128
Views
4
CrossRef citations to date
0
Altmetric
Articles

Development of a CFD model for steam cracker radiant coil using molecular kinetics

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ren, T., Patel, M.K. and Blok, K., “Steam Cracking and Methane to Olefins: Energy use, CO 2 Emissions and Production Costs”, Energy, 33(5), pp. 817–833 (2008).
  • Van Geem, K.M., Žajdlík, R., Reyniers, M.F. and Marin, G.B., “Dimensional Analysis for Scaling up and Down Steam Cracking Coils”, Chem. Eng. J., 134(1), pp. 3–10 (2007).
  • Yin, R.C., Al-Shawaf, A.H., Al-Yami, B.Y. and Al-Ahmari, A.A., Failure Experiences of Ethylene Cracking Tubes. CORROSION 2009. NACE International (2009, January).
  • Schietekat, C.M., Van Goethem, M.W., Van Geem, K.M. and Marin, G.B., “Swirl Flow Tube Reactor Technology: An Experimental and Computational Fluid Dynamics Study”, Chem. Eng. J., 238, pp. 56–65 (2014).
  • Albano, J.V., Sundaram, K.M. and Maddock, M.J., “Applications of Extended Surfaces in Pyrolysis Coils”, Energy Progr., 8(3), pp. 160–168 (1988).
  • Wolpert, P., Ganser, B., Jakobi, D. and Kirchheiner, R., Schmidt+ Clemens Gmbh+ Co. Kg, 2004. Process and Finned Tube for the Thermal Cracking of Hydrocarbons. U.S. Patent Application 10/945,860.
  • Van Cauwenberge, D.J., Schietekat, C.M., Floré, J., Van Geem, K.M. and Marin, G.B., “CFD-based Design of 3D Pyrolysis Reactors: RANS vs. LES”, Chem. Eng. J., 282, pp. 66–76 (2015).
  • van Goethem, M.W. and Jelsma, E., “Numerical and Experimental Study of Enhanced Heat Transfer and Pressure Drop for High Temperature Applications”, Chem. Eng. Res. Des., 92(4), pp. 663–671 (2014).
  • Schietekat, C.M., Cauwenberge, D.J., Geem, K.M. and Marin, G.B., “Computational Fluid Dynamics-Based Design of Finned Steam Cracking Reactors”, AIChE J., 60(2), pp. 794–808 (2014).
  • Rao, M.R., Plehiers, P.M. and Froment, G.F., “The Coupled Simulation of Heat Transfer and Reaction in a Pyrolysis Furnace”, Chem. Eng. Sci., 43(6), pp. 1223–1229 (1988).
  • Joo, E., Lee, K., Lee, M. and Park, S., “CRACKER—a PC Based Simulator for Industrial Cracking Furnaces”, Comput. Chem. Eng., 24(2-7), pp. 1523–1528 (2000).
  • Heynderickx, G.J., Oprins, A.J., Marin, G.B. and Dick, E., “Three-Dimensional Flow Patterns in Cracking Furnaces with Long-Flame Burners”, AIChE J., 47(2), pp. 388–400 (2001).
  • Oprins, A.J., Heynderickx, G.J. and Marin, G.B., “Three-dimensional Asymmetric Flow and Temperature Fields in Cracking Furnaces”, Ind. Eng. Chem. Res., 40(23), pp. 5087–5094 (2001).
  • Oprins, A.J.M. and Heynderickx, G.J., “Calculation of Three-Dimensional Flow and Pressure Fields in Cracking Furnaces”, Chem. Eng. Sci., 58(21), pp. 4883–4893 (2003).
  • Hottel, H.C. and Cohen, E.S., “Radiant Heat Exchange in a gas-Filled Enclosure: Allowance for Nonuniformity of gas Temperature”, AIChE J., 4(1), pp. 3–14 (1958).
  • Van Geem, K.M., Heynderickx, G.J. and Marin, G.B., “Effect of Radial Temperature Profiles on Yields in Steam Cracking”, AIChE J., 50(1), pp. 173–183 (2004).
  • van Goethem, M.W. and Jelsma, E., “Numerical and Experimental Study of Enhanced Heat Transfer and Pressure Drop for High Temperature Applications”, Chem. Eng. Res. Des., 92(4), pp. 663–671 (2014).
  • Van Cauwenberge, D.J., Schietekat, C.M., Floré, J., Van Geem, K.M. and Marin, G.B., “CFD-based Design of 3D Pyrolysis Reactors: RANS vs. LES”, Chem. Eng. J., 282, pp. 66–76 (2015).
  • Dharmadhikari, C. and Vedapuri, D. Improving Process Performance of Ethylene Crackers. Presented at the 5th AICHE Southwest Process Technology Conference, TX-USA, October 3-4 (2013).
  • Kumar, P. and Kunzru, D., 1985. “Kinetics of Coke Deposition in Naphtha Pyrolysis”, Can. J. Chem. Eng., 63(4), pp. 598–604.
  • Zhang, N., Tong, Q.I.U. and Bingzhen, C., “CFD Simulation of Propane Cracking Tube Using Detailed Radical Kinetic Mechanism”, Chin. J. Chem. Eng., 21(12), pp. 1319–1331 (2013).
  • Sundaram, K.M. and Froment, G.F., “Modelling of Thermal Cracking Kinetics. 3. Radical Mechanisms for the Pyrolysis of Simple Paraffins, Olefins, and Their Mixtures”, Ind. Eng. Chem. Fundam., 17(3), pp. 174–182 (1978).
  • Gharbi, N.E., Absi, R., Benzaoui, A. and Amara, E.H., “ Effect of Near-Wall Treatments on Airflow Simulations”, arXiv Preprint ArXiv:1011.6043 (2010).
  • Kim, J.Y., Ghajar, A.J., Tang, C. and Foutch, G.L., “Comparison of Near-Wall Treatment Methods for High Reynolds Number Backward-Facing Step Flow”, Int. J. Comut. Fluid. Dyn., 19(7), pp. 493–500 (2005).
  • Sundaram, K.M. and Froment, G.F., “Modelling of Thermal Cracking Kinetics – I: Thermal Cracking of Ethane, Propane and Their Mixtures”, Chem. Eng. Sci., 32(6), pp. 601–608 (1977).
  • Sundaram, K.M. and Froment, G.F., “Kinetics of Coke Deposition in the Thermal Cracking of Propane”, Chem. Eng. Sci., 34(5), pp. 635–644 (1979).
  • Launder, B.E. and Spalding, D.B., “The Numerical Computation of Turbulent Flows”, Comput. Methods. Appl. Mech. Eng., 3(2), pp. 269–289 (1974).
  • Kim, S.E. and Choudhury, D., “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient”, Separated and Complex Flows 1995, pp. 273–280 (1995).
  • ANSYS®. Fluent 16.0 Theory Guide Chapter 10: Modeling Turbulence.
  • Launder, B.E. and Spalding, D.B., Lectures in mathematical models of turbulence, Launder, B.E. and Spalding, D.B., eds., Academic Press, London, (1972).
  • Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J., “A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows”, Comput. Fluids, 24(3), pp. 227–238 (1995).
  • Menter, F.R., “Two-equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA J., 32(8), pp. 1598–1605 (1994).
  • Huang, P.G., Bardina, J. and Coakley, T., “Turbulence Modelling Validation, Testing, and Development”, NASA Technical Memorandum, 110446 (1997).
  • Bardina, J.E., Huang, P.G. and Coakley, T., “Turbulence Modelling Validation”, AIAA Paper, 2121, p. 1997 (1997).
  • Gibson, M.M. and Launder, B.E., “Ground Effects on Pressure Fluctuations in the Atmospheric Boundary Layer”, J. Fluid Mech., 86(3), pp. 491–511 (1978).
  • Launder, B.E., “Second-moment Closure: Present … and Future?”, Int. J. Heat Fluid Flow, 10(4), pp. 282–300 (1989).
  • Launder, B.E., Reece, G.J. and Rodi, W., “Progress in the Development of a Reynolds-Stress Turbulence Closure”, J. Fluid Mech., 68(3), pp. 537–566 (1975).
  • Dente, M., Ranzi, E. and Goossens, A.G., “Detailed Prediction of Olefin Yields From Hydrocarbon Pyrolysis Through a Fundamental Simulation Model (SPYRO)”, Comput. Chem. Eng., 3(1-4), pp. 61–75 (1979).
  • Sundaram, K.M., Van Damme, P.S. and Froment, G.F., “Coke Deposition in the Thermal Cracking of Ethane”, AIChE J., 27(6), pp. 946–951 (1981).
  • Ranjan, P., Kannan, P., Al Shoaibi, A. and Srinivasakannan, C., “Modelling of Ethane Thermal Cracking Kinetics in a Pyrocracker”, Chem. Eng. Technol., 35(6), pp. 1093–1097 (2012).
  • Aribike, D.S. and Susu, A.A., “Kinetics and Mechanism of the Thermal Cracking of n-Heptane”, Thermochim. Acta, 127, pp. 247–258 (1988).
  • Pant, K.K. and Kunzru, D., “Pyrolysis of n-Heptane: Kinetics and Modelling”, J. Anal. Appl. Pyrolysis, 36(2), pp. 103–120 (1996).
  • Zámostný, P. and Bìlohlav, Z., “A Rigorous Model of Ethylene Pyrolysis and its Applications”, Pet Coal, 45, pp. 3–4 (2003).
  • Chen, N.H., “An Explicit Equation for Friction Factor in Pipe”, Ind. Eng. Chem. Fundam., 18(3), pp. 296–297 (1979).
  • Gnielinski, V., “New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, Int. Chem. Eng., 16(2), pp. 359–368 (1976).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.