38
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Phase Transition Behavior in Antiferroelectric Copper Formate Tetrahydrate Crystal

, , , , , , , & show all
Pages 187-199 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 10 Dec 2023

References

  • K. Okada, Antiferroelectric phase transition in copper formate tetrahydrate, Phys. Rev. Lett. 15 (6), 252 (1965). DOI: 10.1103/PhysRevLett.15.252.
  • K. Okada et al., Crystal structure by neutron diffraction and the antiferroelectric phase transition in copper formate tetrahydrate, J. Chem. Phys. 44 (4), 1648 (1966). DOI: 10.1063/1.1726904.
  • K. Okada, Specific-heat anomaly and calculation of the configurational entropy change at the phase transition in copper formate tetrahydrate, Phys. Rev. 164 (2), 683 (1967). DOI: 10.1103/PhysRev.164.683.
  • K. Okada and H. Sugie, Experimental study of antiferroelectric copper formate tetrahydrate and its deuterium substitute, J. Phys. Soc. Jpn. 25 (4), 1128 (1968). DOI: 10.1143/JPSJ.25.1128.
  • Y. Makita and I. Seo, Critical slowing‐down process of dielectric relaxation in antiferroelectric Cu(HCOO)2·4H2O, J. Chem. Phys. 51 (7), 3058 (1969). DOI: 10.1063/1.1672456.
  • M. J. Bird and T. R. Lomer, The unit cell and space group of the antiferroelectric phase of copper formate tetrahydrate, Acta Crystallogr. B Struct. Sci. 27 (4), 859 (1971). DOI: 10.1107/S0567740871003108.
  • J. Hiraishi, The infrared spectra and the antiferroelectric phase transition of copper formate tetrahydrate, Bull. Chem. Soc. Jpn. 45 (1), 128 (1972). DOI: 10.1246/bcsj.45.128.
  • Y. Ishibashi, S. Ohya, and Y. Takagi, A theory of antiferroelectric phase transition in copper formate tetrahydrate crystals, J. Phys. Soc. Jpn. 34 (4), 888 (1973). DOI: 10.1143/JPSJ.34.888.
  • G. R. Allen, Dimer models for the antiferroelectric transition in copper formate tetrahydrate, J. Chem. Phys. 60 (8), 3299 (1974). DOI: 10.1063/1.1681521.
  • Y. Sasaki, Measurement of the elastic compliance constants of antiferroelectric copper formate single crystals, J. Phys. Soc. Jpn. 37 (6), 1570 (1974). DOI: 10.1143/JPSJ.37.1570.
  • K. E. Weber and T. B. Flanagan, Large protonic conductivity in copper formate tetrahydrate single crystals, Solid State Commun. 16 (1), 23 (1975). DOI: 10.1016/0038-1098(75)90780-2.
  • S. Fujimoto, N. Yasuda, and H. Ukai, Antiferroelectric cupric formate tetrahydrate under high pressure, Ferroelectrics 11 (1), 341 (1976). DOI: 10.1080/00150197608236577.
  • K. Hamano, K. Ema, and Y. Iwane, Dielectric anisotropy in antiferroelectric copper formate tetrahydrate, J. Phys. Soc. Jpn. 44 (3), 933 (1978). DOI: 10.1143/JPSJ.44.933.
  • N. Yasuda et al., Effect of the uniaxial stress on the dielectric properties of antiferroelectric cupric formate tetrahydrate, J. Appl. Phys. 49 (1), 383 (1978). DOI: 10.1063/1.324399.
  • A. M. Heyns and K. J. Range, The vibrational spectra of the copper (II) formates: part IV. The thermal behaviour of Cu(HCOO)2·4H2O and Cu(HCOO)2·2H2O, J. Mol. Struct. 162 (1–2), 57 (1987). DOI: 10.1016/0022-2860(87)85022-6.
  • S. Fujimoto et al., Electric field dependence of permittivity and antiferroelectric polarization of cupric formate tetrahydrate under hydrostatic pressure, [Proceedings] 1990 IEEE 7th International Symposium on Applications of Ferroelectrics. IEEE, 1990, pp. 545–548.
  • N. Yasuda and R. Suzuki, Dielectric dispersion associated with the dc-electric-field-enforced ferroelectric phase transition in the antiferroelectric cupric formate tetrahydrate, Ferroelectrics 126 (1), 127 (1992). DOI: 10.1080/00150199208227047.
  • G. Banerjee and B. K. Chaudhuri, Study of dielectric anomalies in Cu(HCOO)2·4H2O and Cu(HCOO)2·4D2O around their antiferroelectric phase transitions using pseudospin model, Phase Trans. 50 (4), 213 (1994). DOI: 10.1080/01411599408219156.
  • T. Omura et al., Structural change of Cu(HCOO)2·4H2O associated with the antiferroelectric phase transition, Ferroelectrics 270 (1), 375 (2002). DOI: 10.1080/713716091.
  • T. Omura et al., X-ray and neutron studies of antiferroelectric phase transition in Cu(HCOO)2·4H2O, Ferroelectrics 285 (1), 151 (2003). DOI: 10.1080/00150190390205997.
  • T. Omura et al., Incoherent inelastic neutron scattering study of antiferroelectric Cu(HCOO)2·4H2O crystal, J. Neutron Res. 12 (4), 287 (2004). DOI: 10.1080/10238160412331299456.
  • A. Sakai, T. Mizushima, and C. Moriyoshi, Raman scattering spectra of quasi-two-dimensional crystallization water in Cu(HCOO)2·4H2O near the antiferroelectric phase transition, Ferroelectrics 346 (1), 168 (2007). DOI: 10.1080/00150190601182493.
  • T. Tajiri et al., Effect of pressure on two-dimensional Heisenberg antiferromagnet Cu(HCOO)2·4H2O, J. Magn. Magn. Mater. 310 (2), e566 (2007). DOI: 10.1016/j.jmmm.2006.10.496.
  • W. Fujita, K. Kikuchi, and W. Mori, Crystal growth, structure, and magnetic properties of a two‐dimensional triangular lattice magnet, Cu2(OH)3HCO2, Chem. Asian J. 7 (12), 2830 (2012). DOI: 10.1002/asia.201200732.
  • N. Herres and H. Klapper, X-ray topographic study of the antiferroelectric phase transition and antiphase boundaries in copper formate tetrahydrate, Z. Kristallogr. Crystall. Mater. 230 (11), 677 (2015). DOI: 10.1515/zkri-2015-1853.
  • P. Toledano and M. Guennou, Theory of antiferroelectric phase transitions, Phys. Rev. B 94 (1), 014107 (2016). DOI: 10.1103/PhysRevB.94.014107.
  • V. N. Krasil’nikov et al., Novel method for the production of copper (II) formates, their thermal, spectral and magnetic properties, J. Alloys Compd. 845, 156208 (2020). DOI: 10.1016/j.jallcom.2020.156208.
  • D. N. Zubarev, Double-time Green functions in statistical physics, Sov. Phys. Usp. 3 (3), 320 (1960). DOI: 10.1070/PU1960v003n03ABEH003275.
  • R. A. Cowley, The lattice dynamics of an anharmonic crystal, Adv. Phys. 12 (48), 421 (1963). DOI: 10.1080/00018736300101333.
  • W. Cochran, Crystal stability and the theory of ferroelectricity, Phys. Rev. Lett. 3 (9), 412 (1959). DOI: 10.1103/PhysRevLett.3.412.
  • M. I. Khan and T. C. Upadhyay, Phase transitions in H-bonded deuterated Rochelle salt crystal, Eur. Phys. J. Plus 136 (1), 1 (2021). DOI: 10.1140/epjp/s13360-020-01058-4.
  • M. I. Khan and T. C. Upadhyay, Phase transition thermal dependence of ferroelectric and dielectric properties in H-bonded PbHPO4 (LHP) crystal, Appl. Phys. A 126 (11), 881 (2020). DOI: 10.1007/s00339-020-04036-w.
  • M. I. Khan and T. C. Upadhyay, Phase transition study of thermal dependence of soft mode frequency, dielectric constant and dielectric tangent loss properties in CsH2PO4 (CDP) and CsD2PO4 (DCDP) crystals, J. Low Temp. Phys. 203 (5–6), 401 (2021). DOI: 10.1007/s10909-021-02589-5.
  • T. Matsuo et al., High-resolution heat capacity of SnCl2·2H2O single crystal, Solid State Commun. 13 (11), 1829 (1973). DOI: 10.1016/0038-1098(73)90739-4.
  • M. Oguni et al., Physico-chemical studies of the reversible and irreversible phase transitions in potassium ferrocyanide trihydrate and its deuterate analogue, Bull. Chem. Soc. Jpn. 48 (2), 379 (1975). DOI: 10.1246/bcsj.48.379.
  • J. Feder, Two-dimensional ferroelectricity, Ferroelectrics 12 (1), 71 (1976). DOI: 10.1080/00150197608241395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.