109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Band gap tuning in samarium-modified bismuth titanate ferroelectric via iron doping for photovoltaic applications

ORCID Icon, , , , , & ORCID Icon show all
Pages 916-927 | Received 26 Mar 2023, Accepted 04 Aug 2023, Published online: 20 Feb 2024

References

  • G. H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc. 82 (4), 797 (1999). DOI: 10.1111/j.1151-2916.1999.tb01840.x.
  • J. F. Scott, Applications of modern ferroelectrics, Science 315 (5814), 954 (2007). DOI: 10.1126/science.1129564.
  • Y. P. Jiang et al., Enhanced and controllable ferroelectric photovoltaic effects in Bi4Ti3O12/TiO2 composite films, J. Electron. Mater. 52 (1), 188 (2023). DOI: 10.1007/s11664-022-09960-6.
  • J. Y. Han et al., Influence of transition metal doping (X = Co, Fe) on structural, optical properties of Ferroelectric Bi3.25La0.75X1Ti2O12, Nano Convergence, 2, 7 (2015). DOI: 10.1186/s40580-014-0035-1.
  • J. Y. Han et al., Tunable band gap of iron-doped lanthanum-modified bismuth titanate synthesized by using the thermal decomposition of a secondary phase, J. Korean Phys. Soc. 66 (9), 1371 (2015). DOI: 10.3938/jkps.66.1371.
  • T. Choi et al., Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science 324 (5923), 63 (2009). DOI: 10.1126/science.1168636.
  • S. Y. Yang et al., Above-bandgap voltages from ferroelectric photovoltaic devices, Nat. Nanotechnol. 5 (2), 143 (2010). DOI: 10.1038/nnano.2009.451.
  • M. M. Seyfouri et al., new insights on the substantially reduced Bandgap of bismuth layered perovskite oxide thin films, J. Mater. Chem. C 9 (9), 3161 (2021). DOI: 10.1039/D0TC05300G.
  • Y. X. Yan et al., A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source, J. Elec. Materi. 47 (5), 3045 (2018). DOI: 10.1007/s11664-018-6183-z.
  • B. Aurivillius, Mixed bismuth oxides with layer lattices. II. Structure of Bi4Ti3O12, Arkiv. Kemi. 1 (54), 463 (1949).
  • K. Momma, and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (6), 1272 (2011). DOI: 10.1107/S0021889811038970.
  • E. C. Subbarao, Ferroelectricity in Bi4Ti3O12 and its solid solutions, Phys. Rev. 123 (6), 2202 (1961). DOI: 10.1103/PhysRev.123.2202.4.
  • W. S. Choi, and H. N. Lee, Band gap tuning in ferroelectric Bi4Ti3O12 by alloying with LaTMO3 (TM = Ti, V, Cr, Mn, Co, Ni, and Al), Appl. Phys. Lett. 100, 132903 (2012).
  • M. S. Alkathy et al., Octahedral distortion and oxygen vacancies induced bandgap narrowing and enhanced visible light absorption of Co/Fe co-doped Bi3.25Nd0.75Ti3O12 ferroelectrics for photovoltaic applications, J. Phys. D Appl. Phys. 53 (46), 465106 (2020). DOI: 10.1088/1361-6463/aba930.
  • M. S. Alkathy et al., Bandgap tuning in samarium-modified bismuth titanate by site engineering using iron and cobalt co-doping for photovoltaic application, J. Alloys Compd. 908, 164222 (2022). DOI: 10.1016/j.jallcom.2022.164222.
  • J. F. Dorrian et al., Crystal structure of Bi4Ti3O12, Ferroelectrics 3 (1), 17 (1972). DOI: 10.1080/00150197108237680.
  • R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A 32 (5), 751 (1976). DOI: 10.1107/S0567739476001551.
  • V. R. Akshay et al., Visible range optical absorption, Urbach energy estimation and paramagnetic response in Cr-doped TiO2 nanocrystals derived by a sol–gel method, Phys. Chem. Chem. Phys. 21 (24), 12991 (2019). DOI: 10.1039/c9cp01351b.
  • S. Y. Marzouk, and A. H. Hammad, Influence of samarium ions on the structural and optical properties of unconventional bismuth glass analyzed using the Judd–Ofelt theory J, Lumin 231, 117772 (2021). DOI: 10.1016/j.jlumin.2020.117772.
  • A. M. Ibrahim et al., Mixed alkali effect and samarium ions effectiveness on the structural, optical and non-linear optical properties of borate glass, J. Non-Cryst. Solids 495, 67 (2018). DOI: 10.1016/j.jnoncrysol.2018.05.015.
  • R. Van Deun, K. Binnemans, and C. Gorller-Walrand, Adam Spectroscopic properties of trivalent samarium ions in glasses, in Rare-Earth-Doped Mater, edited by S. Jiang, S. Honkanen (Bellingham, Washington, USA, Spie, 1999), 175–181.
  • M. S. Alkathy et al., Energy storage enhancement and bandgap narrowing of lanthanum and sodium co-substituted BaTiO3 ceramics, Ferroelectrics 570 (1), 153 (2021). DOI: 10.1080/00150193.2020.1839266.
  • M. A. Majeed Khan et al., Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue, Opt. Laser Technol 118, 170 (2019). DOI: 10.1016/j.optlastec.2019.05.012.
  • M. S. Alkathy et al., Structural, optical, dielectric, and multiferroic properties of sodium and nickel co-substituted barium titanate ceramics, J. Mater. Sci: Mater. Electron. 32 (10), 12828 (2021). DOI: 10.1007/s10854-020-03900-y.
  • N. F. Vargas et al., Sintering‐driven effects on the band gap of (Pb, La)(Ti, Ni)O3 photovoltaic ceramics, J. Am. Ceram. Soc. 104 (6), 2600 (2021). DOI: 10.1111/jace.17682.
  • M. T. Buscaglia et al., Atomistic simulation of dopant incorporation in barium titanate, J. Am. Ceram. Soc. 84 (2), 376 (2001). DOI: 10.1111/j.1151-2916.2001.tb00665.x.
  • T. Kolodiazhnyi et al., Persistence of Ferroelectricity in BaTiO3 through the insulator-metal transition Phys, Rev. L 104, 147602 (2010).
  • B. Y. Yu, and S. Y. Kwak, Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts, J. Mater. Chem. 22 (17), 8345 (2012). DOI: 10.1039/c2jm16931b.
  • X. Zhao et al., Growth process and CQDs-modified Bi4Ti3O12 square plates with enhanced photocatalytic performance, Micromachines (Basel) 10 (1), 66 (2019). DOI: 10.3390/mi10010066.
  • I. C. Amaechi et al., B-site modified photoferroic Cr3+-doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties, RSC Adv. 9 (36), 20806 (2019). DOI: 10.1039/c9ra03439k.
  • S. Södergren et al., Lithium Intercalation in Nanoporous Anatase TiO2 Studied with XPS, J. Phys. Chem. B 101 (16), 3087 (1997). DOI: 10.1021/jp9639399.
  • E. M. Neville et al., Carbon-Doped TiO2 and Carbon, Tungsten-Codoped TiO2 through Sol–Gel Processes in the Presence of Melamine Borate: Reflections through Photocatalysis, J. Phys. Chem. C 116 (31), 16511 (2012). DOI: 10.1021/jp303645p.
  • T. Wu et al., Greatly improving electrochemical N2 reduction over TiO2 nanoparticles by iron doping, Angew. Chem. Int. Ed. Engl. 58 (51), 18449 (2019). DOI: 10.1002/anie.201911153.
  • E. Wang, W. Yang, and Y. Cao, Unique Surface Chemical Species on Indium Doped TiO2 and Their Effect on the Visible Light Photocatalytic Activity, J. Phys. Chem. C 113 (49), 20912 (2009). DOI: 10.1021/jp9041793.
  • B. Bharti et al., Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment, Sci. Rep. 6 (1), 32355 (2016). DOI: 10.1038/srep32355.
  • Q. Wu, Q. Zheng, and R. van de Krol, Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles, J. Phys. Chem. C 116 (12), 7219 (2012). DOI: 10.1021/jp212577g.
  • S. Shi, D. et al., Singly-charged oxygen vacancy-induced ferromagnetism in mechanically milled SnO2 powders, RSC Adv. 4 (85), 45467 (2014). DOI: 10.1039/C4RA05475J.
  • Y. Yalçın, M. Kılıç, and Z. Çınar, Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity, Appl. Catal. B: Environ. 99 (3-4), 469 (2010). DOI: 10.1016/j.apcatb.2010.05.013.
  • X. Wang et al., effect of the oxygen vacancy on the ferroelectricity of 90° domain wall structure in PbTiO3: A density functional theory study, J Appl. Phys. 126 (17), 174107 (2019).
  • M. S. Alkathy et al., Room-temperature multiferroic behaviour in Co/Fe co-substituted layer-structured Aurivillius phase ceramics, Ceram Int. 48 (20), 30041 (2022). DOI: 10.1016/j.ceramint.2022.06.273.
  • C. Lavado et al., Room-temperature multiferroic behavior in the three-layer Aurivillius compound Bi3.25La0.75Ti2Nb0.5, (Fe1-xCox)0.5O12, Appl. Phys. A 129 (2), 147 (2023). DOI: 10.1007/s00339-023-06445-z.
  • V. A. Khomchenko et al., Effect of Gd substitution on ferroelectric and magnetic properties of Bi4Ti3O12, Mater. Lett. 64 (9), 1066 (2010). DOI: 10.1016/j.matlet.2010.02.016.
  • S. A. Ivanov et al., Composition dependence of the multifunctional properties of Nd-doped Bi4Ti3O12 ceramics, J. Mater. Sci: Mater. Electron. 28 (11), 7692 (2017). DOI: 10.1007/s10854-017-6463-z.
  • A. Srinivas et al., Samarium modified strontium bismuth niobate: synthesis and ferroelectric-magnetic property evaluation, Mater. Sci. Eng. B 123 (3), 222 (2005). DOI: 10.1016/j.mseb.2005.08.003.
  • X. Y. Mao et al., Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics Appl, Phys. Lett. 95, 082901 (2009).
  • X. Mao et al., Effects of Co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramics, Solid State Commun. 152 (6), 483 (2012). DOI: 10.1016/j.ssc.2012.01.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.