455
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Rare earth element enrichment in Palaeoproterozoic Fengzhen carbonatite from the North China block

, , , &
Pages 1940-1950 | Received 25 Jan 2016, Accepted 20 May 2016, Published online: 28 Jun 2016

References

  • Åmli, R., 1975, Mineralogy and rare earth geochemistry of apatite and xenotime from the Gloserheia Granite Pegmatite, Froland, southern Norway: American Mineralogist, v. 60, p. 607–620.
  • Andrade, F.R.D., Möller, P., Lüders, V., Dulski, P., and Gilg, H.A., 1999, Hydrothermal rare earth elements mineralization in the Barra do Itapirauã carbonatite, southern Brazil: Behavior of selected trace elements and stable isotopes (C, O): Chemical Geology, v. 155, p. 91–113. doi:10.1016/S0009-2541(98)00143-0
  • Anna, G.D., Shrinivas, G.V., German, S.R., and Maria, V.B., 2009, Hydrothermal REE mineralization in the Amba Dongar carbonatite complex, Gujarat, India: The Canadian Mineralogist, v. 47, p. 1105–1116. doi:10.3749/canmin.47.5.1105
  • Bühn, B., Wall, F., and Le Bas, M.J., 2001, Rare-earth element systematics of carbonatitic fluorapatites: And Their Significance for Carbonatite Magma Evolution: Contributions to Mineralogy and Petrology, v. 141, p. 572–591.
  • Dawson, J.B., and Hinton, R.W., 2003, Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa: Mineralogical Magazine, v. 67, p. 921–930.
  • Fleet, M.E., and Pan, Y., 1995, Site preference of rare earth elements in fluorapatite: American Mineralogist, v. 80, p. 329–335. doi:10.2138/am-1995-3-414
  • Gittins, J., 1989, The origin and evolution of carbonatite magmas, inBell, K., ed., Carbonatites: Genesis and evolution: London, Unwin Hyman, p. 580–600.
  • Hammouda, T., Chantel, J., and Devidal, J.L., 2010, Apatite solubility in carbonatitic liquids and trace element partitioning between apatite and carbonatite at high pressure: Geochimica Et Cosmochimica Acta, v. 74, p. 7220–7235. doi:10.1016/j.gca.2010.09.032
  • Harlov, D.E., and Förster, H.-J., 2003, Fluid-induced nucleation of (Y + REE)-phosphateminerals in apatite: Nature and experiment. Part II. Fluorapatite: American Mineralogist, v. 88, p. 1209–1229. doi:10.2138/am-2003-8-905
  • Harlov, D.E., Förster, H.-J., and Nijland, T.G., 2002, Fluid-induced nucleation of REE-phosphate minerals in apatite: Nature and experiment. Part I. Chlorapatite: American Mineralogist, v. 87, p. 245–261. doi:10.2138/am-2002-2-306
  • Harlov, D.E., Wirth, R., and Förster, H.-J., 2005, An experimental study of dissolution-reprecitation in fluorapatite: Fluid infiltration and the formation of monazite: Contributions to Mineralogy and Petrology, v. 150, p. 268–286. doi:10.1007/s00410-005-0017-8
  • Hellmann, R., Penisson, J.-M., Hervig, R.L., Thomassin, J.-H., and Abrioux, M.-F., 2003, An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH: Evidence for interfacial dissolution-reprecipitation: Physics and Chemistry of Minerals, v. 30, p. 192–197. doi:10.1007/s00269-003-0308-4
  • Hogarth, D.D., 1989, Pyrochlore, apatite and amphilbole: Distinctive minerals in carbonatite, inBell, K., ed., Carbonatites: Genesis and evolution: London, Unwin Hyman, p. 105–148.
  • Hogarth, D.D., Hartree, R., Loop, J., and Solberg, T.N., 1985, Rare-earth element minerals in four carbonatites near Gatineau Quebec: American Mineralogist, v. 70, p. 1135–1142.
  • Hornig-Kjaarsgaard, I., 1998, Rare earth elements in söviticc arbonatites and their mineral phases: Journal of Petrology, v. 39, p. 2105–2121. doi:10.1093/petrology/39.11.2105
  • Jones, A.P., and Wyllie, P.J., 1988, Low-temperature glass quenched from a synthetic, rare earth carbonatite: Implications for the origin of the Mountain Pass deposit, California: Economic Geology, v. 78, p. 1721–1728. doi:10.2113/gsecongeo.78.8.1721
  • Kusky, T.M., 2011, Geophysical and geological tests of tectonic models of the North China Craton: Gondwana Reserch, v. 20, p. 26–35. doi:10.1016/j.gr.2011.01.004
  • Kusky, T.M., and Li, J.H., 2003, Paleoproterozoic tectonic evolution of the North China Craton: Journal of Asian Earth Sciences, v. 22, p. 383–397. doi:10.1016/S1367-9120(03)00071-3
  • Labotka, T.C., Cole, D.R., Fayek, M., Riciputi, L.R., and Stadermann, F.J., 2004, Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution: American Mineralogist, v. 89, p. 1822–1825. doi:10.2138/am-2004-11-1229
  • Liu, S.J., Wan, Y.S., Sun, H.Y., Nutman, A.P., Xie, H.Q., Dong, C.Y., Ma, M.Z., Liu, D.Y., and Jahn, B.M., 2013, Paleo- to Eoarchean crustal evolution in eastern Hebei, North China Craton: New evidence from SHRIMP U–Pb dating and in-situ Hf isotopic study of detrital zircons from paragneisses: Journal of Asian Earth Sciences, v. 78, p. 4–17. doi:10.1016/j.jseaes.2013.07.041
  • Mariano, A.N., 1989, Nature of economic mineralization in carbonatites and related rocks, inBell, K., ed., Carbonatites: Genesis and Evolution: London, Unwin Hyman, p. 149–175.
  • McDonough, W.F., and Sun, S.S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253.
  • Migdisov, A.A., and Williams-Jones, A.E., 2008, A spectrophotometric study of Nd(III) Sm(III) and Er(III) complexation in sulfate-bearing solutions at elevated temperatures: Geochimica Et Cosmochimica Acta, v. 72, p. 5291–5303. doi:10.1016/j.gca.2008.08.002
  • Migdisov, A.A., Williams-Jones, A.E., and Wagner, T., 2009, An experimental study of the solubility and speciation of the Rare Earth Elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300 ºC: Geochimica Et Cosmochimica Acta, v. 73, p. 7087–7109. doi:10.1016/j.gca.2009.08.023
  • Nelson, D.R., Chiva, A.R., Chappell, B.W., and McCulloch, M.T., 1988, Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources: Geochimica Et Cosmochimica Acta, v. 52, p. 1–17. doi:10.1016/0016-7037(88)90051-8
  • Pan, Y., 1997, Zircon- and monazite-forming metamorphic reactions at Manitouwadge Ontario: The Canadian Mineralogist, v. 35, p. 105–118.
  • Pan, Y., Fleet, M.E., and Macrae, N.D., 1993, Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada: Mineralogical Magazine, v. 57, p. 697–707. doi:10.1180/minmag.1993.057.389.14
  • Pollack, K., Geisler, T., and Putnis, A., 2004, How does a replacement front proceed? Observations on chlorapatite-hydroxylapatite replacements: Geochimica Et Cosmochimica Acta, v. 68, p. 184.
  • Putnis, A., 2002, Mineral replacement reactions: From macroscopic observations tomicroscopic mechanisms: Mineralogical Magazine, v. 66, p. 689–708.
  • Qi, L., Hu, J., and Gregoire, D.C., 2000, Determination of trace elements in granite by inductively coupled plasma mass spectrometry: Talanta, v. 51, p. 507–513.
  • Salvi, S., and Williams-Jones, A.E., 1996, The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada: Geochim. Cosmochim. Acta, v. 60, p. 1917–1932. doi:10.1016/0016-7037(96)00071-3
  • Sánchez, V., Cardellach, E., Corbella, M., Vindel, E., Martín-Crespo, T., and Boyce, A.J., 2010, Variability in fluid sources in the fluorite deposits from Asturias (N Spain): Further evidences from REE, radiogenic (Sr, Sm, Nd) and stable (S, C, O) isotope data: Ore Geology Reviews, v. 37, p. 87–100. doi:10.1016/j.oregeorev.2009.12.001
  • Schönenberger, J., Köhler, J., and Markl, G., 2008, REE systematics of fluorides, calcite and siderite in peralkaline plutonic rocks from the Gardar Province, South Greenland: Chemical Geology, v. 247, p. 16–35. doi:10.1016/j.chemgeo.2007.10.002
  • Song, W.L., Xu, C., Veksler, I.V., and Kynicky, J., 2016, Experimental study of REE Ba, Sr, Mo and W partitioning between carbonatitic melt and aqueous fluid with implications for rare metal mineralization: Contributions to Mineralogy and Petrology, v. 171, p. 1–12. doi:10.1007/s00410-015-1217-5
  • Tomaschek, F., Kennedy, A.K., Villa, I.M., Lagos, M., and Ballhaus, C., 2003, Zircons from Syros, Cyclades, Greece-Recrystallization and mobilization of zircon during high-pressure metamorphism: Journal of Petrology, v. 44, p. 1977–2002. doi:10.1093/petrology/egg067
  • Wall, F., and Mariano, A.N., 1996, Rare earth minerals in carbonatities: A discussion centred on the Kangankunde Carbonatite, Malawi, inJones, A.P., Wall, F., and Williams, C.T., eds, Rare earth minerals: Chemistry, origin and ore deposit: London, UK, Chapman & Hall, p. 193–225.
  • Wall, F., Niku-Paavola, V.N., Storey, C., Mueller, A., and Jeffries, T., 2008, Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: Unusually low LREE: HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon: The Canadian Mineralogist, v. 46, p. 861–877. doi:10.3749/canmin.46.4.861
  • Walter, A.V., Nahon, D., Flicoteaux, R., Girard, J.P., and Melfi, A., 1995, Behaviour of major and trace elements and fractionation of REE under tropical weathering of a typical apatite-rich carbonatite from Brazil: Earth and Planetary Science Letters, v. 136, p. 591–602. doi:10.1016/0012-821X(95)00195-I
  • Watson, E.B., and Green, T.H., 1981, Apatite/liquid partition coefficients for the rare-earth elements and strontium: Earth and Planetary Science Letters, v. 56, p. 405–421. doi:10.1016/0012-821X(81)90144-8
  • Williams-Jones, A.E., Samson, I.M., and Olivo, G.R., 2000, The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico: Economic Geology, v. 95, p. 327–342. doi:10.2113/gsecongeo.95.2.327
  • Wood, S.A., 1990, The aqueous geochemistry of the rare-earth elements and yttrium, 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of nature waters: Chemical Geology, v. 82, p. 159–186. doi:10.1016/0009-2541(90)90080-Q
  • Woolley, A.R., and Kempe, D.R.C., 1989, Carbonatites: Nomenclature, average chemical compositions, and element distribution, inBell, K., ed., Carbonatites: Genesis and evolution: London, Unwin Hyman, p. 1–14.
  • Wyllie, P.J., Jones, A.P., and Deng, J., 1996, Rare earth elements in carbonate-rich melts frommantel to crust, inJones, A.P., Wall, F., and Williams, C.T., eds., Rare earth minerals: Chemistry, origin and ore deposits. The mineralogical society series, Volume 7: London, Chapman and Hall, p. 77–103.
  • Xie, Y.L., Hou, Z.Q., Yin, S.P., Dominy, S.C., Xu, J.H., Tian, S.H., and Xu, W.Y., 2009, Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China: Ore Geology Reviews, v. 36, p. 90–105. doi:10.1016/j.oregeorev.2008.10.006
  • Xu, C., Kynicky, J., Chakhmouradian, A.R., Campbell, I.H., and Allen, C.M., 2010, Trace-element modeling of the magmatic evolution of rare-earth-rich carbonatite from the Miaoya deposit, Central China: Lithos, v. 118, p. 145–155. doi:10.1016/j.lithos.2010.04.003
  • Xu, C., Kynicky, J., Chakhmouradian, A.R., Li, X.H., and Song, W.L., 2015, A case example of the importance of multianalytical approach in deciphering carbonatite petrogenesis in South Qinling orogen: Miaoya rare-metal deposit: Central China: Lithos, v. 227, p. 107–121.
  • Xu, C., Rex, N.T., Li, W.B., Kynicky, J., Chakhmouradian, A.R., and Song, W.L., 2012, Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China: Journal of Asian Earth Sciences, v. 57, p. 76–89. doi:10.1016/j.jseaes.2012.06.007
  • Yanagisawa, K., Rendon-Angeles, J.C., Ishizawa, N., and Oishi, S., 1999, Topotaxial replacement of chlorapatite by hydroxylapatite during hydrothermalion exchange: American Mineralogist, v. 84, p. 1861–1869. doi:10.2138/am-1999-11-1213
  • Yang, K.F., Fan, H.R., Santosh, M., Hu, F.F., and Wang, K.Y., 2011, Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements: Ore Geology Reviews, v. 40, p. 122–131. doi:10.1016/j.oregeorev.2011.05.008
  • Zhai, M.G., and Santosh, M., 2011, The early Precambrian odyssey of North China Craton: A synoptic overview: Gondwana Reserch, v. 20, p. 6–25. doi:10.1016/j.gr.2011.02.005
  • Zhao, G.C., Cawood, P.A., Li, S.Z., Wilde, S.A., Sun, M., Zhang, J., He, Y.H., and Yin, C.Q., 2012, Amalgamation of the North China Craton: Key issues and discussion: Precambrian Research, v. 222-223, p. 55–76. doi:10.1016/j.precamres.2012.09.016
  • Zhao, G.C., Sun, M., Wilde, S.A., and Li, S.Z., 2005, Late Archean to Paleoproterozoic evolution of the North China Craton: Key issues revisited: Precambrian Research, v. 136, p. 177–202. doi:10.1016/j.precamres.2004.10.002
  • Zhao, G.C., Wilde, S.A., Cawood, P.A., and Sun, M., 2001, Archean blocks and their boundaries in the North China craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution: Precambrian Research, v. 107, p. 45–73. doi:10.1016/S0301-9268(00)00154-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.