38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Dielectric relaxation and thermodynamic study of aqueous Glycine using time domain reflectometry technique

ORCID Icon, , , &
Pages 80-96 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • P. Ball, Water as an active constituent in cell biology, Chem. Rev. 108 (1), 74 (2008). DOI: 10.1021/cr068037a.
  • R. Pethig, Protein-water interactions determined by dielectric methods, Annu. Rev. Phys. Chem. 43 (1), 177 (1992). DOI: 10.1146/annurev.pc.43.100192.001141.
  • H. Frauenfelder, and G. Chen et al., A unified model of protein dynamics, Proc Natl Acad Sci U S A. 106 (13), 5129 (2009). DOI: 10.1073/pnas.0900336106.
  • B. Bagchi, Water dynamics in the hydration layer around proteins and Micelles, Chem. Rev. 105 (9), 3197 (2005). DOI: 10.1021/cr020661+.
  • M. Levitt, and R. Sharon, Accurate simulation of protein dynamics in solution, Proc Natl Acad Sci U S A. 85 (20), 7557 (1988). DOI: 10.1073/pnas.85.20.7557.
  • A. R. Bizzarri, and S. Cannistraro, Molecular dynamics of water at the protein–solvent interface, J. Phys. Chem. B 106 (26), 6617 (2002). DOI: 10.1021/jp020100m.
  • K. Wüthrich, NMR with proteins and nucleic acids, Europhys. News. 17 (1), 11 (1986). DOI: 10.1051/epn/19861701011.
  • A. Barth, Infrared spectroscopy of proteins, Biochim Biophys Acta 1767 (9), 1073 (2007). DOI: 10.1016/j.bbabio.2007.06.004.
  • R. Sarroukh et al., ATR-FTIR: A “rejuvenated” tool to investigate amyloid proteins, Biochim Biophys Acta 1828 (10), 2328 (2013). DOI: 10.1016/j.bbamem.2013.04.012.
  • A. Barth, The infrared absorption of amino acid side chains, Prog. Biophys. Mol. Biol. 74 (3–5), 141 (2000). DOI: 10.1016/s0079-6107(00)00021-3.
  • M. T. Neves-Petersen et al., UV Light Effects on Proteins: From Photochemistry to Nanomedicine, Molecular Photochemistry – Various Aspects, Satyen Saha, ed., Shanghai; 2012
  • A. Hofmann, Spectroscopic Techniques: I Spectrophotometric Techniques, Principles and Techniques of Biochemistry and Molecular Biology (Cambridge University Press, New York, 2010).
  • Y. J. Carreón, and H. Mercado-Uribe, Dielectric spectroscopy of biomolecules at low frequencies: Evidence of proton wires, J. Mole. Liq. 223, 136 (2016). DOI: 10.1016/j.molliq.2016.08.025.
  • N. Q. Vinh, S. J. Allen, and K. W. Plaxco, Dielectric spectroscopy of proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions, J. Am. Chem. Soc. 133 (23), 8942 (2011). DOI: 10.1021/ja200566u.
  • Y. Xia, and L. Jie et al., Effect of sodium chloride on the nucleation and polymorphic transformation of glycine, J. Cryst. Grow. 310, 604 (2008).
  • R. M. Gurney, Ionic Properties in Solutions. (McGraw-Hill Book Company, Inc., New York, 1953).
  • M. P. Lokhande et al., Dielectric relaxation study of glycine and valine in water mixture using picosecond time domain reflectometry, I. J. Biochem Biophys. 34 (4), 385 (1997).
  • R. B. Talware et al., Dielectric relaxation study of glycine–water mixtures using time domain reflectometry technique, Phy. Chem. Liq. 50 (1), 102 (2012). DOI: 10.1080/00319104.2010.551345.
  • K. Ajaya Kumar et al., Dielectric relaxation behavior of glycine in aqueous solution medium in the microwave frequency region, Ind. J. Eng. Mat. Sci. 15, 196 (2008).
  • M. W. Aaron, and E. H. Grant, Dielectric relaxation of glycine in water, Trans. Fara. Soc. 67, 1 (1971).
  • A. Chaudhari et al., Dielectric relaxation in glycine–water and glycine–ethanol–water solutions using time domain reflectometry, J. Solu. Chem. 33 (3), 313 (2004). DOI: 10.1023/B:JOSL.0000035363.49294.d1.
  • V. V. Navarkhele, Static dielectric constant and excess properties of amino acids, J. Chem. Pharm. Res. 8 (7), 930 (2016).
  • M. W. Aaron, and E. H. Grant, Dielectric and viscosity studies on the dipeptides of alanine and glycine, Br. J. Appl. Phys. 18 (7), 957 (1967). DOI: 10.1088/0508-3443/18/7/311.
  • S. E. McLain, A. K. Soper, and A. Watts, Water structure around dipeptides in aqueous solutions, Eur Biophys J. 37 (5), 647 (2008). DOI: 10.1007/s00249-008-0292-1.
  • S. Jayakumar et al., Thermodynamic studies of molecular interactions in aqueous glycine-a biological molecule, Inter. J.Inn. Res. Sci. Eng. Tech. 4 (1), 119 (2015).
  • M. M. Sylvester et al., Dielectric dispersion and thermodynamic behavior of stearic acid binary mixtures with alcohol as cosolvent using time domain reflectometry, J. Adv. Dielect. 7 (4), 1750027 (2017). DOI: 10.1142/S2010135X17500278.
  • P. Senthilkumara et al., Dielectric relaxation and molecular interaction investigation of glycolic acid-water mixture using time domain reflectometry, I. J Pure App. Phy. 57, 180 (2019).
  • T. J. Fortin et al., Advanced calibration, adjustment, and operation of a density and sound speed analyzer, J. Chem. Thermodynam. 57, 276 (2013). DOI: 10.1016/j.jct.2012.09.009.
  • R. H. Cole et al., Time domain reflection methods for dielectric measurements to 10 GHz, J. Appl. Phys. 66 (2), 793 (1989). DOI: 10.1063/1.343499.
  • A. C. Kumbharkhane, A. Puranik, and S. C. Mehrotra, Dielectric relaxation of tert-butyl alcohol–water mixtures using a time-domain technique, J. Chem. Soc. Faraday Trans/ 87 (10), 1569 (1991). DOI: 10.1039/FT9918701569.
  • Y. S. Joshi, K. S. Kanse, D. N. Rander, and A. C. Kumbharkhane, Dielectric relaxation and molecular interaction study of aqueous amides, Ind. J. Pur. Appl. Phy 54, 621 (2016).
  • S. M. Maria et al., Time domain dielectric relaxation studies of amphiphilics in solution state, J. Mol. Liq. 194, 57 (2014). DOI: 10.1016/j.molliq.2013.12.051.
  • K. D. J. S. Anand et al., Dielectric properties and analysis of H-bonded interaction study in complex systems of binary and ternary mixtures of polyvinyl alcohol with water and DMSO, Flu. Pha. Equi. 382, 300 (2014).
  • T. Ganesh, R. Sabesan, and S. Krishnan, Dielectric relaxation studies of alkanols solubilized by cationic surfactants in aqueous solutions, J. Mol. Liq. 137 (1-3), 31 (2008). DOI: 10.1016/j.molliq.2007.03.003.
  • T. Ganesh, R. Sabesan, and S. Krishnan, Dielectric relaxation spectroscopic studies of ionic surfactants in aqueous solutions, J. Mol. Liq. 128 (1-3), 77 (2006). DOI: 10.1016/j.molliq.2005.11.038.
  • T. Ganesh et al., Dielectric relaxation studies of alkanols solubilized by sodium dodecyl sulphate aqueous solutions, J. Mol. Liq. 123 (2–3), 80 (2006). DOI: 10.1016/j.molliq.2005.05.005.
  • N. E. Hager, III, Broadband time- domain- reflectometry dielectric spectroscopy using variable-time-scale sampling, Rev. Sci. Instrument. 65 (4), 887 (1994). DOI: 10.1063/1.1144917.
  • M. Rumyantsev, Influences of co-solvent on hydrogen bond reorganization in ternary poly(vinyl alcohol) solutions, Eu. Poly. J. 49 (8), 2257 (2013). DOI: 10.1016/j.eurpolymj.2013.05.005.
  • S. Havriliak, and S. Negami, Journal of Polymer Science: Polymer Symposia, New York: Wiley Subscription Services, Inc, a Wiley Company, 14 1966
  • D. W. Davidson, and R. H. Cole, Dielectric relaxation in glycerine, J. Chem. Phys. 18 (10), 1417 (1950). DOI: 10.1063/1.1747496.
  • R. Buchner, J. Barthel, and J. Stauber, The dielectric relaxation of water between 0 °C and 35 °C, Chem Phys Let 306 (1-2), 57 (1999). DOI: 10.1016/S0009-2614(99)00455-8.
  • U. Kaatze, and V. Uhlendorf, The dielectric properties of water at microwave frequencies, Zeits. Phys Chem New Foldge. 126 (2), 151 (1981). DOI: 10.1524/zpch.1981.126.2.151.
  • J. W. Kress, and J. J. Kozak, Estimate of the intermolecular polarization contribution to the static dielectric constant of water, J. Chem. Phys. 64 (4), 1706 (1976). DOI: 10.1063/1.432345.
  • J. G. Kirkwood, The dielectric polarization of polar liquids, J. Chem. Phys. 7 (10), 911 (1939). DOI: 10.1063/1.1750343.
  • R. J. Sengwa, Comparative dielectric study of mono, di and trihydric alcohols, Indian. J. Pure App. Phys 41, 295 (2003).
  • A. C. Kumbharkhane, S. M. Puranik, and S. C. Mehrotra, Dielectric relaxation studies of aqueous N,N-dimethylformamide using a picosecond time domain technique, J. Solution. Chem. 22 (3), 219 (1993). DOI: 10.1007/BF00649245.
  • R. J. Sengwa, V. Khatri, and S. Sankhla, Dielectric behavior and hydrogen bond molecular interaction study of formamide-dipolar solvents binary mixtures, J. Mol. Liq. 144 (1–2), 89 (2009). DOI: 10.1016/j.molliq.2008.10.009.
  • S. D. Deshmukh et al., Investigation of intermolecular interactions between amide-amine binary mixtures through dielectric relaxation study, Ferroelectrics. 519 (1), 23 (2017). DOI: 10.1080/00150193.2017.1362280.
  • J. B. Hasted, Aqueous Dielectric, London: Chapman and Hall, 1973.
  • K. Dharmalingam et al., Dielectric relaxation of binary mixtures of alcohols with ethyl methacrylate, J. Sci. Eng. 12 (2), 123 (2009).
  • S. Glasstone, K. J. Laider, and H. Eyring, The Theory of Rate Processes, New York: McGraw Hill, 1941.
  • D. A. G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Ann. Phys 416 (7), 636 (1935). DOI: 10.1002/andp.19354160705.
  • S. M. Puranik, A. C. Kumbharkhane, and S. C. Mehrotra, The static permittivity of binary mixtures using an improved bruggeman model, J. Mol. Liq. 59 (2–3), 173 (1994). DOI: 10.1016/0167-7322(93)00665-6.
  • S. E. Cabaniss, and I. F. Mcrey, Aqueous infrared carboxylate absorbances: aliphatic monocarboxylates, Spectrochim Acta A. 51 (13), 2385 (1995). DOI: 10.1016/0584-8539(95)01479-9.
  • S. E. Cabaniss, J. A. Leenheer, and I. F. McVey, Aqueous infrared carboxylate absorbances: aliphatic di-acids, Spectrochim Acta A. 54 (3), 449 (1998). DOI: 10.1016/S1386-1425(97)00258-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.