134
Views
23
CrossRef citations to date
0
Altmetric
Articles

Investigation on the thermal conductivity and convective heat transfer enhancement in helical coiled heat exchanger using ultrasonically prepared rGO–TiO2 nanocomposite-based nanofluids

, , , &

References

  • Choi, S.U.S., “Enhancing Thermal Conductivity of Fluids with Nanoparticles, Development and Application of Non-Newtonian Flows”, ASME J. Heat Transfer, 66, pp. 99–105 (1995).
  • Khanafer, K. and Vafai, K., “A Review on the Applications of Nanofluids in Solar Energy Field”, Renew. Energy, 123, pp. 398–406 (2018). doi: 10.1016/j.renene.2018.01.097
  • Goudarzi, K. and Jamali, H., “Heat Transfer Enhancement of Al2O3-EG Nanofluid in a Car Radiator with Wire Coil Inserts”, Appl. Therm. Eng., 118, pp. 510–517 (2017). doi: 10.1016/j.applthermaleng.2017.03.016
  • Khatak, P., Jakhar, R. and Kumar, M., “Enhancement in Cooling of Electronic Components by Nanofluids”, J. Inst. Eng. (India): Series C, 96, pp. 245–251 (2015).
  • Celik, O., Can, M.M. and Firat, T., “Size Dependent Heating Ability of CoFe2O4 Nanoparticles in AC Magnetic Field for Magnetic Nanofluid Hyperthermia”, J. Nanopart. Res., 16 pp. 2321 (2014). doi: 10.1007/s11051-014-2321-6
  • Gurav, P., Naik, S.S., Bhanvase, B.A., Pinjari, D.V., Sonawane, S.H. and Ashokkumar, M., “Heat Transfer Intensification Using Polyaniline Based Nanofluids: Preparation and Application”, Chem. Eng. Process., 95, pp. 195–201 (2015). doi: 10.1016/j.cep.2015.06.010
  • Bhanvase, B.A., Kamath, S.D., Patil, U.P., Patil, H.A., Pandit, A.B. and Sonawane, S.H., “Intensification of Heat Transfer Using PANI Nanoparticles and PANI-CuO Nanocomposite Based Nanofluids”, Chem. Eng. Process., 104, pp. 172–180 (2016). doi: 10.1016/j.cep.2016.03.004
  • Bhanvase, B.A., Barai, D.P., Sonawane, S.H., Kumar, N. and Sonawane, S.S., ed., Handbook of Nanomaterials for Industrial Applications, Elsevier, pp. 739–750 (2018).
  • Pantzali, M.N., Mouza, A.A. and Paras, S.V., “Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE)”, Chem. Eng. Sci., 64, pp. 3290–3300 (2009). doi: 10.1016/j.ces.2009.04.004
  • Kumar, N.T.R., Bhramara B.M., Sundar, L.S., Singh, M.K. and Sousa, A.C.M., “Heat Transfer, Friction Factor and Effectiveness Analysis of Fe3O4/Water Nanofluid Flow in a Double Pipe Heat Exchanger with Return Bend”, Int. Commun. Heat Mass Transfer, 81, pp. 155–163 (2017). doi: 10.1016/j.icheatmasstransfer.2016.12.019
  • Barzegarian, R., Aloueyan, A. and Yousefi, T., “Thermal Performance Augmentation Using Water Based Al2O3-Gamma Nanofluid in a Horizontal Shell and Tube Heat Exchanger Under Forced Circulation”, Int. Commun. Heat Mass Transfer, 86, pp. 52–59 (2017). doi: 10.1016/j.icheatmasstransfer.2017.05.021
  • Fsadni, A.M., Whitty, J.P.M., Adeniyi, A.A., Simo, J. and Brooks, H.L., “A Review on the Application of Nanofluids in Coiled Tube Heat Exchangers”, In Micro and Nanomanufacturing Volume II, Jackson, M. and Ahmed, W. eds., Springer, Cham, pp. 443–465 (2018).
  • Mukesh Kumar, P.C., Kumar, J. and Suresh, S., “Experimental Investigation on Convective Heat Transfer and Friction Factor in a Helically Coiled Tube with Al2O3/Water Nanofluid”, J. Mech. Sci. Technol., 27, pp. 239–245 (2013). doi: 10.1007/s12206-012-1206-9
  • Rakhsha, M., Akbaridoust, F., Abbassi, A. and Majid, S.A., “Experimental and Numerical Investigations of Turbulent Forced Convection Flow of Nano-Fluid in Helical Coiled Tubes at Constant Surface Temperature”, Powder Technol., 283, pp. 178–189 (2015). doi: 10.1016/j.powtec.2015.05.019
  • Suganthi, K.S. and Rajan, K.S., “Metal Oxide Nanofluids: Review of Formulation, Thermo-Physical Properties, Mechanisms, and Heat Transfer Performance”, Renewable Sustainable Energy Rev., 76, pp. 226–255 (2017). doi: 10.1016/j.rser.2017.03.043
  • Sadeghinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Latibari, S.T., Akhiani, A.R. and Metselaar, H.S.C., “A Comprehensive Review on Graphene Nanofluids: Recent Research, Development and Applications”, Energy Convers. Manage., 111, pp. 466–487 (2016). doi: 10.1016/j.enconman.2016.01.004
  • Jyothirmayee Aravind, S.S. and Ramaprabhu, S., “Graphene–Multiwalled Carbon Nanotube-Based Nanofluids for Improved Heat Dissipation”, RSC Adv., 3, pp. 4199–4206 (2013). doi: 10.1039/c3ra22653k
  • Bhanvase, B.A., Sarode, M.R., Putterwar, L.A., Abdullah, K.A., Deosarkar, M.P. and Sonawane, S.H., “Intensification of Convective Heat Transfer in Water/Ethylene Glycol Based Nanofluids Containing TiO2 Nanoparticles”, Chem. Eng. Process., 82, pp. 123–131 (2014). doi: 10.1016/j.cep.2014.06.009
  • Wang, S., Li, Y., Zhang, H., Lin, Y., Li, Z., Wang, W., Wu, Q., Qian, Y., Hong, H. and Zhi, C., “Enhancement of Thermal Conductivity in Water-Based Nanofluids Employing TiO2/Reduced Graphene Oxide Composites”, Journal of Material Science, 51, pp. 10104–10115 (2016). doi: 10.1007/s10853-016-0239-3
  • Chang, B.Y.S., Huang, N.M., An’amt, M.N., Marlinda, A.R., Norazriena, Y., Muhamad, M.R., Harrison, I., Lim, H.N. and Chia, C.H., “Facile Hydrothermal Preparation of Titanium Dioxide Decorated Reduced Graphene Oxide Nanocomposite”, Int. J. Nanomed., 7, pp. 3379–3387 (2012).
  • Deosarkar, M.P., Pawar, S.M., Sonawane, S.H. and Bhanvase, B.A., “Process Intensification of Uniform Loading of SnO2 Nanoparticles on Graphene Oxide Nanosheets Using a Novel Ultrasound Assisted in Situ Chemical Precipitation Method”, Chem. Eng. Process., 70, pp. 48–54 (2013). doi: 10.1016/j.cep.2013.05.008
  • Deosarkar, M.P., Pawar, S.M. and Bhanvase, B.A., “In-situ Sonochemical Synthesis of Fe3O4-Graphene Nanocomposite for Lithium Rechargeable Batteries”, Chem. Eng. Process., 83, pp. 49–55 (2014). doi: 10.1016/j.cep.2014.07.004
  • Bethi, B., Sonawane, S.H., Rohit, G.S., Holkar, C.R., Pinjari, D.V., Bhanvase, B.A. and Pandit, A.B., “Investigation of TiO2 Photocatalyst Performance for Decolourization in the Presence of Hydrodynamic Cavitation as Hybrid AOP”, Ultrason. Sonochem., 28, pp. 150–160 (2016). doi: 10.1016/j.ultsonch.2015.07.008
  • Bethi, B., Sonawane, S.H., Potoroko, I., Bhanvase, B.A. and Sonawane, S.S., “Novel Hybrid System Based on Hydrodynamic Cavitation for Treatment of dye Waste Water: A First Report on Bench Scale Study”, J. Environ. Chem. Eng., 5, pp. 1874–1884 (2017). doi: 10.1016/j.jece.2017.03.026
  • Suresh Kumar, M., Sonawane, S.H., Bhanvase, B.A. and Bethi, B., “Treatment of Ternary Dye Wastewater by Hydrodynamic Cavitation Combined with Other Advanced Oxidation Processes (AOP’s)”, J. Water Process Eng., 23, pp. 250–256 (2018). doi: 10.1016/j.jwpe.2018.04.004
  • Barai, D.P., Bhanvase, B.A. and Saharan, V., “Reduced Graphene Oxide-Fe3O4 Nanocomposite Based Nanofluids: Study on Ultrasonic Assisted Synthesis, Thermal Conductivity, Rheology and Convective Heat Transfer”, Ind. Eng. Chem. Res., 58, pp. 8349–8369 (2019). doi: 10.1021/acs.iecr.8b05733
  • Bhanvase, B.A., Sayankar, S.D., Kapre, A., Fule, P.J. and Sonawane, S.H., “Experimental Investigation on Intensified Convective Heat Transfer Coefficient of Water Based PANI Nanofluid in Vertical Helical Coiled Heat Exchanger”, Appl. Therm. Eng., 128, pp. 134–140 (2018). doi: 10.1016/j.applthermaleng.2017.09.009
  • Fule, P.J., Bhanvase, B.A. and Sonawane, S.H., “Experimental Investigation of Heat Transfer Enhancement in Helical Coil Heat Exchangers Using Water Based CuO Nanofluid”, Adv. Powder Technol., 28, pp. 2288–2294 (2017). doi: 10.1016/j.apt.2017.06.010
  • Radkar, R.N., Bhanvase, B.A., Barai, D.P. and Sonawane, S.H., “Intensified Convective Heat Transfer Using ZnO Nanofluids in Heat Exchanger with Helical Coiled Geometry at Constant Wall Temperature”, Mater. Sci. Energy Technol., 2, pp. 161–170 (2019).
  • Imani-Mofrad, P., Heris, S.Z. and Shanbedi, M., “Experimental Investigation of the Effect of Different Nanofluids on the Thermal Performance of a wet Cooling Tower Using a New Method for Equalization of Ambient Conditions”, Energy Convers. Manage., 158, pp.23–35 (2018). doi: 10.1016/j.enconman.2017.12.056
  • Agromayor, R., Cabaleiro, D., Pardinas, A.A., Vallejo, J.P., Fernandez-Seara, J. and Lugo, L., “Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids”, Materials. (Basel), 9, pp. 455 (2016). doi: 10.3390/ma9060455
  • Tharayil, T., Asirvatham, L.G., Ravindran, V. and Wongwises, S., “Thermal Performance of Miniature Loop Heat Pipe with Graphene–Water Nanofluid”, Int. J. Heat Mass Transfer, 93, pp. 957–968 (2016). doi: 10.1016/j.ijheatmasstransfer.2015.11.011
  • Li, Y., Zhou, J., Tung, S., Schneider, E. and Xi, S., “A Review on Development of Nanofluid Preparation and Characterization”, Powder Technol., 196, pp. 89–101 (2009). doi: 10.1016/j.powtec.2009.07.025
  • Davarnejad, R., Barati, S. and Kooshki, M., “CFD Simulation of the Effect of Particle Size on the Nanofluids Convective Heat Transfer in the Developed Region in a Circular Tube”, Springer Plus, 2, pp. 192 (2013). doi: 10.1186/2193-1801-2-192
  • Jeschke, D., “W ¨arme ¨ubergang und Druckverlust in R ¨ohrschlangen”, Z. Ver. Deut. Ing., 69, pp. 1526 (1925).
  • Dittus, F.W. and Boelter, L.M.K., “Heat Transfer in Automobile Radiators of the Tubular Type”, Int. Commun. Heat Mass Transfer, 12, pp. 3–22 (1985). doi: 10.1016/0735-1933(85)90003-X
  • Zhang, Y. and Pan, C., “TiO2/Graphene Composite from Thermal Reaction of Graphene Oxide and its Photocatalytic Activity in Visible Light”, J. Mater. Sci., 46, pp. 2622–2626 (2011). doi: 10.1007/s10853-010-5116-x
  • Baby, T.T. and Ramaprabhu, S., “Investigation of Thermal and Electrical Conductivity of Graphene Based Nanofluids”, J. Appl. Phys., 108, pp. 124308 (2010). doi: 10.1063/1.3516289
  • Xie, H., Fujii, M. and Zhang, X., “Effect of Interfacial Nanolayer on the Effective Thermal Conductivity of Nanoparticle Fluid Mixture”, Int. J. Heat Mass Transfer, 48, pp. 2926–2932 (2005). doi: 10.1016/j.ijheatmasstransfer.2004.10.040
  • Shah, R.K., “Thermal Entry Length Solutions for the Circular Tube and Parallel Plates”, Proceedings of the 3rd National Heat Mass Transfer Conference, Indian Institute of Technology, Bombay (1975).
  • Xuan, Y. and Li, Q., “Investigation of Convective Heat Transfer and Flow Features of Nanofluids” J. Heat Transfer, 125, pp. 151–155 (2003). doi: 10.1115/1.1532008
  • Gnielinski, V., “Equations for Heat and Mass Transfer in Turbulent Pipe and Channel flow”, Int. J. Chem. Eng., 16, pp. 359–368 (1976).
  • Merkel, E. Die Grundlagen Der Warmeubertragung, T. Steinkopff, Dresden, p. 51 (1927).
  • Rogers, G.F.C. and Mayhew, Y.R., “Heat Transfer and Pressure Loss in Helically Tubes with Turbulent Flow”, International of Journal Heat and Mass Transfer, 7, pp. 1207–1216 (1964). doi: 10.1016/0017-9310(64)90062-6
  • Mori, Y. and Nakayama, W., “Study on Forced Convective Heat Transfer in Curved Pipes (Third Report, Theoretical Analysis Under the Condition of Uniform Wall Temperature and Practical Formula)”, Int. J. Heat Mass Transfer, 10, pp. 681–695 (1967). doi: 10.1016/0017-9310(67)90113-5
  • Savithiri, S., Pattamatta, A., and Das, S.K., “Scaling Analysis for the Investigation of Slip Mechanisms in Nanofluids”, Nanoscale Res. Lett., 6, pp. 471 (2011). doi: 10.1186/1556-276X-6-471

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.