Publication Cover
Transactions of the IMF
The International Journal of Surface Engineering and Coatings
Volume 98, 2020 - Issue 2
161
Views
9
CrossRef citations to date
0
Altmetric
Review

A virtuous cycle in materials engineering and surface finishing: design-print-image

ORCID Icon, ORCID Icon & ORCID Icon
Pages 65-72 | Received 19 Dec 2019, Accepted 13 Jan 2020, Published online: 13 Mar 2020

References

  • F.C. Walsh and C. Ponce de León: ‘Progress in electrochemical flow reactors for laboratory and pilot scale processing’, Electrochim Acta., 2018, 280, 121–148. doi: 10.1016/j.electacta.2018.05.027
  • F.C. Walsh and D. Pletcher: ‘Electrochemical engineering and cell design’ in ‘Developments in electrochemistry: science inspired by Martin Fleischmann’ (eds. D. Pletcher, Z.-Q. Tian, D. Williams), 95–111; 2014, John Wiley & Sons.
  • F.C. Walsh and G. Reade: ‘Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 1. Electrode geometry and figures of merit’, Analyst, 1994, 119, 791–796. doi: 10.1039/an9941900791
  • F.C. Walsh and G. Reade: ‘Design and performance of electrochemical reactors for efficient synthesis and environmental treatment. Part 2. Typical reactors and their performance’, Analyst, 1994, 119, 797–803. doi: 10.1039/an9941900797
  • D. Pletcher and F.C. Walsh: Industrial Electrochemistry, 2nd edn, 1990, Chapman and Hall, London.
  • R.J. Marshall and F.C. Walsh: ‘A review of some recent electrolytic cell designs’, Surf. Technol., 1985, 24, 45–77. doi: 10.1016/0376-4583(85)90015-9
  • B.R. Chalamala, T. Soundappan, G.R. Fisher, M.R. Anstey, V.V. Viswanathan and M.L. Perry: ‘Redox flow batteries: an engineering perspective’, Proc IEEE, 2014, 102, 976–999. doi: 10.1109/JPROC.2014.2320317
  • L.F. Arenas, C. Ponce de León and F.C. Walsh: ‘Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage’, J. Energy Storage, 2017, 11, 119–153. doi: 10.1016/j.est.2017.02.007
  • D. Pletcher: ‘Organic electrosynthesis – A road to greater application. A mini review’, Electrochem. Commun., 2018, 88, 1–4. doi: 10.1016/j.elecom.2018.01.006
  • A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes and S.R. Waldvogel: ‘Electrifying organic synthesis’, Angew. Chem. Int. Ed., 2018, 57, 5594–5619. doi: 10.1002/anie.201711060
  • B.A. Frontana-Uribe, R.D. Little, J.G. Ibanez, A. Palma and R. Vasquez-Medrano: ‘Organic electrosynthesis: a promising green methodology in organic chemistry’, Green Chem, 2010, 12, 2099–2119. doi: 10.1039/c0gc00382d
  • J.D. Fisk and J.D. Boyle: ‘Electrolytic toxic metal removal from effluents using reticulated vitreous carbon’, Trans. IMF, 2000, 78, 113–119. doi: 10.1080/00202967.2000.11871321
  • F.C. Walsh: ‘Electrochemical technology for environmental treatment and clean energy conversion’, Pure Appl. Chem., 2001, 73, 1819–1837. doi: 10.1351/pac200173121819
  • F.C. Moreira, R.A.R. Boaventura, E. Brillas and V.J.P. Vilar: ‘Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters’, Appl. Catal. B: Environ., 2017, 202, 217–261. doi: 10.1016/j.apcatb.2016.08.037
  • I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo and M. Panizza: ‘Electrochemical advanced oxidation processes: today and tomorrow. A review’, Environ. Sci. Pollut. Res., 2014, 21, 8336–8367. doi: 10.1007/s11356-014-2783-1
  • S. Roy, Y. Gupte and T.A. Green: ‘Flow cell design for metal deposition at recessed circular electrodes and wafers’, Chem. Eng. Sci., 2001, 56, 5025–5035. doi: 10.1016/S0009-2509(01)00178-6
  • L.F. Arenas, C. Ponce de León, R.P. Boardman and F.C. Walsh: ‘Electrodeposition of platinum on titanium felt in a rectangular channel flow cell’, J. Electrochem. Soc., 2017, 164, D57–D66. doi: 10.1149/2.0651702jes
  • L.F. Arenas, C. Ponce de León, R.P. Boardman and F.C. Walsh: ‘Characterisation of platinum electrodeposits on a titanium micromesh stack in a rectangular channel flow cell’, Electrochim Acta, 2017, 247, 994–1005. doi: 10.1016/j.electacta.2017.07.029
  • C. Filiatre, L. Towarnicki, F. Mange and A. Foissy: ‘A parallel plate flow cell for the investigation of the role of surfactants in the codeposition of polymer particles in nickel electroplating’, J. Appl. Electrochem., 1999, 29, 1393–1400. doi: 10.1023/A:1003836406636
  • D. Deconinck, W. Hoogsteen and J. Deconinck: ‘A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part III: Experimental validation’, Electrochim Acta, 2013, 103, 161–173. doi: 10.1016/j.electacta.2013.04.059
  • C.L. Dym, P. Little and E.J. Orwin: Engineering design: a project-based introduction, 4th edn, 2014, Wiley, New York.
  • F.F. Rivera, C. Ponce de León, F.C. Walsh and J.L. Nava: ‘The reaction environment in a filter-press laboratory reactor: the FM01-LC flow cell’, Electrochim Acta, 2015, 161, 436–452. doi: 10.1016/j.electacta.2015.02.161
  • H. Lipson and M. Kurman: Fabricated: The New World of 3D printing, 2013, Wiley, Indianapolis.
  • D.D. Gu, W. Meiners, K. Wissenbach and R. Poprawe: ‘Laser additive manufacturing of metallic components: materials, processes and mechanisms’, Int. Mater. Rev., 2012, 57, 133–164. doi: 10.1179/1743280411Y.0000000014
  • R.I. Noorani: Rapid prototyping: principles and applications, 2005, Wiley, New York.
  • A. Bandyopadhyay, B. Heer, ‘Additive manufacturing of multi-material structures’, Mater. Sci. Eng. R Rep. 129 (2018) 1–16. doi: 10.1016/j.mser.2018.04.001
  • C. Ponce de León, W. Hussey, F. Frazao, D. Jones, E. Ruggeri, S. Tzortzatos, R. Mckerracher, R. Wills, S. Yang and F.C. Walsh: ‘The 3D printing of a polymeric electrochemical cell body and its characterisation’, Chem. Eng. Trans., 2014, 41, 1–6.
  • G. Chisholm, P.J. Kitson, N.D. Kirkaldy, L.G. Bloor and L. Cronin: ‘3D printed flow plates for the electrolysis of water: an economic and adaptable approach to device manufacture’, Energy Environ. Sci., 2014, 7, 3026–3032. doi: 10.1039/C4EE01426J
  • L.F. Arenas, F.C. Walsh and C. Ponce de León: ‘3D-printing of redox flow batteries for energy storage: A rapid prototype laboratory cell’, ECS J. Solid State Sci. Technol., 2015, 4, 3080–3085. doi: 10.1149/2.0141504jss
  • G. Schimo, W. Burgstaller and A.W. Hassel: ‘Potentiodynamic hydrogen permeation on Palladium-Kelvin probe compared to 3D printed microelectrochemical cell’, Electrochem. Commun., 2015, 60, 208–211. doi: 10.1016/j.elecom.2015.09.005
  • T. Pérez-Segura, F. Arenas, J.L. Nava, C. Ponce de León and F.C. Walsh: ‘ Design of a filter-press flow cell with parallel plate electrodes to guarantee homogeneous current distributions in turbulent flow conditions. The importance of mathematical modeling coupled to 3D printing,’ ECS Meet. Abstr. MA2018-02, (2018), 934.
  • L.F. Arenas, C. Ponce de León and F.C. Walsh: ‘3D-printed porous electrodes for advanced electrochemical flow reactors: A Ni/stainless steel electrode and its mass transport characteristics’, Electrochem. Commun., 2017, 77, 133–137. doi: 10.1016/j.elecom.2017.03.009
  • J. Lölsberg, O. Starck, S. Stiefel, J. Hereijgers, T. Breugelmans and M. Wessling: ‘3D–Printed electrodes with improved mass transport properties’, ChemElectroChem, 2017, 4, 3309–3313. doi: 10.1002/celc.201700662
  • J. Hereijgers, J. Schalck, J. Lölsberg, M. Wessling and T. Breugelmans: ‘Indirect 3D printed electrode mixers’, ChemElectroChem, 2019, 6, 378–382. doi: 10.1002/celc.201801436
  • L.F. Arenas, N. Kaishubayeva, C. Ponce de León and F.C. Walsh: ‘Electrodeposition of platinum on 3D–printed titanium mesh to produce tailored, high area anodes’, Trans. IMF, 2020, 98(1), 48–52. doi:10.1080/00202967.2020.1698158.
  • H. Schäfer and M. Chatenet: ‘Steel: The resurrection of a forgotten water-splitting catalyst’, ACS Energy Lett., 2018, 3, 574–591. doi: 10.1021/acsenergylett.8b00024
  • X. Li, F.C. Walsh and D. Pletcher: ‘Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers’, Phys. Chem. Chem. Phys., 2011, 13, 1162–1167. doi: 10.1039/C0CP00993H
  • P. Hayfield: ‘Development of the noble metal/oxide coated titanium electrode. Part I: the beginning of the story’, Platinum Met. Rev., 1998, 42, 27–33.
  • M.A. Warne and P.C.S. Hayfield: ‘Durability of platinised titanium anodes in electroplating’, Trans. IMF, 1967, 45, 83–92. doi: 10.1080/00202967.1967.11870023
  • A. Storck and D. Hutin: ‘Mass transfer and pressure drop performance of turbulence promoters in electrochemical cells’, Electrochim Acta., 1981, 26, 127–137. doi: 10.1016/0013-4686(81)80014-X
  • L. Castañeda, R. Antaño, F.F. Rivera and J.L. Nava: ‘Computational fluid dynamic simulations of single-phase flow in a spacer-filled channel of a filter-press electrolyzer’, Int. J. Electrochem. Sci., 2017, 12, 7351–7364. doi: 10.20964/2017.08.09
  • T.R. Ralph, M.L. Hitchman, J.P. Millington and F.C. Walsh: ‘Mass transport in an electrochemical laboratory filterpress reactor and its enhancement by turbulence promoters’, Electrochim Acta., 1996, 41, 591–603. doi: 10.1016/0013-4686(95)00346-0
  • D. Dendukuri, S.K. Karode and A. Kumar: ‘Flow visualization through spacer filled channels by computational fluid dynamics - II: improved feed spacer designs’, J. Membrane Sci., 2005, 249, 41–49. doi: 10.1016/j.memsci.2004.06.062
  • K. Boomsma, D. Poulikakos and Y. Ventikos: ‘Simulations of flow through open cell metal foams using an idealized periodic cell structure’, Int J Heat Fluid Flow, 2003, 24, 825–834. doi: 10.1016/j.ijheatfluidflow.2003.08.002
  • S. Bu, J. Yang, Q. Dong and Q. Wang: ‘Experimental study of flow transitions in structured packed beds of spheres with electrochemical technique’, Exper. Thermal Fluid Sci., 2015, 60, 106–114. doi: 10.1016/j.expthermflusci.2014.09.001
  • G. Incera Garrido, F.C. Patcas, S. Lang and B. Kraushaar-Czarnetzki: ‘Mass transfer and pressure drop in ceramic foams: a description for different pore sizes and porosities’, Chem. Eng. Sci., 2008, 63, 5202–5217. doi: 10.1016/j.ces.2008.06.015
  • A. Inayat, J. Schwerdtfeger, H. Freund, C. Körner, R.F. Singer and W. Schwieger: ‘Periodic open-cell foams: pressure drop measurements and modeling of an ideal tetrakaidecahedra packing’, Chem. Eng. Sci., 2011, 66, 2758–2763. doi: 10.1016/j.ces.2011.03.031
  • F.C. Walsh, L.F. Arenas and C. Ponce de León: ‘Developments in electrode design: structure, decoration and applications of electrodes for electrochemical technology’, J. Chem. Technol. Biotechnol., 2018, 93, 3073–3090. doi: 10.1002/jctb.5706
  • F.C. Walsh: ‘Modern developments in electrodes for electrochemical technology and the role of surface finishing’, Trans. IMF, 2018, 97, 28–42. doi: 10.1080/00202967.2019.1551277
  • F.C. Walsh, C. Ponce de León, D.V. Bavykin, C.T.J. Low, S.C. Wang and C. Larson: ‘The formation of nanostructured surfaces by electrochemical techniques: a range of emerging surface finishes – Part 1: achieving nanostructured surfaces by electrochemical techniques’, Trans. IMF, 2015, 93, 209–224. doi: 10.1179/0020296715Z.000000000252
  • F.C. Walsh, C. Ponce de León, D.V. Bavykin, C.T.J. Low, S.C. Wang and C. Larson: ‘The formation of nanostructured surfaces by electrochemical techniques: a range of emerging surface finishes – Part 2: examples of nanostructured surfaces by plating and anodising with their applications’, Trans. IMF, 2015, 93, 241–247. doi: 10.1080/00202967.2015.1114724

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.