55
Views
2
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the properties of solid biofuel produced from coconut fibre

, , , &
Pages 184-195 | Received 07 Mar 2023, Accepted 07 Dec 2023, Published online: 27 Dec 2023

References

  • Iwuozor KO, Emenike EC, Ighalo JO, et al. Valorization of sugar industry’s by-products: a perspective. Sugar Tech. 2022;24(4):1052–1078.
  • Liu Z, Han G. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel. 2015;158:159–165. doi:10.1016/j.fuel.2015.05.032
  • Emenike EC, Iwuozor KO, Ighalo JO, et al. Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel. Biofuels. 2023: 1–15. doi:10.1080/17597269.2023.2255007
  • Al-Mansour F, Zuwala J. An evaluation of biomass co-firing in Europe. Biomass Bioenergy. 2010;34(5):620–629. doi:10.1016/j.biombioe.2010.01.004
  • Suman S, Gautam S. Pyrolysis of coconut husk biomass: analysis of its biochar properties. Energy Sources Part A. 2017;39(8):761–767. doi:10.1080/15567036.2016.1263252
  • Iwuozor KO, Ighalo JO, Emenike EC, et al. Adsorption of methyl orange: a review on adsorbent performance. Curr Res Green Sustain Chem. 2021;4:100179. doi:10.1016/j.crgsc.2021.100179
  • Emenike EC, Iwuozor KO, Anidiobi SU. Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol Trace Elem Res. 2022;200:4476–4492.
  • Adeboye B, Adewole B, Adedoja A, et al. Optimization and modeling of process parameters on the yield of enhanced pyrolysis oil during co-pyrolysis of cassava peel with polystyrene. Environ Challenges. 2021;5:100347. doi:10.1016/j.envc.2021.100347
  • Iwuozor KO, Emenike EC, Omonayin EO, et al. Unlocking the hidden value of pods: a review of thermochemical conversion processes for biochar production. Bioresource Technol Rep. 2023: 101488. doi:10.1016/j.biteb.2023.101488
  • Kositkanawuth K, Sattler ML, Dennis B. Pyrolysis of macroalgae and polysytrene: a review. Curr Sustain/Renew Energy Rep. 2014;1(4):121–128. doi:10.1007/s40518-014-0020-7
  • Mohan D, Pittman Jr CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20(3):848–889. doi:10.1021/ef0502397
  • Alauddin ZABZ, Lahijani P, Mohammadi M, et al. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev. 2010;14(9):2852–2862. doi:10.1016/j.rser.2010.07.026
  • Liu Y, He Z, Uchimiya M. Comparison of biochar formation from various agricultural by-products using FTIR spectroscopy. Mod Appl Sci. 2015;9(4):246. doi:10.5539/mas.v9n4p246
  • Ogunlalu O, Oyekunle IP, Iwuozor KO, et al. Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Curr Res Green Sustain Chem. 2021;4:100188. doi:10.1016/j.crgsc.2021.100188
  • Dhar SA, Sakib TU, Hilary LN. Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Convers Biorefinery. 2020: 1–17. doi:10.1007/s13399-020-01116-y
  • Hunt J, DuPonte M, Sato D, et al. The basics of biochar: a natural soil amendment. Soil Crop Manag. 2010;30(7):1–6.
  • Verheijen F, Jeffery S, Bastos A, et al. Biochar application to soils. Crit Sci Rev Eff Soil Prop, Proc Funct. EUR. 2010;24099:162. http://ies.jrc.ec.europa.eu/.
  • Noor NM, Shariff A, Abdullah N, et al. Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malays J Fund Appl Sci. 2019;15(2):153–158. doi:10.11113/mjfas.v15n2.1015
  • Emenike EC, Amusa VT, Iwuozor KO, et al. Enhancing biochar properties through doping: a comparative study of sugarcane bagasse and chicken feather. Biofuels. 2023: 1–8. doi:10.1080/17597269.2023.2274694
  • Emenike EC, Adeniyi AG, Omuku PE, et al. Recent advances in nano-adsorbents for the sequestration of copper from water. J Water Process Eng. 2022;47:102715. doi:10.1016/j.jwpe.2022.102715
  • Mimmo T, Panzacchi P, Baratieri M, et al. Effect of pyrolysis temperature on miscanthus (Miscanthus× giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy. 2014;62:149–157. doi:10.1016/j.biombioe.2014.01.004
  • Wu W, Li J, Niazi NK, et al. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res. 2016;23(22):22890–22896. doi:10.1007/s11356-016-7428-0
  • Gunarathne DS, Udugama IA, Jayawardena S, et al. Resource recovery from bio-based production processes in developing Asia. Sustain Prod Consumption. 2019;17:196–214. doi:10.1016/j.spc.2018.11.008
  • Siengchum T, Isenberg M, Chuang SS. Fast pyrolysis of coconut biomass–an FTIR study. Fuel. 2013;105:559–565. doi:10.1016/j.fuel.2012.09.039
  • Aziz NSM, Shariff A, Abdullah N, et al. Characteristics of coconut frond as a potential feedstock for biochar via slow pyrolysis. Malays J Fundam Appl Sci. 2018;14(4):408–413. doi:10.11113/mjfas.v14n4.1014
  • Azeta O, Ayeni AO, Agboola O, et al. A review on the sustainable energy generation from the pyrolysis of coconut biomass. Sci African. 2021;13:e00909. doi:10.1016/j.sciaf.2021.e00909
  • Ighalo JO, Conradie J, Ohoro CR, et al. Biochar from coconut residues: an overview of production, properties, and applications. Ind Crops Prod. 2023;204:117300. doi:10.1016/j.indcrop.2023.117300
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels. 2021;12(10):1283–1290.
  • Adeniyi AG, Adeyanju CA, Iwuozor KO, et al. Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technol Environ Policy. 2023;25:937–947.
  • Ighalo JO, Onifade DV, Adeniyi AG. Retort-heating carbonisation of almond (Terminalia catappa) leaves and LDPE waste for biochar production: evaluation of product quality. International Journal of Sustainable Engineering. 2021;14(5):1059–1067. doi:10.1080/19397038.2021.1886371
  • Adeniyi A, Ighalo J, Onifade D, et al. Production of hybrid biochar by retort-heating of elephant grass (Pennisetum purpureum) and low density polyethylene (LDPE) for waste management and product development. J Mater Environ Sci. 2020;11(12):1940–1952.
  • Adelodun AA, Adeniyi AG, Ighalo JO, et al. Thermochemical conversion of oil palm Fiber-LDPE hybrid waste into biochar. Biofuels Bioprod Biorefin. 2020;14(6):1313–1323. doi:10.1002/bbb.2130
  • Mishra RK, Sahoo A, Mohanty K. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser. Bioresour Technol. 2019;289:121608. doi:10.1016/j.biortech.2019.121608
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Clean Eng Technol. 2022;11:100564. doi:10.1016/j.clet.2022.100564
  • Sonobe, T, Pipatmanomai S, Worasuwannarak N. Pyrolysis characteristics of Thai-agricultural residues of rice straw, rice husk, and corncob by TG-MS technique and kinetic analysis. in Proceedings of the 2nd joint international conference on “sustainable energy and environment (SEE’06). 2006.
  • Guarnieri SF, Nascimento ECd, Costa Junior RF, et al. Coconut fiber biochar alters physical and chemical properties in sandy soils. Acta Sci. Agron. 2021;43; doi:10.4025/actasciagron.v43i1.51801
  • Fernández RG, García CP, Lavín AG, et al. Study of main combustion characteristics for biomass fuels used in boilers. Fuel Process Technol. 2012;103:16–26. doi:10.1016/j.fuproc.2011.12.032
  • Downie A, Crosky A, Munroe P. Physical propierties of biochar, biochar for environmental management: science and technology. In: J Lehmann, S Joseph, editors. London: Earthscan Ltd.; 2009. p. 177–180.
  • Adeniyi AG, Ighalo JO, Onifade DV. Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and Albedo: product quality and potential applications. Chem Africa. 2020;3(2):439–448. doi:10.1007/s42250-020-00119-6
  • Adeniyi AG, Adeyanju CA, Emenike EC, et al. Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environ Challenges. 2022;9:100630. doi:10.1016/j.envc.2022.100630
  • Emenike EC, Iwuozor KO, Agbana SA, et al. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst. 2022;6:100094. doi:10.1016/j.cesys.2022.100094
  • Lehmann J, Joseph S. Biochar for environmental management: an introduction. In Biochar for environmental management. Routledge; 2015. p. 1–13. https://doi.org/10.4324/9780203762264.
  • Iwuozor KO, Emenike EC, Abdulkadir M, et al. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech. 2023;25(1):223.–233.
  • Adeniyi AG, Ighalo JO, Onifade DV. Production of bio-char from plantain (Musa paradisiaca) fibers using an updraft biomass gasifier with retort heating. Combust Sci Technol. 2021;193(1):60–74. doi:10.1080/00102202.2019.1650269
  • Wu W, Li J, Lan T, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: a microscopic and spectroscopic investigation. Sci Total Environ. 2017;576:766–774. doi:10.1016/j.scitotenv.2016.10.163
  • Emenike EC, Ogunniyi S, Ighalo JO, et al. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresource Technol Rep. 2022;19:101195. doi:10.1016/j.biteb.2022.101195
  • Bispo MD, Schneider JK, da Silva Oliveira D, et al. Production of activated biochar from coconut fiber for the removal of organic compounds from phenolic. J Environ Chem Eng. 2018;6(2):2743–2750. doi:10.1016/j.jece.2018.04.029
  • Adeniyi AG, Abdulkareem SA, Iwuozor KO, et al. Effect of salt impregnation on the properties of orange albedo biochar. Clean Chem Eng. 2022;3:100059. doi:10.1016/j.clce.2022.100059
  • Adeniyi AG, Adeyanju CA, Iwuozor KO, et al. Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Technol Environ Policy. 2023;25(3):937–947. doi:10.1007/s10098-022-02415-w
  • Odeyemi SO, Iwuozor KO, Emenike EC, et al. Valorization of waste cassava peel into biochar: an alternative to electrically-powered process. Total Environ Res Themes. 2023;6:100029. doi:10.1016/j.totert.2023.100029
  • Iwuozor KO, Emenike EC, Abdulkadir M, et al. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech. 2023;25(1):223–233. doi:10.1007/s12355-022-01166-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.