546
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comparison of airborne Cupressaceae, Quercus and Poaceae pollen between Tulsa (Oklahoma) and Córdoba (Spain)

ORCID Icon, , , &
Pages 172-191 | Received 05 Aug 2022, Accepted 03 May 2023, Published online: 05 Jul 2023

References

  • AAAAI. 1997. Aeroallergen monitoring network 1996 pollen and spore report. Milwaukee, WI: AAAAI.
  • Aboulaich N, Achmakh L, Bouziane H, Trigo MM, Recio M, Kadiri M, Cabezudo B, Riadi H, Kazzaz M. 2013. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco). International Journal of Biometeorology 57: 197–205. doi: 10.1007/s00484-012-0566-2
  • Adams RP. 1975. Gene flow versus selection pressure and ancestral differentiation in the composition of species. Analysis of populational variation of Juniperus ashei Buch. using terpenoid data. Journal of Molecular Evolution 5: 177–185. doi: 10.1007/BF01741240
  • Adam RP, Bartel JA, Price RA. 2009. A new genus, Hesperocyparis for the cypresses of the Western Hemisphere (Cupressaceae). Phytologia 91: 160–185.
  • Adams-Groom B, Selby K, Derrett S, Frisk CA, Pashley CH, Satchwell J, King D, McKenzie G, Neilson R. 2022. Pollen season trends as markers of climate change impact: bBetula, Quercus, and Poaceae. Science of the Total Environment 831: 154882. doi:10.1016/j.scitotenv.2022.154882.
  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. 2018. Data descriptor: present and future Koppen–Geiger climate classification maps at 1-km resolution. Scientific Data 5: 3, 5. doi:10.1038/sdata.2018.214.
  • Beggs PJ. 2015. Environmental allergens: From asthma to hay fever and beyond. Current Climate Change Reports 1: 176–184. doi:10.1007/s40641-015-0018-2.
  • Benninghoff WS. 1991. Aerobiology and its significance to biogeography and ecology. Grana 30: 9–15. doi: 10.1080/00173139109427762
  • Bortenschlager S. 1990. Aspects of pollen morphology in the Cupressaceae. Grana 29: 129–137. doi: 10.1080/00173139009427743
  • Calderón-Ezquerro MC, Martinez-Lopez B, Guerrero-Guerra C, López-Espinosa ED, Cabos-Narvaez WD. 2018. Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas. International Journal of Biometeorology 62: 1721–1732. doi: 10.1007/s00484-018-1572-9
  • Cariñanos P, Galán C, Alcázar P, Eugenio Domíınguez E. 2004. Airborne pollen records response to climatic conditions in arid areas of the Iberian peninsula. Environmental and Experimental Botany 52: 11–22. doi: 10.1016/j.envexpbot.2003.11.008
  • Cebrino J, Galán C, Domínguez-Vilches E. 2016. Aerobiological and phenological study of the main Poaceae species in Córdoba City (Spain) and the surrounding hills. Aerobiologia 32: 595–606. doi: 10.1007/s10453-016-9434-6
  • Cecchi L, D’Amato G, Ayres JG, Galán C, Forastiere F, Forsberg B, Gerritsen J, Nunes C, Behrendt H, Akdis C, Dahl R, Annesi-Maesano I. 2010. Projections of the effects of climate change on allergic asthma: The contribution of aerobiology. Allergy 65: 1073–1081.
  • Charpin D, Calleja M, Lahoz C, Pichot C, Waisel Y. 2005. Allergy to cypress pollen. Allergy 60: 293–301. doi: 10.1111/j.1398-9995.2005.00731.x
  • Charpin D, Pichot C, Belmonte J, Sutra JP, Zidkova J, Chanez P, Shahali Y, Sénéchal H, Poncet P. 2019. Cypress pollinosis: From tree to clinic. Clinical Reviews in Allergy & Immunology 56: 174–195. doi: 10.1007/s12016-017-8602-y
  • Corden J, Millington W. 1999. A study of Quercus pollen in the Derby area, U.K. Aerobiologia 15: 29–37. doi: 10.1023/A:1007580312019
  • De Linares C, Pilar Plaza M, Valle A, Alcázar P, de la Guardia C D, Galán C. 2021. Airborne Cupressaceae pollen and its major allergen, cup a 1, in urban green areas of southern Iberian peninsula. Forests 12: 254. doi: 10.3390/f12020254
  • de Weger LA, Thijs Beerthuizen T, Pieter S, Hiemstra PS, Jacob K, Sont JK. 2014. Development and validation of a 5-day-ahead hay fever forecast for patients with grass-pollen-induced allergic rhinitis. International Journal of Biometeorology 58: 1047–1055.
  • Díaz de la Guardia C, Alba F, de Linares C, Nieto-Lugilde D, López Caballero J. 2006. Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (southern Spain). Journal of Investigational Allergology and Clinical Immunology 16: 24–33.
  • Domínguez-Bascón P. 2002. Clima regionaly microclimas urbanos en la provincia de Córdoba. Córdoba: Servicio de Publicaciones de la Universidad de Córdoba. (In Spanish.)
  • Dvorin DJ, Lee JJ, Belecanech GA, Goldstein MF, Dunshy EH. 2001. A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Annals of Allergy, Asthma & Immunology 87: 397–404. doi: 10.1016/S1081-1206(10)62921-3
  • Fernández-González M, González-Fernández E, Ribeiro H, Abreu I, Rodríguez-Rajo FJ. 2020. Pollen production of Quercus in the north-western Iberian peninsula and airborne pollen concentration trends during the last 27 years. Forests 11: 702. doi: 10.3390/f11060702
  • Flonard M, Lo E, Levetin E. 2018. Increasing Juniperus virginiana L. pollen in the Tulsa atmosphere: Long-term trends, variability, and influence of meteorological conditions. International Journal of Biometeorology 62: 229–241. doi: 10.1007/s00484-017-1444-8
  • Flora of Oklahoma Project. 2020. Oklahoma Biological Survey. https://www.floraoklahoma.org.
  • Galán C, Alcázar P, Oteros J, García-Mozo H, Aira MJ, Belmonted J, de la Guardia C D, Fernández-González D, Gutierrez-Bustillo M, Moreno-Graui S, Pérez-Badía R, Rodríguez-Rajo J, Ruiz-Valenzuela L, Tormo R, Trigo MM, Domínguez-Vilches E. 2016. Airborne pollen trends in the Iberian peninsula. Science of the Total Environment 550: 53–59. doi: 10.1016/j.scitotenv.2016.01.069
  • Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, Fernandez-González D, Frenguelli G, Gehrig R, Isard S, Levetin E, Li DW, Mandrioli P, Rogers CA, Thibaudon M, Sauliene I, Skjoth C, Smith M, Sofiev M. 2017. Recommended terminology for aerobiological studies. Aerobiologia 33: 293–295. doi: 10.1007/s10453-017-9496-0
  • Galán C, Domínguez E. 2020. La Botánica. In: La Ciencia en la Córdoba Andalusí, 1st ed. Córdoba, Spain: Real Academia de Córdoba, Litopress Córdoba.
  • Galán C, Emberlin J, Dominguez E, Bryant RH, Villamandos F. 1995. A comparative analysis of daily variations in the Gramineae pollen counts at Córdoba, Spain and London, UK. Grana 34: 189–198. doi: 10.1080/00173139509429042
  • Galán C, Fuillerat MJ, Comtois P, Domínguez-Vilches E. 1998. Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. International Journal of Biometeorology 41: 95–100. doi: 10.1007/s004840050059
  • Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R, EAS QC Working Group. 2014. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30: 385–395. doi: 10.1007/s10453-014-9335-5
  • Galveias A, Costa AR, Bortoli D, Alpizar-Jara R, Salgado R, João Costa M, Antunes CM. 2021. Cupressaceae pollen in the city of Évora, south of Portugal: Disruption of the pollen during air transport facilitates allergen exposure. Forests 12: 64. doi: 10.3390/f12010064
  • García-Mozo H, Domínguez-Vilches E, Galán C. 2007a. Airborne allergenic pollen in a natural area–Hornachuelos natural park, Córdoba, southern Spain. Annals of Agricultural and Environmental Medicine 14: 109–115.
  • García-Mozo H, Galán C, Belmonte J, Bermejo D, Candau P, de la Guardia C D, Elvira B, Gutiérez M, Jato V, Silva I. 2009. Predicting the start and peak dates of the Poaceae pollen season in Spain using process-based models. Agricultural and Forest Meteorology 149: 256–262. doi: 10.1016/j.agrformet.2008.08.013
  • García-Mozo H, Galán C, Gomez-Casero MT, Domínguez-Vilches E. 2000. A comparative study of different temperature accumulation methods for predicting the start of the Quercus pollen season in Córdoba (south west Spain). Grana 39: 194–199. doi: 10.1080/00173130051084322
  • García-Mozo H, Galán C, Jato V, Belmonte J, de la Guardia CD, Fernández D, Gutiérrez M, Aira MJ, Roure JM, Ruiz L, Trigo MM, Domínguez-Vilches E. 2006b. Quercus pollen season dynamics in the Iberian peninsula: Response to meteorological parameters and possible consequences of climate change. Annals of Agricultural and Environmental Medicine 13: 209–224.
  • García-Mozo H, Gómez-Casero MT, Domínguez-Vilches E, Galán C. 2007b. Influence of pollen emission and weather-related factors on variations in holm-oak (Quercus ilex subsp. ballota) acorn production. Environmental and Experimental Botany 61: 35–40. doi: 10.1016/j.envexpbot.2007.02.009
  • García-Mozo H, Mestre A, Galán C. 2010. Phenological trends in southern Spain: A response to climate change. Agricultural and Forest Meteorology 150: 575–580. doi: 10.1016/j.agrformet.2010.01.023
  • García-Mozo H, Perez-Badia R, Fernandez-Gonzalez F, Galán C. 2006a. Airborne pollen sampling in Toledo, central Spain. Aerobiologia 22: 55–66. doi: 10.1007/s10453-005-9015-6
  • García-Mozo H, Yaezel L, Oteros J, Galán C. 2013. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Science of the Total Environment 473–474: 103–109. doi: 10.1016/j.scitotenv.2013.11.142
  • García-Mozo H. 2017. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 72: 1849–1858. doi: 10.1111/all.13210
  • Geller-Bernstein C, Waisel Y, Lahoz C. 2000. Environment and sensitization to cypress in Israel. Allergie et Immunologie (Paris) 32: 92–93.
  • Gessman D. 2017. Pollen Forecasting in Sarasota, Florida. Graduate Theses and Dissertations. University of South Florida.
  • Ghitarrini S, Galán C, Frenguelli G, Tedeschini E. 2017. Phenological analysis of grasses (Poaceae) as a support for the dissection of their pollen season in Perugia (central Italy). Aerobiologia 33: 339–349. doi: 10.1007/s10453-017-9473-7
  • Gioulekas D, Papakosta D, Damialis A, Spieksma F, Giouleka P, Patakas D. 2004. Allergenic pollen records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki, Greece. Allergy 59: 174–184. doi: 10.1046/j.1398-9995.2003.00312.x
  • Gomes C, Ribeiro H, Abreu I. 2019. Aerobiology of Cupressaceae in Porto city, Portugal. Aerobiologia 35: 97–103. doi: 10.1007/s10453-018-9543-5
  • Grewling Ł, Šikoparija B, Skjøth CA, Radišic P, Apatini D, Magyar D, Paldy A, Yankova R, Sommer J, Kasprzyk I, Myszkowska D, Uruska A, Zimny M, Puc M, Jager S, Smith M. 2012. Variation in Artemisia pollen seasons in central and eastern Europe. Agricultural and Forest Meteorology 160: 48–59. doi: 10.1016/j.agrformet.2012.02.013
  • Guerra F, Daza JC, Miguel R, Galán C, Dominguez E, Sanchez-Gijo P. 1996. Sensitivity to Cupressus. Allergenic significance in Cordoba (Spain). Journal of Investigational Allergology & Clinical Immunology 6: 117–120.
  • Helfman I, Waisel Y, Kutiel H. 2011. Relationship between weather conditions and release of allergen pollen and spores to the air in Haifa. Geography Research Forum 31: 24–38.
  • Helfman-Hertzog I, Kutiel H, Levetin E, Galán C. 2018. The impact of Sharav weather conditions on airborne pollen in Jerusalem and Tel Aviv (Israel). Aerobiologia 34: 497–511. doi: 10.1007/s10453-018-9526-6
  • Hidalgo PJ, Galán C, Domínguez E. 2003. Male phenology of three species of Cupressus correlation with airborne pollen. Trees 17: 336–344. doi: 10.1007/s00468-002-0243-x
  • Hirst JM. 1952. An automatic volumetric spore trap. Annals of Applied Biology 39: 257–265. doi: 10.1111/j.1744-7348.1952.tb00904.x
  • IPCC. 2022. Intergovernmental Panel on Climate Change. Climate Change 2022 – Impacts, Adaptation and Vulnerability, Summary for Policymakers. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Pörtner HO, Roberts DC, Tignor M, Poloczanska ES, Mintenbeck K, Alegría A, Craig M, Langsdorf S, Löschke S, Möller V, Okem A, Rama B (eds.)]. Cambridge, UK and New York, NY: Cambridge University Press, 3056 pp., doi:10.1017/9781009325844
  • Jato V, Rodríguez-Rajo FJ, Alcazar P, De Nuntiis P, Galán C, Mandrioli P. 2006. May the definition of pollen season influence aerobiological results? Aerobiologia 22: 13–25. doi: 10.1007/s10453-005-9011-x
  • Jato V, Rodríguez-Rajo FJ, Méndez J, Aira MJ. 2002b. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. International Journal of Biometeorology 46: 176–184. doi: 10.1007/s00484-002-0132-4
  • Jato V, Rodríguez-Rajo FJ, Seijo MC, Aira MJ. 2009. Poaceae pollen in Galicia (N.W. Spain): characterization and recent trends in atmospheric pollen season. International Journal of Biometeorology 53: 333–344. doi: 10.1007/s00484-009-0220-9
  • Kizilpinar I, Dogan C, Artac H, Reisli I, Pekcan S. 2012. Pollen grains in the atmosphere of Konya (Turkey) and their relationship with meteorological factors, in 2008. Turkish Journal of Botany 36: 344–357.
  • Laaidi M. 2001. Forecasting the start of the pollen season of Poaceae: Evaluation of some methods based on meteorological factors. International Journal of Biometeorology 45: 1–7. doi: 10.1007/s004840000079
  • León-Ruiz E, Alcázar P, Domínguez-Vilches E, Galán C. 2011. Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia 27: 37–50. doi: 10.1007/s10453-010-9174-y
  • Levetin E, Buck P. 1980. Hay fever plants in Oklahoma. Annals of Allergy & Immunology 45(1): 26–32.
  • Levetin E, Buck P. 1986. Evidence of mountain cedar pollen in Tulsa. Annals of Allergy & Immunology 56: 295–299.
  • Levetin E, Rogers CA, Hall SA. 2000. Comparison of pollen sampling with a Burkard spore trap and a Tauber trap in a warm temperate climate. Grana 39: 294–302. doi: 10.1080/00173130052504333
  • Levetin E. 1998. A long-term study of winter and early spring tree pollen in the Tulsa, Oklahoma atmosphere. Aerobiologia 14: 21–28. doi: 10.1007/BF02694591
  • Levetin E. 2021. Aeroallergens and climate change in Tulsa, Oklahoma: Long-term trends in the south central United States. Frontiers in Allergy 2: 726445. doi: 10.3389/falgy.2021.726445
  • Limpert E, Burke J, Galán C, del Mar Trigo M, West JS, Stahel WA. 2008. Data, not only in aerobiology: how normal is the normal distribution? Aerobiologia 24: 121–124. doi: 10.1007/s10453-008-9092-4
  • Lo F, Bitz CM, Hess JJ. 2021. Development of a Random Forest model for forecasting allergenic pollen in North America. Science of the Total Environment 773: 145590. doi: 10.1016/j.scitotenv.2021.145590
  • López-Orozco R, García-Mozo H, Oteros J, Galán C. 2021. Long-term trends in atmospheric Quercus pollen related to climate change in southern Spain: A 25-year perspective. Atmospheric Environment 262: 118637. doi: 10.1016/j.atmosenv.2021.118637
  • Mandrioli P, De Nuntiis P, Ariatti A, Magnani R. 2000. Cypress in Italy: Landscape and pollen monitoring. Allergie et Immunologie 31: 116–121.
  • Marchetti P, Pesce G, Villani S, Antonicelli L, Ariano R, Attena F, Bono R, Bellisario V, Fois A, Gibelli N, Nicolis M, Olivieri M, Pirina P, Scopano E, Siniscalco C, Verlato G, Marcon A. 2017. Pollen concentrations and prevalence of asthma and allergic rhinitis in Italy: Evidence from the GEIRD study. Science of the Total Environment 584-585: 1093–1099. doi: 10.1016/j.scitotenv.2017.01.168
  • Mohanty RP, Buchheim MA, Anderson J, Levetin E. 2017. Molecular analysis confirms the long-distance transport of Juniperus ashei pollen. Plos One 12: e0173465. doi: 10.1371/journal.pone.0173465
  • Monroy-Colín A, Maya-Manzano JM, Silva-Palacios I, Tormo-Molina R, Pecero-Casimiro R, Gonzalo-Garijo A, Fernández-Rodríguez S. 2020. Phenology of Cupressaceae urban infrastructure related to its pollen content and meteorological variables. Aerobiologia 36: 459–479. doi: 10.1007/s10453-020-09645-9
  • National Weather Service. 2015. National Oceanic and atmospheric administration Tulsa Climate Overview (weather.gov). http://www.weather.gov/tsa/climo_tulcliover.
  • Papa G, Romano A, Quarantino D, Di Fonso M, Viola M, Artesani MC, Serniac S, Di Gioacchinod M, Venuti A. 2001. Prevalence of sensitization to Cupressus sempervirens: A 4-year retrospective study. Science of the Total Environment 270: 83–87. doi: 10.1016/S0048-9697(00)00795-6
  • Pathirane L. 1975. Graphical determination of the main pollen season. Pollen & Spores 17: 609–610.
  • Pedrosa M, Guerrero-Sanchez VM, Canales-Bueno N, Loli-Ausejo D, Castillejo M´A, Quirce S, Jorrin-Novo JV, Rodriguez-Perez R. 2020. Quercus ilex pollen allergen, Que i 1, responsible for pollen food allergy syndrome caused by fruits in Spanish allergic patients. Clincal and Experimental Allergy 50: 815–823. doi: 10.1111/cea.13679
  • Pérez-Badia R, Rapp A, Morales C, Sardinero S, Galán C, García-Mozo H. 2010. Pollen spectrum and risk of pollen allergy in central Spain. Annals of Agricultural and Environmental Medicine 17: 139–151.
  • Peternel P, Srnec L, Culig J, Hrga I, Hercog P. 2006. Poaceae pollen in the atmosphere of Zagreb (Croatia), 2002-2005. Grana 45: 130–136. doi: 10.1080/00173130600662114
  • Pfaar O, Bastl K, Berger U, Buters J, Calderon MA, Clot B, Darsow U, Demoly P, Durham S R, Galán C, Gehrig R, van Wijk R G, Jacobsen L, Klimek L, Sofiev M, Thibaudon M, Bergmann KC. 2017. Defining pollen exposure times for clinical trials of allergen immunotherapy for pollen-induced rhinoconjunctivitis – an EAACI position paper. Allergy 72: 713–722. doi: 10.1111/all.13092
  • Picornell A, Oteros J, Trigo MM, Gharbi D, Docampo Fernández S, Melgar Caballero M, Toro FJ, García-Sánchez J, Ruiz-Mata R, Cabezudo B, Recio M. 2019. Increasing resolution of airborne pollen forecasting at a discreate sampled area in the southwest Mediterranean Basin. Chemosphere 234: 668–681. doi: 10.1016/j.chemosphere.2019.06.019
  • Prevey J, Vellend M, Ruger N, Hollister R, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Clark K, Cooper EJ, Elberling B, Fosaa AM, Henry GHR, Hoye T, Jonsdottir IS, Klanderud K, Evesque EL, Mauritz M, Molau U, Natali SM, Oberbauer SF, Panchen ZA, Post E, Rumpf SB, Troxler N, Welker JM, Rixen C. 2017. Greater temperature sensitivity of plant phenology at colder sites: Implication for convergence across northern latitudes. Global Change Biology 23: 2660–2671. doi: 10.1111/gcb.13619
  • Rahman A, Rahaman Khan H, Luo C, Yang Z, Ke J, Jiang W. 2021. Variations in airborne pollen and spores in urban Guangzhou and their relationships with meteorological variables. Heliyon 7: e08379. doi: 10.1016/j.heliyon.2021.e08379
  • Recio M, Picornell A, Trigoa MM, Gharbia D, García-Sánchezb J, Cabezudoa B. 2018. Intensity and temporality of airborne Quercus pollen in the southwest Mediterranean area: Correlation with meteorological and phenoclimatic variables, trends and possible adaptation to climate change. Agricultural and Forest Meteorology 250–251: 308–318. doi: 10.1016/j.agrformet.2017.11.028
  • Rodríguez de la Cruz D, Sánchez-Reyes E, Sánchez- Sánchez J. 2015. A contribution to the knowledge of Cupressaceae airborne pollen in the middle west of Spain. Aerobiologia 31: 435–444. doi: 10.1007/s10453-015-9376-4
  • Rogers CA, Levetin E. 1998. Evidence of long-distance transport of mountain cedar pollen into Tulsa, Oklahoma. International Journal of Biometeorology 42: 65–72. doi: 10.1007/s004840050086
  • Rogers CA, Muilenberg ML. 2000. Comprehensive guidelines for the operation of Hirst-type suction bioaerosol samplers. Standardized Protocol of the Pan American Aerobiology Association, Boston, MA. https://www.paaa.org.
  • Rojo J, Picornell A, Oteros J, Werchan M, Werchan B, Bergmann KC, Smith M, Weichenmeier I, Schmidt-Weber CB, Buters J. 2021. Consequences of climate change on airborne pollen in Bavaria, central Europe. Regional Environmental Change 21: 9. doi: 10.1007/s10113-020-01729-z
  • Rojo J, Rapp A, Lara B, Fernández-González F, Pérez-Badia R. 2015. Effect of land uses and wind direction on the contribution of local sources to airborne pollen. Science of the Total Environment 538: 672–682. doi: 10.1016/j.scitotenv.2015.08.074
  • Rojo J, Rapp A, Lara B, Sabariego S, Fernández-González F, Pérez-Badia R. 2016. Characterization of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk. Environmental Monitoring and Assessment 188: 130. doi: 10.1007/s10661-016-5129-2
  • Rojo J, Rivero R, Romero-Morte J, Fernández-González F, Pérez-Badia R. 2017. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing. International Journal of Biometeorology 61: 335–348. doi: 10.1007/s00484-016-1215-y
  • Ruiz-Valenzuela L, Aguilera F. 2018. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective. Atmospheric Environment 180: 234–243. doi: 10.1016/j.atmosenv.2018.03.012
  • Sabariego S, Cuesta P, Fernández-González F, Pérez-Badia R. 2012. Models for forecasting airborne Cupressaceae pollen levels in central Spain. International Journal of Biometeorology 56: 253–258. doi: 10.1007/s00484-011-0423-8
  • Sánchez Mesa JA, Smith M, Emberlin J, Allitt U, Caulton E, Galán C. 2003. Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 19: 243–250. doi: 10.1023/B:AERO.0000006597.44452.a3
  • Scevková J, Vasková Z, Sepsiová R, Dusicka J, Kovác J. 2020. Relationship between Poaceae pollen and Phl p 5 allergen concentrations and the impact of weather variables and air pollutants on their levels in the atmosphere. Heliyon 6: e04421. doi: 10.1016/j.heliyon.2020.e04421
  • Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo A. 2016. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian peninsula. International Journal of Biometeorology 60: 297–306. doi: 10.1007/s00484-015-1026-6
  • Sofiev M, Bergmann KC. 2014. Allergenic pollen: A review of the production, release, distribution and health impacts. Dordrecht: Springer.
  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O. 2015. A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53: 117–137. doi: 10.1111/jse.12150
  • Stennett PJ, Beggs PJ. 2004. Pollen in the atmosphere of Sydney, Australia, and relationships with meteorological parameters. Grana 43: 209–216. doi: 10.1080/00173130410000758
  • Testi L, Villalobos FJ, Orgaz F, Fereres E. 2006. Water requirements of olive orchards: I simulation of daily evapotranspiration for scenario anaylsis. Irrigation Science 24: 69–79. doi: 10.1007/s00271-005-0011-y
  • Tormo-Molina R, Gonzalo-Garijo MA, Silva-Palacios I, Muñoz Rodríguez AF. 2010. General trends in airborne pollen production and pollination periods at a Mediterranean site (Badajoz, southwest Spain). Journal of Investigational Allergology and Clinical Immunology 20: 567–574.
  • Tutin TG, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA. 1993. Flora Europaea (Psilotaceae to Platanaceae) 2nd ed. 45–46. Cambridge: Cambridge University Press.
  • Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA. 1964. Flora Europaea. Volume 1. Lycopodiaceae to Platanaceae. Cambridge: Cambridge University Press.
  • Van Vliet AJH, Overeem A, De Groot RS, Jacobs AFG, Spieksma FTM. 2002. The influence of temperature and climate change on the timing of pollen release in the Netherland. International Journal of Climatology 22: 1757–1767. doi: 10.1002/joc.820
  • Vázquez LM, Galán C, Domínguez-Vilches E. 2003. Influence of meteorological parameters on Olea pollen concentrations in Córdoba (south-west Spain). International Journal of Biometeorology 48: 83–90. doi: 10.1007/s00484-003-0187-x
  • Velasco-Jiménez MJ, Alcázar P, de la Guardia CD, del Mar Trigo M, de Linares C, Criado MR, Galán C. 2020. Pollen season trends in winter flowering trees in south Spain. Aerobiologia 36: 213–224. doi: 10.1007/s10453-019-09622-x
  • Velasco-Jiménez MJ, Alcázar P, Domínguez-Vilches E, Galán C. 2013. Comparative study of airborne pollen counts located in different areas of the city of Córdoba (southwestern Spain). Aerobiologia 29: 113–120. doi: 10.1007/s10453-012-9267-x
  • Velasco-Jiménez MJ, Alcázar P, Valle P, Trigo MM, Minero F, Domínguez-Vilches E, Galán C. 2014. Aerobiological and ecological study of the potentially allergenic ornamental plants in south Spain. Aerobiologia 30: 91–101. doi: 10.1007/s10453-013-9311-5
  • Volkova O, Severova E. 2019. Poaceae pollen season and association with meteorological parameters in Moscow, Russia, 1994-2016. Aerobiologia 35: 73–84. doi: 10.1007/s10453-018-9540-8
  • Zemmer F, Dahl A, Galán C. 2022. The duration and severity of the allergic pollen season in Istanbul, and the role of meteorological factors. Aerobiologia 38: 195–215. doi: 10.1007/s10453-022-09742-x
  • Zhang Y, Bielory L, Cai T, Zhongyuan Mi Z, Georgopoulos P. 2015b. Predicting onset and duration of airborne allergenic pollen season in the United States. Atmospheric Environment 103: 297–306. doi: 10.1016/j.atmosenv.2014.12.019
  • Zhang Y, Bielory L, Georgopoulos PG. 2014. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. International Journal of Biometeorology 58: 909–919. doi: 10.1007/s00484-013-0674-7
  • Zhang Y, Bielory L, Mi Z, Cai T, Robock A, Georgopoulos P. 2015a. Allergenic pollen season variations in the past two decades under changing climate in the United States. Global Change Biology 21: 1581–1589. doi: 10.1111/gcb.12755
  • Zhang Y, Steiner AL. 2022. Projected climate-driven changes in pollen emission season length and magnitude over the continental United States. Nature Communications 13: 1234. doi: 10.1038/s41467-022-28764-0
  • Ziello C, Sparks TH, Nicole Estrella N, Belmonte J, Karl C, Bergmann KC, Bucher E, Brighetti MA, Damialis A, Detandt M, Galán C, Gehrig R, Grewling L, Gutiérrez Bustillo AM, Hallsdóttir M, Kockhans-Bieda M, De Linares C, Myszkowska D, Páldy A, Sánchez A, Smith M, Thibaudon M, Travaglini A, Uruska A, Valencia-Barrera RM, Vokou D, Wachter R, de Weger LA, Menze A. 2012. Changes to airborne pollen counts across Europe. Plos One 7: e34076. doi: 10.1371/journal.pone.0034076