Publication Cover
Transactions of the IMF
The International Journal of Surface Engineering and Coatings
Volume 100, 2022 - Issue 5
520
Views
10
CrossRef citations to date
0
Altmetric
Review

A comprehensive review of vapour deposited coatings for cutting tools: properties and recent advances

, , , &
Pages 262-275 | Received 17 Jun 2021, Accepted 20 Sep 2021, Published online: 21 Mar 2022

References

  • S. N. Grigoriev, S. V. Fedorov and K. Hamdy: Materials, properties, manufacturing methods and cutting performance of innovative ceramic cutting tools− a review. Manuf. Rev., 2019, 6, 19. DOI: 10.1051/mfreview/2019016.
  • H. Y. Li, H. B. He, W. Q. Han, J. Yang, T. Gu, Y. M. Li and S. K. Lyu: A study on cutting and tribology performances of TiN and TiAlN coated tools. Int. J. Precis. Eng. Manuf., 2015, 16(4), 781–786.
  • M. Pradeep, R. Rajeshkannan, A. Ramesh, S. Robin and S. Manoj: Reduction of wear in cemented carbide inserts by coating process–a review. Int J. Innovative Res. Technol., 2017, 4(1), 155–163.
  • V. F. Sousa and F. J. Silva: Recent advances in turning processes using coated tools—A comprehensive review. Metals, 2020, 10(2), DOI: 10.3390/met10020170.
  • D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquere, V. Zerrouki and J. Vigneau: A review of developments towards dry and high speed machining of Inconel 718 alloy. Int. J. Mach. Tools Manuf., 2004, 44(4), 439–456.
  • E. O. Ezugwu, Z. M. Wang and A. R. Machado: The machinability of nickel-based alloys: a review. J. Mater. Process. Technol., 1999, 86(1-3), 1–16.
  • Fortune business insights.. https://www.fortunebusinessinsights.com/industry-reports/lathe-machines-market-101804 (accessed on 5/2/2021).
  • A. Mohandas and N. Radhika: Studies on Mechanical Behaviour of Aluminium/Nickel Coated Silicon Carbide Reinforced Functionally Graded Composite. Tribol. Ind., 2017, 39(2), 145–151.
  • S. C. Katamreddy, N. Punnath and N. Radhika: Multi-response optimisation of machining parameters in electrical discharge machining of Al LM25/AlB2 functionally graded composite using grey relation analysis. Int. J. Mach. Mach. Mater., 2018, 20(3), 193–213.
  • A. Venkatachalam, P. V. S. Anurag, T. D. Sadanand and N. Radhika: Optimization of the milling parameters for an Al/Si3N4 functionally graded composite using grey relational analysis. Mater. Test., 2018, 60(2), 215–221.
  • H. Fukui: Evolutional History of Coating Technologies for Cemented Carbide Inserts—Chemical Vapor Deposition and Physical Vapor Deposition. SEI Tech. Rev., 2016, 82, 39–45.
  • S. Lakshmanan and M. A. Xavior: Performance of coated and uncoated inserts during intermittent cut milling of AISI 1030 steel. Procedia. Eng., 2014, 97, 372–380.
  • A. Devillez, F. Schneider, S. Dominiak, D. Dudzinski and D. Larrouquere: Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear., 2007, 262(7-8), 931–942.
  • R. Anil Kumar and N. Radhika: Enhancement of mechanical and wear properties of tungsten carbide coated AA 6063 alloy using detonation gun technique. Trans. IMF, 2018, 96(4), 212–219.
  • J. Garcia, V. C. Cipres, A. Blomqvist and B. Kaplan: Cemented carbide microstructures: a review. Int. J. Refract Met. Hard Mater., 2019, 80, 40–68.
  • S. Vepřek and S. Reiprich: A concept for the design of novel superhard coatings. Thin Solid Films, 1995, 268(1-2), 64–71.
  • M. A. El Hakim, M. D. Abad, M. M. Abdelhameed, M. A. Shalaby and S. C. Veldhuis: Wear behavior of some cutting tool materials in hard turning of HSS. Tribol. Int., 2011, 44(10), 1174–1181.
  • W. Ji, B. Zou, S. Zhang, H. Xing, H. Yun and Y. Wang: Design and fabrication of gradient cermet composite cutting tool, and its cutting performance. J. Alloys Compd., 2018, 732, 25–31.
  • O. Knotek, F. Löffler and G. Krämer: Multicomponent and multilayer physically vapour deposited coatings for cutting tools. Surf. Coat. Technol., 1992, 54, 241–248.
  • W. M. Seidl, M. Bartosik, S. Kolozsvári, H. Bolvardi and P. H. Mayrhofer: Mechanical properties and oxidation resistance of Al-Cr-N/Ti-Al-Ta-N multilayer coatings. Surf. Coat. Technol., 2018, 347, 427–433.
  • H. Caliskan, P. Panjan and C. Kurbanoglu: Hard coatings on cutting tools and surface finish. Compr. Mater. Finish., 2017, 3, 230–242.
  • P. W. Hatto: Titanium nitride coatings for surface enhancement. Trans. IMF, 1988, 66(1), 55–57.
  • N. Radhika and R. Raghu: Influence of Parameters on Sliding Wear of Titanium Nitride Coated 6061 Aluminium Alloy. Tribol. Ind., 2018, 40(2), 203–212.
  • N. Fukumoto, H. Ezura and T. Suzuki: Synthesis and oxidation resistance of TiAlSiN and multilayer TiAlSiN/CrAlN coating. Surf. Coat. Technol., 2009, 204(6-7), 902–906.
  • A. Thakur and S. Gangopadhyay: Dry machining of nickel-based super alloy as a sustainable alternative using TiN/TiAlN coated tool. J. Clean Prod., 2016, 129, 256–268.
  • N. Andriya, P. V. Rao and S. Ghosh: Dry machining of Ti-6Al-4V using PVD coated TiAlN tools’. Proc. WorldCongr. Eng., 2012, 3, 1492–1497.
  • V. Varghese, K. Akhil, M. R. Ramesh and D. Chakradhar: Investigation on the performance of AlCrN and AlTiN coated cemented carbide inserts during end milling of maraging steel under dry, wet and cryogenic environments. J. Manuf. Process., 2019, 43, 136–144.
  • S. G. Harris, E. D. Doyle, A. C. Vlasveld, J. Audy, J. M. Long and D. Quick: Influence of chromium content on the dry machining performance of cathodic arc evaporated TiAlN coatings. Wear, 2003, 254(1-2), 185–194.
  • S. PalDey and S. C. Deevi: Single layer and multilayer wear resistant coatings of (Ti,Al) N: a review. Mater. Sci. Eng.: A, 2003, 342(1-2), 58–79.
  • S. Veprek, H. D. Männling, M. Jilek and P. Holubar: Avoiding the high-temperature decomposition and softening of (Al1− xTix) N coatings by the formation of stable superhard nc-(Al1− xTix) N/a-Si3N4 nanocomposite. Mater. Sci. Eng.: A, 2004, 366(1), 202–205.
  • MŠ Musa, M. Sakoman, D. Ćorić and T. A. Fabijanić: Exploitation and wear properties of nanostructured WC-Co tool modified with plasma-assisted chemical vapor deposition TiBN Coating. Metals, 2021, 11(2), DOI: 10.3390/met11020333.
  • M. Sakoman, D. Ćorić and MŠ Musa: Plasma-Assisted Chemical Vapor Deposition of TiBN Coatings on Nanostructured Cemented WC-Co. Metals, 2020, 10(12), DOI: 10.3390/met10121680.
  • A. Miletić, P. Panjan, B. Škorić, M. Čekada, G. Dražič and J. Kovač: Microstructure and mechanical properties of nanostructured Ti–Al–Si–N coatings deposited by magnetron sputtering. Surf. Coat. Technol., 2014, 241, 105–111.
  • J. Yi, S. Chen, K. Chen, Y. Xu, Q. Chen, C. Zhu and L. Liu: Effects of Ni content on microstructure, mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings. Ceram. Int., 2019, 45(1), 474–480.
  • A. Baptista, F. Silva, J. Porteiro, J. Míguez and G. Pinto: Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 2018, 8(11), 402.
  • O. O. Abegunde, E. T. Akinlabi, O. P. Oladijo, S. Akinlabi and A. U. Ude: Overview of thin film deposition techniques. AIMS Mater. Sci., 2019, 6(2), 174–199.
  • K. D. Bouzakis, N. Michailidis, G. Skordaris, E. Bouzakis, D. Biermann and R. M'Saoubi: Cutting with coated tools: Coating technologies, characterization methods and performance optimization. CIRP Ann., 2012, 61(2), 703–723.
  • Y. Deng, W. Chen, B. Li, C. Wang, T. Kuang and Y. Li: Physical vapor deposition technology for coated cutting tools: A review. Ceram. Int., 2020, 46, 18373–18390.
  • P. Panjan, A. Drnovšek, P. Gselman, M. Čekada and M. Panjan: Review of growth defects in thin films prepared by PVD techniques. Coatings, 2020, 10(5), 447.
  • D. Y. Wang, C. L. Chang, K. W. Wong, Y. W. Li and W. Y. Ho: Improvement of the interfacial integrity of (Ti, Al) N hard coatings deposited on high speed steel cutting tools. Surf. Coat. Technol., 1999, 120, 388–394.
  • H. Takikawa and H. Tanoue: Review of cathodic arc deposition for preparing droplet-free thin films. IEEE Trans. Plasma. Sci., 2007, 35(4), 992–999.
  • A. Anders: Approaches to rid cathodic arc plasmas of macro-and nanoparticles: a review. Surf. Coat. Technol., 1999, 120, 319–330.
  • A. Anders and R. A. MacGill: Twist filter for the removal of macroparticles from cathodic arc plasmas. Surf. Coat. Technol., 2000, 133, 96–100.
  • A. Bendavid, P. J. Martin and H. Takikawa: Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films, 2000, 360(1-2), 241–249.
  • H. Takikawa, K. Kimura, R. Miyano and T. Sakakibara: ZnO film formation using a steered and shielded reactive vacuum arc deposition. Thin Solid Films, 2000, 377, 74–80.
  • Y. Long, J. Zeng, D. Yu and S. Wu: Microstructure of TiAlN and CrAlN coatings and cutting performance of coated silicon nitride inserts in cast iron turning. Ceram. Int., 2014, 40(7), 9889–9894.
  • A. Flink, J. M. Andersson, B. Alling, R. Daniel, J. Sjölén, L. Karlsson and L. Hultman: Structure and thermal stability of arc evaporated (Ti0.33Al0.67) 1− xSixN thin films. Thin Solid Films, 2008, 517(2), 714–721.
  • L. H. Zhu, C. Song, W. Y. Ni and Y. X. Liu: Effect of 10% Si addition on cathodic arc evaporated TiAlSiN coatings. Trans. Nonferrous Met. Soc. China, 2016, 26(6), 1638–1646.
  • W. Chen, D. Zhang, D. Yao, S. Zhang and W. Wu: Investigations on microstructure and mechanical properties of containing-Si coatings. Surf. Eng., 2017, 33(7), 536–541.
  • C. L. Chang, J. W. Lee and M. D. Tseng: Microstructure, corrosion and tribological behaviors of TiAlSiN coatings deposited by cathodic arc plasma deposition. Thin Solid Films, 2009, 517(17), 5231–5236.
  • L. Chen, Y. Du, A. J. Wang, S. Q. Wang and S. Z. Zhou: Effect of Al content on microstructure and mechanical properties of Ti–Al–Si–N nanocomposite coatings. Int. J. Refract. Met. Hard. Mater., 2009, 27(4), 718–721.
  • I. Safi: Recent aspects concerning DC reactive magnetron sputtering of thin films: a review. Surf. Coat. Technol., 2000, 127(2-3), 203–218.
  • P. D. Davidse and L. I. Maissel: Dielectric thin films through rf sputtering. J. Appl. Phys., 1966, 37(2), 574–579.
  • J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson: High power impulse magnetron sputtering discharge. J. Vac. Sci. Technol. A.: Vac. Surf. Films, 2012, 30(3), doi: 10.1116/1.3691832.
  • M. Samuelsson, D. Lundin, J. Jensen, M. A. Raadu, J. T. Gudmundsson and U. Helmersson: On the film density using high power impulse magnetron sputtering. Surf. Coat. Technol., 2010, 205(2), 591–596.
  • U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 2006, 513(1-2), 1–24.
  • S. Konstantinidis, J. P. Dauchot, M. Ganciu, A. Ricard and M. Hecq: ‘Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges’, J. Appl. Phys., 2006, 99(1), DOI: 10.1063/1.2159555
  • A. Anders: A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS). Surf. Coat. Technol., 2014, 257, 308–325.
  • H. Elmkhah, F. Attarzadeh, A. Fattah-Alhosseini and K. H. Kim: Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques. J. Alloys Compd., 2018, 735, 422–429.
  • E. Lewin, D. Loch, A. Montagne, A. P. Ehiasarian and J. Patscheider: Comparison of Al–Si–N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering. Surf. Coat. Technol., 2013, 232, 680–689.
  • D. Mendil, F. Challali, T. Touam, A. Chelouche, A. H. Souici, S. Ouhenia and D. Djouadi: Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering. J. Lumin, 2019, 215, DOI: 10.1016/j.jlumin.2019.116631.
  • P. Sigurjonsson and J. T. Gudmundsson: Plasma parameters in a planar dc magnetron sputtering discharge of argon and krypton. J. Phys.: Conf. Ser., 2008, 100, DOI: 10.1088/1742-6596/100/6/062018.
  • P. Souček, J. Daniel, J. Hnilica, K. Bernátová, L. Zábranský, V. Buršíková, M. Stupavská and P. Vašina: Superhard nanocomposite nc-TiC/aC: H coatings: The effect of HiPIMS on coating microstructure and mechanical properties. Surf. Coat. Technol., 2017, 311, 257–267.
  • A. Spadoni and M. L. Addonizio: Effect of the RF sputtering power on microstructural, optical and electrical properties of Al doped ZnO thin films. Thin Solid Films, 2015, 589, 514–520.
  • X. Sui, G. Li, X. Qin, H. Yu, X. Zhou, K. Wang and Q. Wang: Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceram. Int., 2016, 42(6), 7524–7532.
  • M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel and H. van den Berg: Modified TiAlN coatings prepared by dc pulsed magnetron sputtering. Surf. Coat. Technol., 2010, 205(5), 1273–1278.
  • H. C. Barshilia, K. Yogesh and K. S. Rajam: Deposition of TiAlN coatings using reactive bipolar-pulsed direct current unbalanced magnetron sputtering. Vacuum, 2008, 83(2), 427–434.
  • G. Kim, S. Lee and J. Hahn: Properties of TiAlN coatings synthesized by closed-field unbalanced magnetron sputtering. Surf. Coat. Technol., 2005, 193(1-3), 213–218.
  • H. Elmkhah, T. F. Zhang, A. Abdollah-Zadeh, K. H. Kim and F. Mahboubi: Surface characteristics for the TiAlN coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages. J. Alloys Compd., 2016, 688, 820–827.
  • M. A. P. Yazdi, F. Lomello, J. Wang, F. Sanchette, Z. Dong, T. White, Y. Wouters, F. Schuster and A. Billard: Properties of TiSiN coatings deposited by hybrid HiPIMS and pulsed-DC magnetron co-sputtering. Vacuum, 2014, 109, 43–51.
  • Y. X. Ou, H. Chen, Z. Y. Li, J. Lin, W. Pan and M. K. Lei: Microstructure and tribological behavior of TiAlSiN coatings deposited by deep oscillation magnetron sputtering. J. Am. Ceram. Soc., 2018, 101(11), 5166–5176.
  • X. Z. Ding and X. T. Zeng: Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol., 2005, 200(5-6), 1372–1376.
  • Y. Lv, L. Ji, X. Liu, H. Li, H. Zhou and J. Chen: Influence of substrate bias voltage on structure and properties of the CrAlN films deposited by unbalanced magnetron sputtering. Appl. Surf. Sci., 2012, 258(8), 3864–3870.
  • S. Zhang, D. Sun, Y. Fu and H. Du: Recent advances of superhard nanocomposite coatings: a review. Surf. Coat. Technol., 2003, 167(2-3), 113–119.
  • I. Asempah, L. Yu, H. Ju, D. Yu, J. Xu and R. Miao: Corrosion, oxidation and high-temperature tribological properties of Ti–B–N coatings. Surf. Eng., 2019, 35(8), 661–669.
  • M. Diserens, J. Patscheider and F. Levy: Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films. Surf. Coat. Technol., 1999, 120, 158–165.
  • P. Karvankova, M. G. J. Veprek-Heijman, D. Azinovic and S. Veprek: Properties of superhardnc-TiN/a-BN and nc-TiN/a-BN/a-TiB2 nanocomposite coatings prepared by plasma induced chemical vapor deposition. Surf. Coat. Technol., 2006, 200(9), 2978–2989.
  • L. Chen, Y. Du, P. H. Mayrhofer, S. Q. Wang and J. Li: The influence of age-hardening on turning and milling performance of Ti–Al–N coated inserts. Surf. Coat. Technol., 2008, 202(21), 5158–5161.
  • P. Karvankova, M. G. J. Vepřek-Heijman, M. F. Zawrah and S. Vepřek: Thermal stability of nc-TiN/a-BN/a-TiB2 nanocomposite coatings deposited by plasma chemical vapor deposition. Thin Solid Films, 2004, 467(1-2), 133–139.
  • S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova and J. Prochazka: Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, 476(1), 1–29.
  • P. Karvankova, M. G. J. Veprek-Heijman, O. Zindulka, A. Bergmaier and S. Veprek: Superhard nc-TiN/a-BN and nc-TiN/a-TiBx/a-BN coatings prepared by plasma CVD and PVD: a comparative study of their properties. Surf. Coat. Technol., 2003, 163, 149–156.
  • J. Martan and P. Beneš: Thermal properties of cutting tool coatings at high temperatures. Thermochim Acta, 2012, 539, 51–55.
  • S. Veprek and M. J. Veprek-Heijman: Industrial applications of superhard nanocomposite coatings. Surf. Coat. Technol., 2008, 202(21), 5063–5073.
  • Y. H. Cheng, T. Browne, B. Heckerman and E. I. Meletis: Mechanical and tribological properties of nanocomposite TiSiN coatings. Surf. Coat. Technol., 2010, 204(14), 2123–2129.
  • N. He, H. Li, L. Ji, X. Liu, H. Zhou and J. Chen: High temperature tribological properties of TiAlSiN coatings produced by hybrid PVD technology. Tribol. Int., 2016, 98, 133–143.
  • D. Philippon, V. Godinho, P. M. Nagy, M. P. Delplancke-Ogletree and A. Fernandez: Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion. Wear, 2011, 270(7-8), 541–549.
  • C. C. Chang, H. W. Chen, J. W. Lee and J. G. Duh: Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings. Thin Solid Films, 2015, 584, 46–51.
  • H. Tao, M. T. Tsai, H. W. Chen, J. C. Huang and J. G. Duh: Improving high-temperature tribological characteristics on nanocomposite CrAlSiN coating by Mo doping. Surf. Coat. Technol., 2018, 349, 752–756.
  • Y. S. Hong, S. H. Kwon, T. Wang, D. I. Kim, J. Choi and K. H. Kim: Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating. Trans. Nonferrous Met. Soc. China, 2011, 21, s62–s67.
  • Y. P. Feng, L. Zhang, R. X. Ke, Q. L. Wan, Z. Wang and Z. H. Lu: Thermal stability and oxidation behavior of AlTiN, AlCrN and AlCrSiWN coatings. Int. J. Refract. Met. Hard Mater., 2014, 43, 241–249.
  • A. Hörling, L. Hultman, M. Odén, J. Sjölén and L. Karlsson: Mechanical properties and machining performance of Ti1−xAlxN-coated cutting tools. Surf. Coat. Technol., 2005, 191(2-3), 384–392.
  • A. E. Reiter, V. H. Derflinger, B. Hanselmann, T. Bachmann and B. Sartory: Investigation of the properties of Al1− xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol., 2005, 200(7), 2114–2122.
  • Y. Tanaka, N. Ichimiya, Y. Onishi and Y. Yamada: Structure and properties of Al–Ti–Si–N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surf. Coat. Technol., 2001, 146, 215–221.
  • H. Willmann, P. H. Mayrhofer, L. Hultman and C. Mitterer: Hardness evolution of Al–Cr–N coatings under thermal load. J. Mater. Res., 2008, 23(11), 2880–2885.
  • Y. C. Chim, X. Z. Ding, X. T. Zeng and S. Zhang: Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2009, 517(17), 4845–4849.
  • W. Kalss, A. Reiter, V. Derflinger, C. Gey and J. L. Endrino: Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater., 2006, 24(5), 399–404.
  • P. H. Mayrhofer, A. Hörling, L. Karlsson, J. Sjölén, T. Larsson, C. Mitterer and L. Hultman: Self-organized nanostructures in the Ti–Al–N system. Appl. Phys. Lett., 2003, 83(10), 2049–2051.
  • S. Y. Yoon, J. K. Kim and K. H. Kim: A comparative study on tribological behavior of TiN and TiAlN coatings prepared by arc ion plating technique. Surf. Coat. Technol., 2002, 161(2-3), 237–242.
  • J. L. Mo and M. H. Zhu: Sliding tribological behavior of AlCrN coating. Tribol. Int., 2008, 41(12), 1161–1168.
  • J. L. Mo, M. H. Zhu, B. Lei, Y. X. Leng and N. Huang: Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition. Wear, 2007, 263(7-12), 1423–1429.
  • C. M. Koller, R. Hollerweger, C. Sabitzer, R. Rachbauer, S. Kolozsvári, J. Paulitsch and P. H. Mayrhofer: Thermal stability and oxidation resistance of arc evaporated TiAlN, TaAlN, TiAlTaN, and TiAlN/TaAlN coatings. Surf. Coat. Technol., 2014, 259, 599–607.
  • Y. X. Xu, C. Hu, L. Chen, F. Pei and Y. Du: Effect of V-addition on the thermal stability and oxidation resistance of CrAlN coatings. Ceram. Int., 2018, 44(6), 7013–7019.
  • C. B. Liu, W. Pei, F. Huang and L. Chen: Improved mechanical and thermal properties of CrAlN coatings by Si solid solution. Vacuum, 2016, 125, 180–184.
  • T. Ghrib, B. Tlili, C. Nouveau, Y. Benlatreche, M. Lambertin, N. Yacoubi and M. Ennasri: Experimental investigation of the mechanical micro structural and thermal properties of thin CrAIN layers deposited by PVD technique for various aluminum percentages. Phys. Procedia, 2009, 2(3), 1327–1336.
  • X. Z. Ding, X. T. Zeng and Y. C. Liu: Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2011, 519(6), 1894–1900.
  • J. Musil: Hard and superhard nanocomposite coatings. Surf. Coat. Technol., 2000, 125(1-3), 322–330.
  • N. Koutná. ‘Superlattice design for nitride-based thin films’, PhD thesis, Technische Universität Wien, Vienna, Austria, 2021, doi:10.34726/hss.2021.70822.
  • C. Ducros and F. Sanchette: Multilayered and nanolayered hard nitride thin films deposited by cathodic arc evaporation. Part 2: Mechanical properties and cutting performances. Surf. Coat. Technol., 2006, 201(3-4), 1045–1052.
  • H. C. Barshilia, B. Deepthi, N. Selvakumar, A. Jain and K. S. Rajam: Nanolayered multilayer coatings of CrN/CrAlN prepared by reactive DC magnetron sputtering. Appl. Surf. Sci., 2007, 253(11), 5076–5083.
  • K. J. Martin, A. Madan, D. Hoffman, J. Ji and S. A. Barnett: Mechanical properties and thermal stability of Ti N/TiB2 nanolayered thin films. J. Vac. Sci. Technol. A: Vac. Surf. Films, 2005, 23(1), 90–98.
  • S. Zhang, L. Wang, Q. Wang and M. Li: A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: I. Microstructure and mechanical properties. Surf. Coat. Technol., 2013, 214, 160–167.
  • S. Zhang, L. Wang, Q. Wang and M. Li: A superhard CrAlSiN superlattice coating deposited by a multi-arc ion plating: II. Thermal stability and oxidation resistance. Surf. Coat. Technol., 2013, 214, 153–159.
  • M. S. Kasim, C. H. Che Haron, J. A. Ghani, M. A. Hadi, R. Izamshah, T. J. S. Anand and S. B. Mohamed: Cost evaluation on performance of a PVD coated cutting tool during end-milling of Inconel 718 under MQL conditions. Trans. IMF, 2016, 94(4), 175–181.
  • R. K. Das, A. K. Sahoo, R. Kumar, S. Roy, P. C. Mishra and T. Mohanty: MQL assisted cleaner machining using PVD TiAlN coated carbide insert: comparative assessment. Indian J. Eng. Mater. Sci., 2019, 26(5&6), 311–325.
  • Z. Liu, Q. An, J. Xu, M. Chen and S. Han: Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear, 2013, 305(1-2), 249–259.
  • B. C. Behera, S. Ghosh and P. V. Rao: Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram Int., 2016, 42(13), 14873–14885.
  • M. Mia, P. R. Dey, M. S. Hossain, M. T. Arafat, M. Asaduzzaman, M. S. Ullah and S. T. Zobaer: Taguchi S/N based optimization of machining parameters for surface roughness, tool wear and material removal rate in hard turning under MQL cutting condition. Meas.: J. Int. Meas. Confed., 2018, 112, 380–391.
  • M. Mia, G. Singh, M. K. Gupta and V. S. Sharma: Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis. Eng., 2018, 53, 289–299.
  • R. W. Maruda, G. M. Krolczyk, M. Michalski, P. Nieslony and S. Wojciechowski: Structural and microhardness changes after turning of the AISI 1045 steel for minimum quantity cooling lubrication. J. Mater. Eng. Perform., 2017, 26(1), 431–438.
  • N. R. Dhar, M. Kamruzzaman and M. Ahmed: Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J. Mater. Process. Technol., 2006, 172(2), 299–304.
  • M. H. S. Elmunafi, M. Y. Noordin and D. Kurniawan: Tool life of coated carbide cutting tool when turning hardened stainless steel under minimum quantity lubricant using castor oil. Procedia Manuf., 2015, 2, 563–567.
  • R. Viswanathan, S. Ramesh and V. Subburam: Measurement and optimization of performance characteristics in turning of Mg alloy under dry and MQL conditions. Meas.: J. Int. Meas. Confed., 2018, 120, 107–113.
  • S. Ghosh and P. V. Rao: Application of sustainable techniques in metal cutting for enhanced machinability: a review. J. Clean. Prod., 2015, 100, 17–34.
  • K. Gupta and R. F. Laubscher: Sustainable machining of titanium alloys: a critical review. Proc. Inst. Mech. Eng. B: J. Eng. Manuf., 2017, 231(14), 2543–2560.
  • N. N. Hamran, J. A. Ghani, R. Ramli and C. C. Haron: A review on recent development of minimum quantity lubrication for sustainable machining. J. Clean. Prod., 2020, 268, doi:10.1016/j.jclepro.2020.122165.
  • Y. Kaynak, T. Lu and I. S. Jawahir: Cryogenic machining-induced surface integrity: a review and comparison with dry, MQL, and flood-cooled machining. Mach. Sci. Technol., 2014, 18(2), 149–198.
  • S. Murugappan and S. Arul: Effect of cryogenic pre cooling on chip reduction co-efficient during turning of EN8 steel rod. Mater. Today: Proc., 2017, 4(8), 8848–8855.
  • S. Murugappan, S. Arul and S. K: Narayanan: ‘An experimental study on turning of AL6063 under cryogenic pre cooled condition’. Procedia CIRP, 2015, 35, 61–66.
  • W. Tillmann, D. Grisales, C. M. Tovar, E. Contreras, D. Apel, A. Nienhaus, D. Stangier and N. F. L. Dias: Tribological behaviour of low carbon-containing TiAlCN coatings deposited by hybrid (DCMS/HiPIMS) technique. Tribol. Int., 2020, 151, doi:10.1016/j.triboint.2020.106528.
  • N. C. Zoita, M. Dinu, A. E. Kiss, C. Logofatu and M. Braic: A comparative investigation of hetero-epitaxial TiC thin films deposited by magnetron sputtering using either hybrid DCMS/HiPIMS or reactive DCMS process. Appl. Surf. Sci., 2021, 537, doi:10.1016/j.apsusc.2020.147903.
  • J. Olejníček, Z. Hubička, Š Kment, M. Čada, P. Kšírová, P. Adámek and I. Gregora: Investigation of reactive HiPIMS+ MF sputtering of TiO2 crystalline thin films. Surf Coat Technol, 2013, 232, 376–383.
  • V. Sittinger, O. Lenck, M. Vergöhl, B. Szyszka and G. Bräuer: Applications of HIPIMS metal oxides. Thin Solid Films, 2013, 548, 18–26.
  • Q. L. Tang, Y. C. Wu, B. S. Lou, Z. Y. Chen and J. W. Lee: Mechanical property evaluation of ZrSiN films deposited by a hybrid superimposed high power impulse-medium frequency sputtering and RF sputtering system. Surf. Coat. Technol., 2019, 376, 59–67.
  • W. Diyatmika, C. Y. Cheng and J. W. Lee: Fabrication of Cr-Si-N coatings using a hybrid high-power impulse and radio-frequency magnetron co-sputtering: The role of Si incorporation and duty cycle. Surf. Coat. Technol., 2020, 403, doi:10.1016/j.surfcoat.2020.126378.
  • B. S. Lou, Y. C. Yang, Y. X. Qiu, W. Diyatmika and J. W. Lee: Hybrid high power impulse and radio frequency magnetron sputtering system for TiCrSiN thin film depositions: Plasma characteristics and film properties. Surf. Coat. Technol., 2018, 350, 762–772.
  • S. G. Hong, D. W. Shin and K. H. Kim: Syntheses and mechanical properties of quaternary Cr-Mo-Si-N coatings by a hybrid coating system. Mater. Sci. Eng. A, 2008, 487(1-2), 586–590.
  • Q. M. Wang and K. H. Kim: Microstructural control of Cr–Si–N films by a hybrid arc ion plating and magnetron sputtering process. Acta Mater., 2009, 57(17), 4974–4987.
  • A. Singh, S. Ghosh and S. Aravindan: Influence of dry micro abrasive blasting on the physical and mechanical characteristics of hybrid PVD-AlTiN coated tools. J Manuf Process, 2019, 37, 446–456.
  • P. J. Martin and A. Bendavid: Properties of Ti1− xSixNy films deposited by concurrent cathodic arc evaporation and magnetron sputtering. Surf. Coat. Technol., 2003, 163, 245–250.
  • K. Bobzin, T. Brögelmann, N. C. Kruppe and M. Carlet: Nanocomposite (Ti, Al, Cr, Si) N HPPMS coatings for high performance cutting tools. Surf. Coat. Technol., 2019, 378, doi:10.1016/j.surfcoat.2019.07.073.
  • D. Özkan, M. A. Yılmaz, M. Szala, C. Türküz, D. Chocyk, C. Tunç, O. Göz, M. Walczak, K. Pasierbiewicz and M. B. Yağcı: Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+ TiSiN PVD coatings. Ceram. Int., 2021, 47(14), 20077–20089.
  • A. Vereschaka, V. Tabakov, S. Grigoriev, N. Sitnikov, F. Milovich, N. Andreev and J. Bublikov: Investigation of wear mechanisms for the rake face of a cutting tool with a multilayer composite nanostructured Cr–CrN-(Ti, Cr, Al, Si) N coating in high-speed steel turning. Wear, 2019, 438, doi:10.1016/j.wear.2019.203069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.