Mater. Today: Proc. 44, 4548 (2021). DOI: 10.1016/j.matpr.2020.10.813.
  • R. Seshadri, and N. A. Hill, Visualizing the role of Bi 6s “lone pairs” in the off-centre distortion in ferromagnetic BiMnO3, Chem. Mater. 13 (9), 2892 (2001). DOI: 10.1021/cm010090m.
  • D. S. Keeble et al., Bifurcated polarization rotation in bismuth-based piezo electrics, Adv. Funct. Mater. 23 (2), 185 (2013). DOI: 10.1002/adfm.201201564.
  • R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature 358 (6382), 136 (1992). DOI: 10.1038/358136a0.
  • N. Sareecha et al., Electrical investigations of Bi-doped BaTiO3 ceramics as a function of temperature, Physica B 530, 283 (2018). DOI: 10.1016/j.physb.2017.11.069.
  • D. Bokov et al., Nanomaterial by sol–gel method: synthesis and application, Adv. Mater. Sci. Eng. 2021, 1 (2021). DOI: 10.1155/2021/5102014.
  • T. Pečnik et al., Combined effects of thickness, grain size and residual stress on the dielectric properties of Ba0.5Sr0.5TiO3, J. Alloys Compd. 646, 766 (2015). DOI: 10.1016/j.jallcom.2015.06.192.
  • R. W. Schwartz et al., Control of Microstructure and Orientation in Solution-Deposited BaTiO3 and SrTiO3 Thin Films, J. Am. Ceram. Soc. 82 (9), 2359 (1999). DOI: 10.1111/j.1151-2916.1999.tb02091.x.
  • J. F. Ihlefeld, J. P. Maria, and W. Borland, Dielectric and microstructural properties of barium titanate zirconate thin films on copper substrates, J. Mater. Res. 20 (10), 2838 (2005). DOI: 10.1557/JMR.2005.0342.
  • M. Cernea et al., Sol–gel synthesis and characterization of Ce doped-BaTiO3, J. Eur. Ceram. Soc. 26 (15), 3241 (2006). DOI: 10.1016/j.jeurceramsoc.2005.09.039.
  • P. Buerger et al., A kinetic mechanism for the thermal decomposition of titanium tetraisopropoxide, Proc. Combust. Inst. 36 (1), 1019 (2017). DOI: 10.1016/j.proci.2016.08.062.
  • V. Pavlovic et al., Synthesis of BaTiO3from a mechanically activated BaCO3-TiO2 system, Sci. Sintering 40 (1), 21 (2008). DOI: 10.2298/SOS0801021P.
  • A. Beauger, J. C. Mutin, and J. C. Niepce, Synthesis reaction of metatitanate BaTiO3, J. Mater. Sci. 18 (10), 3041 (1983). DOI: 10.1007/BF00700786.
  • C. Legrand-Buscema, C. Malibert, and S. Bach, Elaboration and characterization of thin films of TiO2 prepared by sol–gel process, Thin Solid Films 418 (2), 79 (2002). DOI: 10.1016/S0040-6090(02)00714-9.
  • F. Chaput, J.-P. Boilot, and A. Beauger, Alkoxide-hydroxide route to synthetize BaTiO3-based powders, J. Am. Ceram. Soc. 73 (4), 942 (1990). DOI: 10.1111/j.1151-2916.1990.tb05141.x.
  • Y. Lu et al., Induced aqueous synthesis of metastable β-Bi2O3 microcrystals for visible-light photo catalyst study, Cryst., Growth Des. 15 (3), 1031 (2015). DOI: 10.1021/cg500792v.
  • A. Chen et al., Dielectric spectra and electrical conduction in Fe-doped SrTiO3, Phys. Rev. B 61 (6), 3922 (2000). DOI: 10.1103/PhysRevB.61.3922.
  • C. S. Devi et al., Influence of distortions and tolerance factor on the structure of ABO3 type perovskites and complex perovskites, Ferroelectrics 554 (1), 172 (2020). DOI: 10.1080/00150193.2019.1684759.
  • J. W. Evangelista, C. T. Avedisian, and W. Tsang, Thermal and catalytic decomposition of aqueous ethylene glycol mixtures by film boiling, Int. J. Heat Mass Transfer 55 (23–24), 6425 (2012). DOI: 10.1016/j.ijheatmasstransfer.2012.06.030.
  • L. A. Klinkova et al., Thermal Stability of Bi2O3, Russ. J. Inorg. Chem. 52 (12), 1822 (2007). DOI: 10.1134/S0036023607120030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.