0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unravelling the polymorphic characteristics of carbamazepine through additive-assisted sonocrystallisation

ORCID Icon & ORCID Icon
Received 15 Feb 2024, Accepted 09 Jul 2024, Published online: 27 Jul 2024

References

  • Liu YC, Acevedo D, Yang X, et al. Population balance model development verification and validation of cooling crystallization of carbamazepine. Cryst Growth Des. 2020;20:5235–5250. doi:10.1021/acs.cgd.0c00434
  • Porter WW, Elie SC, Matzger AJ. Polymorphism in carbamazepine cocrystals. Cryst Growth Des. 2008;8:14–16. doi:10.1021/cg701022e
  • Patole T, Deshpande A. Co-crystallization-A technique for solubility enhancement. Int J Pharm Sci Res. 2014;5:3566. doi:10.13040/IJPSR.0975-8232.5(9).3566-76
  • Acevedo D, Wu W-L, Yang X, et al. Evaluation of focused beam reflectance measurement (FBRM) for monitoring and predicting the crystal size of carbamazepine in crystallization processes. CrystEngComm. 2021;23:972–985. doi:10.1039/D0CE01388A
  • Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9:2252–2264. doi:10.1021/cg801039j
  • Pawar N, Saha A, Nandan N, et al. Solution cocrystallization: a scalable approach for cocrystal production. Crystals. 2021;11:303. doi:10.3390/cryst11030303
  • XuanYuan S, Hao H, Hu C, et al. Quantitative analysis of solid and liquid contents in reactive crystallization by in-situ Raman with support vector regression. J Cryst Growth. 2022;587:126641. doi:10.1016/j.jcrysgro.2022.126641
  • Park MW, Yeo SD. Antisolvent crystallization of carbamazepine from organic solutions. Chem Eng Res Des. 2012;90:2202–2208. doi:10.1016/J.CHERD.2012.05.001
  • Weingaertner DA, Lynn S, Hanson DN. Extractive crystallization of salts from concentrated aqueous solution. Ind Eng Chem Res. 1991;30:490–501. doi:10.1021/ie00051a009
  • Wang X, Du S, Zhang R, et al. Drug-drug cocrystals: opportunities and challenges. Asian J Pharm Sci. 2021;16:307–317. doi:10.1016/J.AJPS.2020.06.004
  • Abidi SSA, Azim Y, Khan SN, et al. Sulfaguanidine cocrystals: synthesis, structural characterization and their antibacterial and hemolytic analysis. J Pharm Biomed Anal. 2018;149:351–357. doi:10.1016/J.JPBA.2017.11.028
  • Cao F, Amidon GL, Rodríguez-Hornedo N, et al. Mechanistic basis of cocrystal dissolution advantage. J Pharm Sci. 2018;107:380–389. doi:10.1016/J.XPHS.2017.09.014
  • Rustichelli C, Gamberini G, Ferioli V, et al. Solid-state study of polymorphic drugs: carbamazepine. J Pharm Biomed Anal. 2000;23:41–54. doi:10.1016/S0731-7085(00)00262-4
  • Nokhodchi A, Bolourtchian N, Dinarvand R. Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives. J Cryst Growth. 2005;274:573–584. doi:10.1016/J.JCRYSGRO.2004.10.158
  • Luque de Castro MD, Priego-Capote F. Ultrasound-assisted crystallization (sonocrystallization). Ultrason Sonochem. 2007;14:717–724. doi:10.1016/j.ultsonch.2006.12.004
  • Pohlman DA, Boukerche M, Chen J, etal Experimental and computational evaluation of sonofragmentation: toward enhanced understanding of sonocrystallization for pharmaceuticals. Ind Eng Chem Res. 2023;62(45):18931–18939. doi:10.1021/acs.iecr.3c00811
  • ter Haar GR. The acoustic bubble. Ultrasound Med Biol. 1996;22:527. doi:10.1016/0301-5629(96)88017-3
  • Ronald Young F. Cavitation. n.d.
  • Lee F-M, Lahti LE. Solubility of urea in water-alcohol mixtures. J Chem Eng Data. 1972;17:304–306. doi:10.1021/je60054a020
  • Haqshenas SR, Ford IJ, Saffari N. Modelling the effect of acoustic waves on nucleation. J Chem Phys. 2016;145(2). doi:10.1063/1.4955202
  • Dodds J, Espitalier F, Louisnard O, et al. The effect of ultrasound on crystallisation-precipitation processes: some examples and a new segregation model. Part Part Syst Charact. 2007;24:18–28. doi:10.1002/ppsc.200601046
  • Grossier R, Louisnard O, Vargas Y. Mixture segregation by an inertial cavitation bubble. Ultrason Sonochem. 2007;14:431–437. doi:10.1016/j.ultsonch.2006.10.010
  • Kashchiev D. Nucleation basic theory with applications. n.d.
  • Louisnard O, Gomez FJ, Grossier R. Segregation of a liquid mixture by a radially oscillating bubble. J Fluid Mech. 2007;577:385–415. doi:10.1017/S002211200700479X
  • Wohlgemuth K, Kordylla A, Ruether F, et al. Experimental study of the effect of bubbles on nucleation during batch cooling crystallization. Chem Eng Sci. 2009;64:4155–4163. doi:10.1016/j.ces.2009.06.041
  • Kozhemyakin GN, Zolkina LV, Inatomi Y. Influence of ultrasound on crystal growth from solution and related flow visualization. Cryst Growth Des. 2006;6:2412–2416. doi:10.1021/cg0499313
  • Chapter 1 Introduction: fundamentals of ultrasound and basis of its analytical uses, in. 2007. p. 1–34. doi:10.1016/S0167-9244(07)80017-5.
  • Ruecroft G, Hipkiss D, Ly T, et al. Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org Process Res Dev. 2005;9:923–932. doi:10.1021/op050109x
  • Sander JRG, Zeiger BW, Suslick KS. Sonocrystallization and sonofragmentation. Ultrason Sonochem. 2014;21:1908–1915. doi:10.1016/j.ultsonch.2014.02.005
  • Biopharmaceutic prediction of oral absorption from immediate release dosage forms. n.d.
  • Liu W, Wei H, Zhao J, et al. Investigation into the cooling crystallization and transformations of carbamazepine using in situ FBRM and PVM. Org Process Res Dev. 2013;17:1406–1412. doi:10.1021/op400066u
  • Parambil JV, Poornachary SK, Tan RBH, et al. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs. J Cryst Growth. 2017;469:84–90. doi:10.1016/j.jcrysgro.2016.09.058
  • Mullin JW. Crystallization. Amsterdam (Netherlands): Elsevier; 2001.
  • Lee H, Park S-A, Sah H. Surfactant effects upon dissolution patterns of carbamazepine immediate release tablet. Arch Pharm Res. 2005;28:120–126. doi:10.1007/BF02975147
  • Qushawy M, Prabahar K, Abd-Alhaseeb M, et al. Preparation and evaluation of carbamazepine solid lipid nanoparticle for alleviating seizure activity in pentylenetetrazole-kindled mice. Molecules. 2019;24:3971. doi:10.3390/molecules24213971
  • Weissbuch I, Leisorowitz L, Lahav M. “Tailor-made” and charge-transfer auxiliaries for the control of the crystal polymorphism of glycine. Adv Mater. 1994;6:952–956. doi:10.1002/adma.19940061211
  • Addadi L, Berkovitch-Yellin Z, Weissbuch I, et al. Growth and dissolution of organic crystals with “tailor-made” inhibitors—implications in stereochemistry and materials science. Angewandte Chemie International Edition in English. 1985;24:466–485. doi:10.1002/anie.198504661
  • Staab JF. The role of news factors in news selection: a theoretical reconsideration. Eur J Commun. 1990;5:423–443. doi:10.1177/0267323190005004003
  • Weissbuch I, Torbeev VY, Leiserowitz L, Lahav M. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew Chem. 2005;117:3290–3293. doi:10.1002/ange.200500164
  • Xie S, Poornachary SK, Chow PS, et al. Direct precipitation of micron-size salbutamol sulfate: new insights into the action of surfactants and polymeric additives. Cryst Growth Des. 2010;10:3363–3371. doi:10.1021/cg901270x
  • Beck C, Dalvi SV, Dave RN. Controlled liquid antisolvent precipitation using a rapid mixing device. Chem Eng Sci. 2010;65:5669–5675. doi:10.1016/j.ces.2010.04.001
  • Sathisaran I, Dalvi SV. Cocrystallization of carbamazepine with amides: cocrystal and eutectic phases with improved dissolution. J Mol Struct. 2019;1193:398–415. doi:10.1016/j.molstruc.2019.05.054
  • Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J. 2012;181–182:1–34. doi:10.1016/j.cej.2011.12.044
  • Flint EB, Suslick KS. The temperature of cavitation. Science (1979). 1991;253:1397–1399. doi:10.1126/science.253.5026.1397
  • Thakur R, Hudgins AE, Goncalves E, et al. Particle size and bulk powder flow control by supercritical antisolvent precipitation. Ind Eng Chem Res. 2009;48:5302–5309. doi:10.1021/ie801324q
  • Tierney TB, Guo Y, Beloshapkin S, et al. Investigation of the particle growth of fenofibrate following antisolvent precipitation and freeze–drying. Cryst Growth Des. 2015;15:5213–5222. doi:10.1021/acs.cgd.5b00662
  • Improvement of dissolution rate of a new antiretroviral drug using an anti-solvent crystallization technology. n.d.
  • Hansen TB, Qu H. Formation of piroxicam polymorphism in solution crystallization: effect and interplay of operation parameters. Cryst Growth Des. 2015;15:4694–4700. doi:10.1021/acs.cgd.5b01016
  • Kumar R, Siril PF. Controlling the size and morphology of griseofulvin nanoparticles using polymeric stabilizers by evaporation-assisted solvent–antisolvent interaction method. J Nanopart Res. 2015;17:256. doi:10.1007/s11051-015-3066-6
  • Poornachary SK, Han G, Kwek JW, et al. Crystallizing micronized particles of a poorly water-soluble active pharmaceutical ingredient: nucleation enhancement by polymeric additives. Cryst Growth Des. 2016;16:749–758. doi:10.1021/acs.cgd.5b01343
  • Klapwijk AR, Simone E, Nagy ZK, et al. Tuning crystal morphology of succinic acid using a polymer additive. Cryst Growth Des. 2016;16:4349–4359. doi:10.1021/acs.cgd.6b00465
  • Long B, Ryan KM, Padrela L. Investigating process variables and additive selection to optimize polymorphic control of carbamazepine in a CO 2 antisolvent crystallization process. Org Process Res Dev. 2020;24:1006–1017. doi:10.1021/acs.oprd.9b00545
  • Prasad R, Dalvi SV. Understanding morphological evolution of griseofulvin particles into hierarchical microstructures during liquid antisolvent precipitation. Cryst Growth Des. 2019;19:5836–5849. doi:10.1021/acs.cgd.9b00859
  • Li M, Qiu S, Lu Y, et al. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal. Pharm Res. 2014;31:2312–2325. doi:10.1007/s11095-014-1326-2
  • Khoder M, Abdelkader H, ElShaer A, et al. Efficient approach to enhance drug solubility by particle engineering of bovine serum albumin. Int J Pharm. 2016;515:740–748. doi:10.1016/j.ijpharm.2016.11.019
  • Louhi-Kultanen M, Sha Z, Palosaari S. Industrial Crystallization. n.d.
  • Thorat AA, Yadav MD, Dalvi SV. Simple criterion for stability of aqueous suspensions of ultrafine particles of a poorly water soluble drug. Langmuir. 2014;30:4576–4592. doi:10.1021/la500825j
  • Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. n.d.
  • Grzesiak AL, Lang M, Kim K, Matzger AJ. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. n.d.
  • Thorson MR, Goyal S, Schudel BR, et al. A microfluidic platform for pharmaceutical salt screening. Lab Chip. 2011;11:3829. doi:10.1039/c1lc20645a
  • Lonare AA, Patel SR. Antisolvent crystallization of poorly water soluble drugs. Int J Chem Eng Appl. 2013;4(5):337–341. doi:10.7763/ijcea.2013.v4.321
  • Padrela L, Zeglinski J, Ryan KM. Insight into the role of additives in controlling polymorphic outcome: A CO 2 -antisolvent crystallization process of carbamazepine. Cryst Growth Des. 2017;17:4544–4553. doi:10.1021/acs.cgd.7b00163
  • Prasad R, Panwar K, Katla J, et al. Polymorphism and particle formation pathway of carbamazepine during sonoprecipitation from ionic liquid solutions. Cryst Growth Des. 2020;20:5169–5183. doi:10.1021/acs.cgd.0c00382
  • Zhao K, Liu P, Li K, et al. Effect of polyethylene glycol additives on the polymorph and crystal habit of carbamazepine. J Cryst Growth. 2022;588:126644. doi:10.1016/j.jcrysgro.2022.126644
  • Thorson MR, Goyal S, Gong Y, et al. Microfluidic approach to polymorph screening through antisolvent crystallization. CrystEngComm. 2012;14:2404, doi:10.1039/c2ce06167h
  • Tian F, Baldursdottir S, Rantanen J. Effects of polymer additives on the crystallization of hydrates: a molecular-level modulation. Mol Pharm. 2009;6:202–210. doi:10.1021/mp800142z
  • Strachan CJ, Howell SL, Rades T, et al. A theoretical and spectroscopic study of carbamazepine polymorphs. J Raman Spectrosc. 2004;35:401–408. doi:10.1002/jrs.1134
  • Tian F, Sandler N, Aaltonen J, et al. Influence of polymorphic form, morphology, and excipient interactions on the dissolution of carbamazepine compacts. J Pharm Sci. 2007;96:584–594. doi:10.1002/jps.20756
  • Katzhendler I, Azoury R, Friedman M. Crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets based on hydroxypropyl methylcellulose. J Controlled Release. 1998;54:69–85. doi:10.1016/S0168-3659(98)00002-9
  • Grzesiak AL, Lang M, Kim K, et al. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I**supplementary material: X-ray crystallographic information file (CIF) of triclinic CBZ (form I) is available. J Pharm Sci. 2003;92:2260–2271. doi:10.1002/jps.10455

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.