71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural and dielectric properties of CaCu3Ti4O12 synthesized by sol–gel method

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all
Pages 588-598 | Received 17 Dec 2022, Accepted 11 Aug 2023, Published online: 29 Jan 2024

References

  • S. Lim et al., Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry, J. Appl. Phys. 91 (7), 4500 (2002). DOI: 10.1063/1.1456246.
  • R. Cava, W. Peck, and J. Krajewski, Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2, Nature 377 (6546), 215 (1995). DOI: 10.1038/377215a0.
  • S. Jin et al., Synthesis of CaCu3Ti4O12 ceramic via a sol-gel method, Mater. Lett. 61 (6), 1404 (2007). DOI: 10.1016/j.matlet.2006.07.041.
  • S. O. Kasap, Principles of Electronic Materials and Devices, 4th ed. New York, NY: McGraw-Hill; 2006.
  • L. Ni, and X. M. Chen, Dielectric relaxations and formation mechanism of giant dielectric constant step in CaCu3Ti4O12CaCu3Ti4O12 ceramics, Appl. Phys. Lett. 91, 122905 (2007). DOI: 10.1063/1.2785128.
  • B. Yadav et al., Impact of defect migration on electrical and dielectric properties in molten salt synthesized CaCu3Ti4O12 and customizing the properties by compositional engineering with Mg doping, Mater. Chem. Phys. 281, 125893 (2022). DOI: 10.1016/j.matchemphys.2022.125893.
  • H. Yu et al., Enhanced electrical and photoluminescence properties of BiSbO4-doped CaCu3Ti4O12 ceramics by modifying grain boundary response, Ceram. Int. 48 (16), 23428 (2022). DOI: 10.1016/j.ceramint.2022.04.334.
  • T. G. Evangeline, A. R. Annamalai, and P. Ctibor, Dielectric response and low dielectric loss of gadolinium-doped CaCu3Ti4O12 ceramics processed through conventional and microwave sintering, J. Electron. Mater. 52 (6), 3848 (2023). DOI: 10.1007/s11664-023-10341-w.
  • D. C. Sinclair et al., CaCu3Ti4O12: One-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (12), 2153 (2002). DOI: 10.1063/1.1463211.
  • J. H. Clark et al., Visible light photo-oxidation of model pollutants using CaCu3Ti4O12: an experimental and theoretical study of optical properties, electronic structure, and selectivity, J. Am. Chem. Soc. 133 (4), 1016 (2011). DOI: 10.1021/ja1090832.
  • S. Ke, H. Huang, and H. Fan, Relaxor behavior in CaCu3Ti4O12 ceramics, Appl. Phys. Lett. 89 (18), 182904 (2006). DOI: 10.1063/1.2374682.
  • P. Jha, P. Arora, and A. K. Ganguli, Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12, Mater. Lett. 57 (16–17), 2443 (2003). DOI: 10.1016/S0167-577X(02)01250-8.
  • S. Kawrani et al., From synthesis to applications: copper calcium titanate (CCTO) and its magnetic and photocatalytic properties, ChemistryOpen. 8 (7), 922 (2019). DOI: 10.1002/open.201900133.
  • M. A. Subramanian et al., High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases, J. Solid State Chem. 151 (2), 323 (2000). DOI: 10.1006/jssc.2000.8703.
  • N. Tripathy et al., Fabrication of high-k dielectric calcium copper titanate (CCTO) target by solid state route, IOP Conf. Ser.: Mater. Sci. Eng. 115, 012022 (2016). DOI: 10.1088/1757-899X/115/1/012022.
  • D. L. Sun et al., Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel Process, J. Amer. Ceram. Soc. 91 (1), 169 (2008). DOI: 10.1111/j.1551-2916.2007.02096.x.
  • K. Djafar et al., Dielectric properties of nanocrystalline CaCu3Ti4O12 (CCTO) ceramics fabricated from Algerian limestone raw material, Mater. Chem. Phys. 301, 127558 (2023). DOI: 10.1016/j.matchemphys.2023.127558.
  • W. Li et al., Large reduction of dielectric losses of CaCu3Ti4O12 ceramics via air quenching, Ceram. Int. 43 (8), 6618 (2017). DOI: 10.1016/j.ceramint.2017.02.029.
  • C. Homes et al., Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12, Phys. Rev. B 67 (9), 092106 (2003). DOI: 10.1103/PhysRevB.67.092106.
  • S. K. Parida et al., Structural, dielectric, electrical, and optical properties of the Ca3CuTi4O12 ceramic, Phase Trans. 95 (12), 865 (2022). DOI: 10.1080/01411594.2022.2133707.
  • Y. Guo, J. Tan, and J. Zhao, Influence of CTO additives on microstructure and electrical properties of CCTO ceramics, Mater. Chem. Phys. 278, 125659 (2022). DOI: 10.1016/j.matchemphys.2021.125659.
  • N. Kumari et al., Study of dielectric properties of CaCu3Ti4O12 synthesized via different routes: Effect of sintering temperature, Ceram. Int. 49 (2), 2549 (2023). DOI: 10.1016/j.ceramint.2022.09.234.
  • A. Pandey et al., Synthesis, morphological and optical properties of hyderothermally synthesized Bi and Mnco-doped Cu2ZnSnS4 (CZTS), Mater. Today Proceed 82, 85 (2023). DOI: 10.1016/j.matpr.2022.11.407.
  • P. Yadav et al., Rietveld refinement, dielectric, magneto-dielectric effect and optical properties of (Ca/Hf) co-doped bismuth ferrite, Mater. Today Proceed 82, 227 (2023). DOI: 10.1016/j.matpr.2023.01.121.
  • A. Sharma et al., Structural, electrical and optical properties of Ca0.5Sr0.5SnO3 nanoparticle prepared by sol-gel method, Mater. Today Proceed 82, 308 (2023). DOI: 10.1016/j.matpr.2023.02.007.
  • L. Singh et al., Comparative dielectric studies of nanostructured BaTiO3, CaCu3Ti4O12 and 0.5BaTiO3⋅0.5CaCu3Ti4O12 nano-composites synthesized by modified sol–gel and solid state methods, Mater. Charact. 96, 54 (2014). DOI: 10.1016/j.matchar.2014.07.0191044-5803.
  • H. Tang et al., Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites, Nano Energy. 17, 302 (2015). DOI: 10.1016/j.nanoen.2015.09.002.
  • K. Parida, and R. N. P. Choudhary, Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics, Mater. Res. Express. 4 (7), 076302 (2017). DOI: 10.1088/2053-1591/aa76cd.
  • T. G. Evangeline, and A. R. Annamalai, Influence of heating modes on the microstructural and dielectric properties of calcium copper titanium oxide (CaCu3Ti4O12/CCTO) using conventional and microwave sintering, J Mater Sci: Mater Electron. 33 (8), 5806 (2022). DOI: 10.1007/s10854-022-07764-2.
  • B. Khan et al., Structural, dielectric, magnetic and magneto-dielectric properties of (1 2 x)BiFeO3–(x)CaTiO3 composites, J Mater Sci: Mater Electron 32 (13), 18012 (2021). DOI: 10.1007/s10854-021-06344-0.
  • A. Smith et al., An anion substitution route to low loss colossal dielectric CaCu3Ti4O12, J. Solid State Chem. 182 (2), 409 (2009). DOI: 10.1016/j.jssc.2008.10.037.
  • S. M. Mashkani et al., Synthesis, characterization, and morphological control of CaCu3Ti4O12 through modify sol–gel method, J Mater Sci: Mater Electron. 26, 6086 (2015). DOI: 10.1007/s10854-015-3186-x.
  • J. L. Zhang et al., Dielectric dispersion of CaCu3Ti4O12 ceramics at high temperatures, Appl. Phys. Lett. 87 (14), 142901 (2005). DOI: 10.1063/1.2077864.
  • P. K. Patel, and K. L. Yadav, Extrinsic mechanism for colossal dielectric constant in CaCu3Ti4O12 ceramics evidenced by nanodomain, Mater. Res. Express. 1 (1), 015037 (2014). DOI: 10.1088/2053-1591/1/1/015037.
  • M. Ahmadipour, M. F. Ain, and Z. A. Ahmad, Effects of annealing temperature on the structural, morphology, optical properties and resistivity of sputtered CCTO thin film, J Mater Sci: Mater Electron. 28 (17), 12458 (2017). DOI: 10.1007/s10854-017-7067-3.
  • R. Biswal et al., Synthesis, dielectric and optical properties of carboxyl functionalized FeFe2O4 hybrid nanocomposite (CFFHN), Mater. Today: Proc. 82, 255 (2023). DOI: 10.1016/j.matpr.2023.01.183.
  • A. O. Turky et al., Tuning optical and dielectric properties of calcium copper titanate CaxCu3-xTi4O12 nanopowders, RSC Adv. 5 (24), 18767 (2015). DOI: 10.1039/C4RA15222K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.