70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microstructure, dielectric, and impedance spectroscopy of the dysprosium-modified LaBiO3 ceramic

, &
Pages 321-333 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 29 Jan 2024

Reference

  • P. C. Reshmi Varma, Perovskite photovoltaics, basic to advanced concepts and implementation, Chapter 7–Low-dimensional perovskites 197–229, (Academic Press, Cambridge, USA) 2018. DOI: 10.1016/B978-0-12-812915-9.00007-1.
  • A. Navrotsky, Energetics, and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures, Chem. Mater. 10 (10), 2787 (1998). DOI: 10.1021/cm9801901.
  • L. E. Cross, Relaxor ferroelectrics, Ferroelectrics 76 (1), 241 (1987). DOI: 10.1080/00150198708016945.
  • R. Duan, M. S. Haluska, and R. F. Speyer, Multiple dielectric anomalies in xBiLaO3-(1-x)PbTiO3 piezoelectrics, J. Mater. Res. 23 (2), 565 (2008). DOI: 10.1557/JMR.2008.0074.
  • A. Mukherjee et al., Enhanced multiferroic properties of Y and Mn codoped multiferroic BiFeO3 nanoparticles, J. Mater. Sci. 50 (4), 1891 (2015). DOI: 10.1007/s10853-014-8752-8.
  • A. Mukherjee et al., Effect of Y-doping on optical properties of multiferroics BiFeO3 nanoparticles, Appl. Nanosci. 2 (3), 305 (2012). DOI: 10.1007/s13204-012-0114-8.
  • G. L. Yuan et al., Structural transformation and ferroelectric–paraelectric phase transition in Bi1–xLaxFeO3 (x = 0–0.25) multiferroic ceramics, J. Phys. D: Appl. Phys. 40, 1196 (2007).
  • S. T. Zhang, Organic diodes as monolithically integrated surface plasmon polariton detectors, Appl. Phys. Lett. 88, 162901 (2006). DOI: 10.1063/1.2362975.
  • G. L. Yuan, and S. Wing, Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi1 − xNdxFeO3Bi1 − xNdxFeO3 (x = 0–0.15)(x = 0–0.15) ceramics, Appl. Phys. Lett. 88, 062905 (2006). DOI: 10.1063/1.2169905.
  • Y. Wang et al., Lanthanum bismuth oxide photocatalysts for CO2 reduction to CO with high selectivity, Sustain. Energy Fuels 5 (10), 2688 (2021). DOI: 10.1039/D1SE00245G.
  • X. Yun et al., Crystal Structure and Luminescence Properties of Dy3+-Doped Double-Perovskite Tellurites, J. Electron. Mater. 51 (1), 331 (2022). DOI: 10.1007/s11664-021-09295-8.
  • S. K. Pradhan, and B. /K. Roul, Effect of Gd doping on structural, electrical and magnetic properties of BiFeO3 electroceramic, J. Phys. Chem. Solids 72 (10), 1180 (2011). DOI: 10.1016/j.jpcs.2011.07.017.
  • W. Xia et al., Research progress in rare earth-doped perovskite manganite oxide nanostructures, Nanoscale Res. Lett. 15 (1), 1–55 (2020). DOI: 10.1186/s11671-019-3243-0.
  • N. Saikia et al., Synthesis and characterization of Gd-doped LaFeO3 for device application, Mater. Sci. Semicond. Process. 151, 106969 (2022). DOI: 10.1016/j.mssp.2022.106969.
  • S. C. Mazumdar, S. Datta, and F. Alam, Structural, magnetic and transport properties of Gd and Cu Co-doped BiFeO3 multiferroics, JAMP. 10 (6), 2026 (2022). DOI: 10.4236/jamp.2022.106138.
  • P. Uniyal, and K. L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1-xGdxFeO3, Mater. Lett. 62 (17-18), 2858 (2008). DOI: 10.1016/j.matlet.2008.01.103.
  • K. Kumari, A. Prasad, and K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1 − xKx)0.5]0.94Ba0.06TiO3, (0.16≤ x ≤0.20) lead-free ceramics, Am. J. Mat. Sci. 6, 1 (2016). DOI: 10.5923/j.materials.20160601.01.
  • A. Mukherjee et al., Enhancement of multiferroic properties of nanocrystalline BiFeO3 powder by Gd-doping, J. Alloys Compd. 598, 142 (2014). DOI: 10.1016/j.jallcom.2014.01.245.
  • V. M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften 14 (21), 477 (1926). DOI: 10.1007/BF01507527.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • L. Boudad et al., Structural, morphological, dielectric and optical properties of double perovskites RBaFeTiO6 (R = La, Eu), RSC Adv. 11 (63), 40205 (2021). DOI: 10.1039/d1ra06793a.
  • G. Sürücü, and A. Erkişi, The investigation of electronic and thermo-elastic properties of lanthanum orthoferrite (LaFeO3) perovskite, Balkan Phys. Lett. 25, 1 (2017).
  • F. Yu et al., Microstructure and photoluminescence properties of Er3+/LaBiO3 co-modified (K0.5Na0.5)NbO3 transparent textured ceramics via tape-casting method, Mater. Sci. Eng. B 286, 116073 (2022). DOI: 10.1039/C9TC05899K.
  • A. Feteira et al., Crystal structure and dielectric properties of LaYbO3, J. Amer. Ceram. Soc. 90 (5), 1475 (2007). DOI: 10.1111/j.1551-2916.2007.01549.x.
  • E. Wu, POWDMULT: An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver. 2.1 (School of Physical Science, Flinders University, Australia, 1989). DOI: 10.4236/ojee.2013.21001.
  • B. D. Cullity, and R. S. Stock, Elements of X-Ray Diffraction 3rd edn, (Prentice-Hall. New Jersey, 2001).
  • S. K. Parida, Structural behavior of Cu0.5Ag0.5 and Cu0.5Al0.5 alloys synthesized by co-melting technique, Adv. Sci. Lett. 22 (2), 584 (2016). DOI: 10.1166/asl.2016.6889.
  • F. Shi et al., Lattice vibrational characteristics and dielectric properties of pure phase CaTiO3 ceramic, J. Mater. Sci. Mater. Electron. 31 (20), 18070 (2020). DOI: 10.1007/s10854-020-04357-9.
  • S. K. Parida, Structural, electrical and optical properties of zinc and tungsten modified lead titanate ceramics, SPIN 11 (02), 2150018 (2021). DOI: 10.1142/S2010324721500181.
  • S. K. Parida, and R. N. P. Choudhary, Preparation method and cerium dopant effects on the properties of BaMnO3 single perovskite, Phase Transitions 93 (10-11), 981 (2020). DOI: 10.1080/01411594.2020.1817451.
  • P. G. R. Achary et al., Effect of cerium dopant on the structural and electrical properties of SrMnO3 single perovskite, J. Mol. Struct. 1226, 129391 (2021). DOI: 10.1016/j.molstruc.2020.129391.
  • F. A. Abdel-Wahab, H. M. Maksoud, and M. F. Kotkata, Electrical conduction and dielectric relaxation in semiconductor SeSm0.005, J. Phys. D: Appl. Phys. 39 (1), 190 (2006). DOI DOI: 10.1088/0022-3727/39/1/028.
  • P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural, dielectric, impedance, and modulus spectroscopy of BaSnO3-modified BiFeO3, J. Phys. Chem. Solids 137, 109217 (2020). DOI: 10.1016/j.jpcs.2019.109217.
  • S. K. Parida, P. Kumar Das, and R. N. P. Choudhary, Structural and electrical characterization of SrMn0.97Ce0.03O3 ceramics, Integrated Ferroelectric 221 (1), 215 (2021). DOI: 10.1080/10584587.2021.1965846.
  • D. K. Mahato, A. Dutta, and T. P. Sinha, Impedance spectroscopy analysis of double perovskite Ho2NiTiO6, J. Mater. Sci. 45 (24), 6757 (2010). DOI: 10.1007/s10853-010-4771-2.
  • M. B. Hossain, and M. A. Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4, J. Adv. Ceram 4, 217 (2015). DOI: 10.1007/s40145-015-0152-2.
  • R. S. Yadav et al., Influence of La3+ on structural, magnetic, dielectric, electrical and modulus spectroscopic characteristics of single phase CoFe2−xLaxO4 nanoparticles, J. Mater. Sci. Mater. Electron. 28 (12), 9139 (2017). DOI: 10.1007/s10854-017-6648-5.
  • Z. Xiao et al., Bismuth lanthanum titanate ceramics from amorphous precursors activated by using mechanochemical treatment, Ceram. Int. 44 (11), 13106 (2018). DOI: 10.1016/j.ceramint.2018.04.13.
  • K. Yamato et al., Crystal structure analysis of barium titanate – bismuth perovskite-type oxide system ceramics and their piezoelectric property, KEM 421-422, 38 (2009). DOI: 10.4028/www.scientific.net/kem.
  • S. K. Parida, Studies on structural, dielectric, and optical properties of Cu/W double substituted calcium manganite for solar cells and thermistor applications, Phase Trans. 94 (12), 1033 (2021). DOI: 10.1080/01411594.2021.1995606.
  • F. Mohd Fudzi et al., Linear optical properties of zinc borotellurite glass doped with lanthanum oxide nanoparticles for optoelectronic and photonic application, J. Nanomater. 2017, 1 (2017). DOI: 10.1155/2017/4150802.
  • S. K. Parida, Influence of cerium substitution on structural and dielectric properties of the modified BiFeO3-PbTiO3 ceramics, Ferroelectric 583 (1), 19 (2021). DOI: 10.1007/s11664-021-09016-1.
  • A. Watanabe, Z. Inoue, and T. Ohsaka, Synthesis and crystallography of new layered bismuth lanthanum tungstate, Bi2−xLaxWO6 (x = 0.4–1.0), Mater. Res. Bull. 15 (3), 397 (1980). DOI: 10.1016/0025-5408(80)90184-1.
  • S. Mishra, R. N. P. Choudhary, and S. K. Parida, Structural, dielectric, electrical and optical properties of a double perovskite: BaNaFeWO6 for some device applications, J. Mol. Struct. 1265, 133353 (2022). DOI: 10.1016/j.molstruc.2022.133353.
  • S. Mishra, R. N. P. Choudhary, and S. K. Parida, Structural, dielectric, electrical and optical properties of Li/Fe modified barium tungstate double perovskite for electronic devices, Ceram. Int. 48 (12), 17020 (2022). DOI: 10.1016/j.ceramint.2022.02.257.
  • Y. Chen et al., High-temperature CO2 sensing properties and mechanism of nanocrystalline LaCrO3 with rhombohedral structure: experiments and ab initio calculations, RSC Adv. 5 (67), 54710 (2015). DOI: 10.1039/C5RA05081B.
  • S. K. Parida, Studies on structural, dielectric, and optical properties of the lanthanum modified BF-BNT perovskite for the thermistor and photovoltaic applications, Trans. Electr. Electron. Mater. 23 (6), 632 (2022). DOI: 10.1007/s42341-022-00396-7.
  • R. Meher, R. Padhee, and S. K. Parida, Synthesis and characterization of the (BiFeO3)0.5 – (CaTiO3)0.5 solid solution for some device applications, SPIN 12 (03), 2250023 (2022). DOI: 10.1142/S2010324722500230.
  • S. Mishra, R. N. P. Choudhary, and S. K. Parida, Microstructure, dielectric relaxation, optical, and ferroelectric studies of a lead-free double perovskite: BaLiFeMoO6, J. Korean Ceram. Soc. 60, 310 (2022). DOI: 10.1007/s43207-022-00264-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.