50
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Theoretical investigation of ferroelectric and dielectric properties of Rochelle salt colemanite type crystals

, &
Pages 151-161 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • M. E. Lines, and A. M. Glass, Principle and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).
  • F. Jona, and G. Shirane, Ferroelectric Crystals (Pergamon, Oxford, 1962) DOI: 10.1002/zamm.19630431016.
  • T. F. Connolly and E. S. Truner, Editors. Ferroelectric Materials and Ferroelectricity (Plenum Press, New York, 1970).
  • J. Valasek, Piezo-electric and allied phenomena in Rochelle salt, Phys. Rev. 17 (4), 475 (1921). DOI: 10.1103/PhysRev.17.475.
  • H. Mueller, Properties of Rochelle Salt, Phys. Rev. 47 (2), 175 (1935). DOI: 10.1103/PhysRev.47.175.
  • J. Hablützel, Heavy Seignette salt dielectric investigations on KNaC4H4O6•4 H2O crystals, Phys. Acta 12, 489 (1939). (in Russian). https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/134673/eth-21223-01.pdf
  • W. P. Mason, Electrostrictive effect in barium titanate, Phys. Rev. 72 (9), 869 (1947). DOI: 10.1103/PhysRev.72.869.2.
  • M. Born, and K. Huang, Dynamical Theory of Crystal Lattices (Oxford Press, New York, 1954).
  • H. Akao, and T. Sasaki, Dielectric dispersion of Rochelle salt in the microwave region, J. Chem. Phys. 23 (12), 2210 (1955). DOI: 10.1063/1.1740725.
  • A. F. Devonshire, Theory of rochelle salt, Philos. Mag. 2 (20), 1027 (1957). DOI: 10.1080/14786435708238209.
  • T. Mitsui, Theory of the ferroelectric effect in Rochelle salt, Phys. Rev. 111 (5), 1259 (1958). DOI: 10.1103/PhysRev.111.1259.
  • R. Blinc, J. Petkovšek, and I. Zupančič, Na23 magnetic-resonance study of the ferroelectric transition in Rochelle Salt, Phys. Rev. 136 (6A), A1684 (1964). DOI: 10.1103/PhysRev.136.A1684.
  • F. Sandy, and R. V. Jones, Dielectric relaxation of Rochelle Salt, Phys. Rev. 168 (2), 481 (1968). DOI: 10.1103/PhysRev.168.481.
  • A. A. Volkov et al., Low-temperature transformations of the relaxational soft modes in crystals of the Rochelle salt family. Institute of General Physics, Academy of Sciences of the USSR, Zh. Eksp. Teor. Fiz 90, 192 (1986). http://www.jetp.ras.ru/cgi-bin/dn/e_063_01_0110.pdf
  • S. Kamba, G. Schaack, and J. Petzelt, Vibrational spectroscopy and soft-mode behavior in Rochelle salt, Phys. Rev. B Condens. Matter. 51 (21), 14998 (1995). DOI: 10.1103/physrevb.51.14998.
  • W. Piekara and   Wieckowski, Temperature dependence of the spontaneous polarization in Rochelle salt and thiourea, Phys. Stat. Sol. (b) 197, 259 (1996). DOI: 10.1002/pssb.2221970133.
  • J. Hlinka et al., Resonant soft mode in Rochelle salt by inelastic neutron scattering, Phys. Rev. B. 63 (5), 52102 (2001). DOI: 10.1103/PhysRevB.63.052102.
  • I. Malyshkina et al., Low-frequency dielectric spectroscopy of polyampholyte gels, Vysokomol. Soedin. Ser. B 43 (6), 1085 (2001). (in Russian). https://cyberleninka.ru/article/n/low-frequency-dielectric-spectroscopy-of-polyampholyte-gels
  • O. Yildiz, The effect of heat treatment on colemanite processing: a ceramics application, Powder Technol. 142 (1), 7 (2004). DOI: 10.1016/j.powtec.2004.03.006.
  • A. G. Chynoweth, The pyroelectric behaviour of colemanite, Acta Cryst 10 (8), 511 (1957). DOI: 10.1107/S0365110X5700184X.
  • F. Holuj, and H. E. Petch, A study of the boron sites in colemanite, CaB3O4(OH)3·H2O, Can. J. Phys. 36 (1), 145 (1958). DOI: 10.1139/p58-017.
  • H. H. Wieder, Ferroelectric properties of colemanite, J. Appl. Phys. 30 (7), 1010 (1959). DOI: 10.1063/1.1776973.
  • E. Fatuzzo, Bias in ferroelectric colemanite, J. Appl. Phys. 31 (6), 1029 (1960). DOI: 10.1063/1.1735739.
  • H. H. Wieder, A. R. Clawson, and C. R. Parkerson, Ferroelectric and pyroelectric properties of mineral and synthetic colemanite, J. Appl. Phys. 33 (5), 1720 (1962). DOI: 10.1063/1.1728815.
  • F. N. Hainsworth, and H. E. Petch, The structural basis of ferroelectricity in colemanite, Can. J. Phys. 44 (12), 3083 (1966). DOI: 10.1139/p66-254.
  • G. L. Slabkaya, A. M. Lotonov, and N. D. Gavrilova, Low-frequency dielectric spectroscopy and electrical properties of Ca[B3O4(OH)3]·H2O single crystals near the phase transition, Inorg. Mater. 40 (12), 1307 (2004). DOI: 10.1023/B:INMA.0000020526.33091.c5.
  • A. Ersoy et al., The effect of colemanite on dielectric properties of polymers, International Conference on Electricals and Electronics Engineering-2009, 05–08 November, 2009, pp. 341–344. https://ieeexplore.ieee.org/document/5355307
  • C. Chatterjee, and B. R. Bardhan, Effects of temperature and near ultraviolet light on current-voltage characteristics of colemanite, Ferroelectrics. 526 (1), 16 (2018). DOI: 10.1080/00150193.2018.1456245.
  • N. D. Gavrilova et al., Dielectric response of holmium formate crystallohydrate at 100 mHz–10 MHz, Ferroelectrics 478 (1), 88 (2015). DOI: 10.1080/00150193.2015.1011493.
  • P. Lotti et al., Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron, Phys. Chem. Miner. 45 (5), 405 (2018). DOI: 10.1007/s00269-017-0929-7.
  • J. W. Davisson, and B. Molnar, A study of bias fields in ferroelectric colemanite, Mat. Res. Bull. 6 (10), 951 (1971). DOI: 10.1016/0025-5408(71)90073-0.
  • G. Brosowski, G. Luther, and J. Petersson, Phenomenological theory of the ferroelectric dispersion and microwave investigations of colemanite, Z. Naturforsch. A. 28 (11), 1814 (1973). DOI: 10.1515/zna-1973-1108.
  • G. Brosowski et al., Proton spin–lattice relaxation in the hydrogen-bonded ferroelectrics colemanite, KFCT, and TGS, Phys. Stat. Sol. (b). 62 (1), 93 (1974). (b) DOI: 10.1002/pssb.2220620109.
  • D. N. Zubarev, Double-time Green functions in statistical physics, Sov. Phys. Usp. 3 (3), 320 (1960). DOI: 10.1070/PU1960v003n03ABEH003275.
  • B. K. Chaudhuri et al., Study of ferroelectric phase transitions in the Rochelle salt with the pseudo-spin-lattice coupled mode model, J. Phys. Soc. Jpn. 49 (2), 608 (1980). DOI: 10.1143/JPSJ.49.608.
  • T. C. Upadhyay, and B. Kandpal, Temperature dependence of microwave loss in Rochelle salt crystal, Indian J. Pure Appl. Phys. 47, 134 (2009). http://nopr.niscpr.res.in/handle/123456789/3183
  • B. Kandpal, M. Joshi, and T. C. Upadhyay, Investigation of ferroelectric properties of Rochelle salt type crystals using a modified model, J. Mountain Res. 16 (2), 121 (2021). DOI: 10.51220/jmr.v16i2.16.
  • N. D. Gavrilova, A. M. Lotonov, and A. A. Antonenko, Ferroelectric properties of colemanite, Inorg. Mater. 42 (7), 777 (2006). DOI: 10.1134/S0020168506070156.
  • N. D. Gavrilova, A. M. Lotonov, and A. A. Kornilova, Dielectric properties of colemanite, Inorg. Mater. 44 (2), 171 (2008). DOI: 10.1134/S0020168508020167.
  • K. Kumar, and T. C. Upadhyay, Investigation of spontaneous polarization and phase transition phenomena in KH2PO4-type crystals by Green’s function approach, J. Low Temp. Phys. 207 (3-4), 190 (2022). DOI: 10.1007/s10909-022-02714-y.
  • K Kumar, and T. C. Upadhyay, Theoretical investigation of ferroelectric phase transition, and tangent delta in CsH2AsO4 (CDA) crystal, Materials Today Proceeding 49, 2348 (2022). DOI: 10.1016/j.matpr.2021.09.354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.