401
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Paleoproterozoic khondalites in Brazil: a case study of metamorphism and anatexis in khondalites from Itapecerica supracrustal succession of the southern São Francisco Craton

ORCID Icon, , &
Pages 397-421 | Received 11 Apr 2019, Accepted 10 Jan 2020, Published online: 23 Jan 2020

References

  • Abu El-Enen, M.M., 2011, Geochemistry, provenance, and metamorphic evolution of Gabal Samra Neoproterozoic metapelites, Sinai, Egypt: Journal of African Earth Sciences, v. 59, p. 269–282. doi:10.1016/j.jafrearsci.2010.11.002.
  • Alkmim, F.F., and Marshak, S., 1998, Transamazonian orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero: Precambrian Research, v. 90, p. 29–58. doi:10.1016/S0301-9268(98)00032-1.
  • Ávila, C.A., Teixeira, W., Bongiolo, E.M., Dussin, I.A., and Vieira, T.A.T., 2014, Rhyacian evolution of subvolcanic and metasedimentary rocks of the southern segment of the Mineiro belt, São Francisco Craton, Brazil: Precambrian Research, v. 243, p. 221–251. doi:10.1016/j.precamres.2013.12.028.
  • Baltazar, O.F., and Zucchetti, M., 2007, Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: A review of the setting of gold deposits: Ore Geology Reviews, v. 32, p. 471–499. doi:10.1016/j.oregeorev.2005.03.021.
  • Barbosa, J.S.F. 2006, Field trip 1 the paleoproterozoic orogenic domain of Eastern Bahia. Day 6, from Jiquiriçá to Jequié, in Alkmim, F.F., and Noce, C.M., eds., The Paleoproterozoic record of the São Francisco Craton: IGCP 509 Field workshop, Bahia and Minas Gerais, Brazil, Field Guide & Abstracts, 114 p.
  • Barbosa, J.S.F., Nicollet, C., Leite, C., Kienast, J.R., Fuck, R.A., and Macedo, E.P., 2006, Hercynite–quartz-bearing granulites from Brejões Dome area, Jequié Block, Bahia, Brazil: Influence of charnockite intrusion on granulite facies metamorphism: Lithos, v. 92, p. 537–556. doi:10.1016/j.lithos.2006.03.064.
  • Barbosa, J.S.F., and Sabaté, P., 2004, Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: Geodynamic features: Precambrian Research, v. 133, p. 1–27. doi:10.1016/j.precamres.2004.03.001.
  • Barbosa, N.S., Teixeira, W., Ávila, C.A., Montecinos, P.M., and Bongiolo, E.M., 2015, 2.17–2.10 Ga plutonic episodes in the Mineiro belt, São Francisco Craton, Brazil: U-Pb ages, geochemical constraints and tectonics: Precambrian Research, v. 270, p. 204–225. doi:10.1016/j.precamres.2015.09.010.
  • Batchelor, R.A., and Bowden, P., 1985, Petrogenetic interpretation of granitoid rock series using multicationic parameters: Chemical Geology, v. 48, p. 43–55. doi:10.1016/0009-2541(85)90034-8.
  • Botelho, N.F., Fuck, R.A., Dantas, E.L., Laux, J.H., and Junges, S.L., 2006, The Paleoproterozoic peraluminous Aurumina granite suite, Goiás and Tocantins, Brazil: Geological, whole rock geochemistry and U-Pb and Sm-Nd isotopic constraints, in Alkmim, F.F., and Noce, C.M., eds., The Paleoproterozoic record of the São Francisco Craton: IGCP 509 Field workshop, Bahia and Minas Gerais, Brazil, Field Guide & Abstracts, 114 p.
  • Cai, J., Liu, F., Liu, P., Wang, F., Liu, C., and Shi, J., 2017, Anatectic record and P–T path evolution of metapelites from the Wulashan Complex, Khondalite Belt, North China Craton: Precambrian Research, v. 303, p. 10–29. doi:10.1016/j.precamres.2016.09.007.
  • Cai, J., Liu, F.L., Liu, P.H., Liu, C.H., Wang, F., and Shi, J.R., 2014, Metamorphic P-T path and tectonic implications of pelitic granulites from the Daqingshan complex of the Khondalite Belt, North China Craton: Precambrian Research, v. 241, p. 161–184. doi:10.1016/j.precamres.2013.11.012.
  • Campello, M.S., Vaz, B.B., Oliveira, M.A.S., and Ávila, M.A.C., 2015, Relatório e mapa geológicos 1:100.000 da Folha Formiga SF.23-V-B-III: Programa Mapeamento Geológico do Estado de Minas Gerais., Projeto Fortaleza de Minas Gerais., CODEMIG/UFMG., A.C. Pedrosa Soares (coord.). 62 p.
  • Campos, J.C.S., and Carneiro, M.A., 2008, Neoarchean and Paleoproterozoic granitoids marginal to the Jeceaba-Bom Sucesso lineament (SE border of the southern São Francisco craton): Genesis and tectonic evolution: Journal of South American Earth Sciences, v. 26, p. 463–484. doi:10.1016/j.jsames.2008.09.002.
  • Carneiro, M.A., and Barbosa, M.S.C., 2008, Implicações geológicas e tectônicas da interpretação magnetométrica da região de Oliveira, Minas Gerais: Revista Brasileira de Geofísica, v. 26, no. 1, p. 87–98. doi:10.1590/S0102-261X2008000100007.
  • Carneiro, M.A., Nalini Júnior, H.A., Endo, I., Suita, M.T.F., Castro, P.T.A., Barbosa, M.S.C., Campos, J.C.S., Goulart, L.E.A., Silva, E.F.S., Pereira, A.A., Tavares, T.D., Jiamelaro, F., Carneiro, J.M., Mariano, L.C., Miguel, F.P., Silva Junior, A.C., Barbosa, A.S., Prado, G.E.A., Santos, C., and Urbano, E.E.M.C., 2007, Folha Campo Belo- SF.23-V-B-VI, escala 1:100.000: Nota explicativa integrada com Oliveira: Minas Gerais, UFOP/CPRM, 114 p.
  • Carvalho, B.B., Janasi, V.A., and Sawyer, E.W., 2017, Evidence for Paleoproterozoic anatexis and crustal reworking of Archean crust in the São Francisco Craton, Brazil: A dating and isotopic study of the Kinawa migmatite: Precambrian Research, v. 291, p. 98–118. doi:10.1016/j.precamres.2017.01.019.
  • Cesare, B., Satish-Kumar, M., Cruciani, G., Pocker, S., and Nodari, L., 2008, Mineral chemistry of Ti-rich biotite from pegmatite and metapelitic granulites of the Kerala Khondalite Belt (southeast India): Petrology and further insight into titanium substitutions: American Mineralogist, v. 93, p. 327–338. doi:10.2138/am.2008.2579.
  • Chaves, A.O., 2013, Enxames de diques máficos de Minas Gerais – O estado da arte: Geonomos, v. 21, no. 1, p. 29–33.
  • Chaves, A.O., Campello, M.S., and Soares, A.C.P., 2015, Idade U-Th-PbT de monazitas do sillimanita-cordierita-granada-biotita gnaisse de Itapecerica (MG) e a atuação da orogenia Riaciano-Orosiriana no interior do Cráton São Francisco Meridional: Geociências, v. 34, no. 3, p. 324–334.
  • Chaves, A.O., Oliveira, E.K., and Garcia, L.R.A., 2013, Desenvolvimento do método de datação química U-Th-Pb de monazita por microssonda eletrônica na UFMG: Geonomos, v. 21, no. 2, p. 13–18.
  • Chaves, A.O., and Rezende, C.R., 2019, Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): A Statherian supercontinent-superplume coupling?: Episodes, v. 24, no. 1, p. 55–67. doi:10.18814/epiiugs/2019/019006.
  • Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales: Chemical Geology, v. 104, p. 1–37. doi:10.1016/0009-2541(93)90140-E.
  • CPRM, Serviço Geológico do Brasil and CODEMIG, Companhia de Desenvolvimento Econômico de Minas Gerais, 2014, Mapa Geológico do Estado de Minas Gerais, Escala 1:1.000.000: DVD-Rom.
  • Cuadros, F.A., Botelho, N.F., Fuck, R.A., and Dantas, E.L., 2017, The peraluminous Aurumina granite suite in central Brazil: An example of mantle-continental crust interaction in a Paleoproterozoic cordilleran hinterland setting?: Precambrian Research, v. 299, p. 75–100. doi:10.1016/j.precamres.2017.07.029.
  • Dallmeyer, R.D., and Dodd, R.T., 1971, Distribution and significance of cordierite in paragneisses of the Hudson highlands, Southeastern New York: Contributions to Mineralogy and Petrology, v. 33, p. 289–308. doi:10.1007/BF00382570.
  • De Capitani, C., and Petrakakis, K., 2010, The computation of equilibrium assemblage diagrams with Theriak/Domino software: American Mineralogist, v. 95, p. 1006–1016. doi:10.2138/am.2010.3354.
  • Delgado, I.M., Neves, J.P., Filho, O.M., Bomfim, L.F.C., Oliveira, J.E., Gomes, P.J.P., Motta, A.C., and Filho, N.C.S., 1988, Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais Folhas SD.24-Y-D Itapetinga e SD.24-Z-C Canavieiras Escala 1:250.000 Volume I Texto e Mapas: Companhia de Pesquisa e Recursos Minerais CPRM, Superintendência regional de Salvador, 113 p.
  • DePaolo, D.J., 1988, Neodymium isotope geochemistry: An introduction: Berlin, Springer, 187 p.
  • Dorr, J.V.N., 1969, Physiographic, stratigraphic and structural development of Quadrilatero Ferrifero, Minas Gerais, Brazil: USGS/DNPM, Professional paper 641-A, 110 p.
  • Farina, F.A., Albert, C., and Lana, C., 2015, The Neoarchean transition between medium and high-K granitoids: Clues from the Southern São Francisco Craton (Brazil): Precambrian Research, v. 266, p. 375–394. doi:10.1016/j.precamres.2015.05.038.
  • Fernandes, R.A., and Carneiro, M.A.O., 2000, Complexo Metamórfico Campo Belo (Craton São Francisco Meridional): Unidades litodêmicas e evolução tectônica: Revista Brasileira de Geociencias, v. 30, no. 4, p. 671–678. doi:10.25249/0375-7536.2000304671678.
  • Frost, B.R., Barnes, C.G., Collns, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A geochemical classification for granitic rocks: The Journal of Petrology, v. 42, p. 2033–2048. doi:10.1093/petrology/42.11.2033.
  • Fuck, R.A., Dantas, E.L., Pimentel, M.M., Botelho, N.F., Armstrong, R., Laux, J.H., Junges, S.L., Soares, J.E., and Praxedes, I.F., 2014, Paleoproterozoic crust-formation and reworking events in the Tocantins Province, central Brazil: A contribution for Atlantica supercontinent reconstruction: Precambrian Research, v. 244, p. 53–74. doi:10.1016/j.precamres.2013.12.003.
  • Fuck, R.A., Dantas, E.L., Pimentel, M.M., Botelho, N.F., Laux, J.H., and Junges, S.L., 2006, Paleoproterozoic crust forming events in the basement of the Brasília Belt, SE Tocantins- NE Goiás, Central Brazil: Constraints From U-Pb and Sm-Nd isotopic data, in Alkmim, F.F., and Noce, C.M., eds., The Paleoproterozoic record of the São Francisco Craton: IGCP 509 Field workshop, Bahia and Minas Gerais, Brazil, Field Guide & Abstracts. 114 p.
  • Garcia, D., Coelho, J., and Perrin, M., 1991, Fractionation between TiO2 and Zr as a measure of sorting within shale and sandstone series (northern Portugal): European Journal of Mineralogy, v. 3, p. 401–414. doi:10.1127/ejm/3/2/0401.
  • Gazis, C.A., Blum, J.D., Chamberlain, C.P., and Poage, M., 1998, Isotope systematics of granites and gneisses of the Nanga Parbat Massif, Pakistan Himalaya: American Journal of Science, v. 298, p. 673–698. doi:10.2475/ajs.298.8.673.
  • Gioia, S.M.C.L., and Pimentel, M.M., 2000, The Sm–Nd isotopic method in the geochronology laboratory of the University of Brasília: Anais da Academia Brasileira de Ciências, v. 72, p. 219–245. doi:10.1590/S0001-37652000000200009.
  • Harley, S.L., and Carrington, D.P., 2001, The distribution of H2O between cordierite and granitic melt: H2O incorporation in cordierite and its application to high-grade metamorphism and crustal anatexis: The Journal of Petroleum, v. 42, p. 1595–1620. doi:10.1093/petrology/42.9.1595.
  • Heilbron, M., Duarte, B.P., de Morisson Valeriano, C., Simonetti, A., Machado, N., and Nogueira, J.R., 2010, Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology: Implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent: Precambrian Research, v. 178, p. 136–148. doi:10.1016/j.precamres.2010.02.002.
  • Herron, M.M., 1988, Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Petrology, v. 58, p. 820–829.
  • Holland, T., and Powell, R., 2003, Activity-composition relations for phases in petrological calculations; an asymmetric multicomponent formulation: Contributions to Mineralogy and Petrology, v. 145, p. 492–501. doi:10.1007/s00410-003-0464-z.
  • Holland, T.J.B., and Powell, R., 2011, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids: Journal of Metamorphic Geology, v. 29, p. 333–383.
  • Huang, W.L., and Wyllie, P.J., 1973, Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments: Contributions to Mineralogy and Petrology, v. 42, p. 1–14. doi:10.1007/BF00521643.
  • Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology: Chemical Geology, v. 211, p. 47–69. doi:10.1016/j.chemgeo.2004.06.017.
  • Jiao, S.J., Guo, J.H., Harley, S.L., and Windley, B.F., 2013, New constraints from garnetite on the P-T path of the Khondalite Belt: Implications for the tectonic evolution of the North China Craton: The Journal of Petroleum, v. 54, p. 1725–1758. doi:10.1093/petrology/egt029.
  • Kosin, M., Guimarães, J.T., and Abram, M.B. ( Orgs.), 1999, Folha Aracaju-SW, folha SC.24-Y. Salvador, CPRM: Programa de Levantamentos Geológicos Básicos do Brasil – PLGB.
  • Kosin, M., Melo, R.C., Souza, J.D., Oliveira, E.P., Carvalho, M.J., and Leite, C.M.M., 2003, Geologia do segmento norte do Orógeno Itabuna-Salvador-Curaçá e guia de excursão: Revista Brasileira de Geociências, v. 33, p. 15–26. doi:10.25249/0375-7536.200333S11526.
  • Kriegsman, L.M., 2001, Partial melting, partial melt extraction and partial back reaction in anatectic migmatites: Lithos, v. 56, p. 75–96. doi:10.1016/S0024-4937(00)00060-8.
  • Lambert, I.B., and Wyllie, P.J., 1972, Melting of gabbro (quartz eclogite) with excess water to 35 kilobars, with geological applications: Journal of Geology, v. 80, p. 693–708. doi:10.1086/627795.
  • Lana, C., Farina, F., Gerde, A., Alkmim, A., Gonçalves, G.O., and Jardim, A.C., 2017, Characterization of zircon reference materials via high precision U–Pb LA-MC-ICP-MS: Journal of Analytical Atomic Spectrometry, v. 32, p. 2011–2023. doi:10.1039/C7JA00167C.
  • Litwinsky, N., 1985, Evolução Tectono-Termal da Região Nordeste de Minas Gerais e Sul da Bahia [Ph.D. thesis]: Instituto de Geociências, Universidade de São Paulo, 207 p.
  • Ludwig, K.R., 2003, Isoplot/Ex 3.00: A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center, Special Publication, no.4, 70 p.
  • Machado Filho, L., Ribeiro, M.W., Gonzalez, S.R., Schenini, C.A., Santos Neto, A.S., Barros Palmeira, R.C., Pires, J.L., Teixeira, W., and Castro, H.E.F. 1983.Folhas SF 23/24, Rio de Janeiro/ Vitória, Geologia, Projeto Radambrasil, v. 32, p. 36–45.
  • Machado, N., Schrank, A., Noce, C.M., and Gauthier, G., 1996, Ages of detrital zircon from Archean-Paleproterozoic sequences: Implications for greenstone belt setting and evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil: Evidence from zircon ages by laser ablation ICP-MS: Earth Planetary Science Letters, v. 141, p. 259–276. doi:10.1016/0012-821X(96)00054-4.
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discriminations of granitoids: Geological Socitey of America Bulletin, v. 101, p. 635–643. doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
  • McLennan, S.M., Hemming, S.R., Taylor, S.R., and Eriksson, K.A., 1995, Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America: Geochimica et cosmochimica acta, v. 59, p. 1153–1177. doi:10.1016/0016-7037(95)00032-U.
  • McLennan, S.M., and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: Tectonic setting and secular trends: Journal of Geology, v. 99, p. 1–21. doi:10.1086/629470.
  • Middlemost, E.A.K., 1994, Naming materials in magma/igneous rock system: Earth-Science Reviews, v. 37, p. 215–224. doi:10.1016/0012-8252(94)90029-9.
  • Miranda, D.A., Chaves, A.O., Campello, M.S., and Ramos, S.L.L.M., 2019, Origin and thermometry of graphites from Itapecerica supracrustal succession of the southern Sao Francisco Craton by C isotopes, X-ray diffraction and Raman spectroscopy: International Geology Review, doi:10.1080/00206814.2018.1564073.
  • Moreira, H., Lana, C., and Nalini, H.A., 2016, The detrital zircon record of an Archaean convergent basin in the Southern São Francisco Craton, Brazil: Precambrian Research, v. 26, p. 84–99. doi:10.1016/j.precamres.2015.12.015.
  • Nance, W.B., and Taylor, S.R., 1976, Rare-earth element patterns and crustal evolution, Australian post-archean sedimentary-rocks: Geochimica et cosmochimica acta, v. 40, p. 1539–1551. doi:10.1016/0016-7037(76)90093-4.
  • Neri, M.E.N.V., Rosière, C.A., and Lana, C.C., 2013, Supergrupo Minas na Serra de Bom Sucesso, extremo sudoeste do Quadrilátero Ferrífero – MG: Petrografia, geoquímica e isótopos de U-Pb: Revista Geologia USP Série Científica, v. 13, no. 2, p. 117–202.
  • Nesbitt, H.W., and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, p. 715–717. doi:10.1038/299715a0.
  • Nesbitt, H.W., and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kynetic considerations: Geochimica et Cosmochimica Acta, v. 48, p. 1523–1534. doi:10.1016/0016-7037(84)90408-3.
  • Noce, C.M., Machado, N., and Teixeira, W., 1998, U-Pb Geochronology of gneisses and granitoids in the Quadrilatero Ferrıfero (Southern São Francisco Craton): Age constraints for Archean and Paleoproterozoic magmatism and metamorphism: Revista Brasileira de Geociencias, v. 28, p. 95–102. doi:10.25249/0375-7536.199895102.
  • Noce, C.M., Pedrosa-Soares, A.C., Silva, L.C., Armstrong, R., and Piuzana, D., 2007, Evolution of polycyclic basement in the Araçuaí Orogen based on U-Pb SHRIMP data: Implications for the Brazil-Africa links in the Paleoproterozoic time: Precambrian Research, v. 159, p. 60–78. doi:10.1016/j.precamres.2007.06.001.
  • Oliveira, A.H., 2004, Evolução tectônica de um fragmento do Cráton São Francisco Meridional com base em aspectos estruturais, geoquímicos (rocha total) e geocronológicos (Rb-Sr, Sm-Nd, Ar-Ar, U-Pb): Tese de Doutoramento, Universidade Federal de Ouro Preto, Brazil, 92 p.
  • Patiño Douce, A.E., and Johnston, A.D., 1991, Phase equilibria and melt productivity in the pelitic system: Implications for the origin of peraluminous granitoids and aluminous granulites: Contributions to Mineralogy and Petrology, v. 107, p. 202–218. doi:10.1007/BF00310707.
  • Pearce, J.A., 1996, Sources and setting of granitic rocks: Episodes, v. 19, no. 4, p. 120–125. doi:10.18814/epiiugs/1996/v19i4/005.
  • Pereira, R.M., Neumann, R., Salomão, M., Guimarães, P.V., Ramos, G.V., Dutra, A.C., and Pedroso, E., 2016, Terrenos Khondalíticos: Prinicipais Domínios para Manganês, Grafita, Ouro e Zinco no Estado do Rio de Janeiro e Regiões Limítrofes: Geonomos, v. 24, no. 1, p. 45–51.
  • Pommier, A., Cocherie, A., and Legendre, O., 2004, EPMA Dating User’s manual: Age calculation from electron probe microanalyser measurements of U-Th-Pb. BRGM Documents, 9 p.
  • Powell, R., and Holland, T.J.B., 2008, On thermobarometry: Journal of Metamorphic Geology, v. 26, p. 155–179. doi:10.1111/jmg.2008.26.issue-2.
  • Queiroz, T.D.A., 2016, Mapeamento Geológico, Petrografia, Aspectos Litogeoquímicos e Geofísicos da Região de Maracás (Folha Sd.24-V-D-I) [Dissertation]: Bahia, Brasil, Instituto de Geociências, Universidade Federal da Bahia, 113 p.
  • Roser, B.P., and Korsch, R.J., 1986, Discrimination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio: Journal of Geology, v. 94, p. 635–650. doi:10.1086/629071.
  • Roser, B.P., and Korsch, R.J., 1988, Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data: Chemical Geology, v. 67, p. 119–139. doi:10.1016/0009-2541(88)90010-1.
  • Ruy, A.C., Silva, A.M., Toledo, C.L.B., and Souza Filho, C.R., 2006, Uso de dados aerogeofísicos de alta densidade para mapeamento geológico em terrenos altamente intemperizados: O estudo de caso da região de Cláudio, porção sul do Cráton São Francisco: Revista Brasileira de Geofísica, v. 24, no. 4, p. 535–546. doi:10.1590/S0102-261X2006000400007.
  • Santos, M.M., Lana, C., Scholz, R., Buick, I., Schmit, M.D., Kamo, S.L., Gerdes, A., Corfu, F., Tapster, S., Lancaster, P., Storey, C.D., Basei, M.A.S., Tohver, E., Alkmim, A., Nalini, H., Krambrock, K., Fantini, C., and Wiedenbeck, M., 2017, A new appraisal of Sri Lankan BB Zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing: Geostandards and Geoanalytical Research, v. 41, no. 3, p. 335–358. doi:10.1111/ggr.12167.
  • Santos, T.J.S.S., Neto, J.A.N., and Hackspacher, P.C., 2001, Petrografia e litogeoquímica das rochas do embasamento cristalino da região de Granja - CE: Revista de Geologia, v. 14, p. 33–48.
  • Sawyer, E.W., 2012, Melt segregation in the continental crust: Geology, v. 22, p. 1019–1022. doi:10.1130/0091-7613(1994)022<1019:MSITCC>2.3.CO;2.
  • Scherrer, N.C., Eng, M., Gnos, E., Jakob, V., and Liechti, A., 2000, Monazite analysis; from sample preparation to microprobe age dating and REE quantification: Schweizer Mineralogische und Petrographische Mitteilungen, v. 80, p. 93–105.
  • Silva, A.J.F., 2017, Processos de Migmatização no Complexo Granulítico de Granja [Ph.D Thesis]: Domínio Médio Coreaú, Ceará, Brasil, Universidade de Aveiro, 402 p.
  • Silva, A.J.F., Azevedo, M.R., Valle Aguado, B., Nogueira Neto, J.A., Santos, T.J.S., and Silva, F.D.O., 2014, Petrographical and geochemical signatures of the Granja paragneisses (Médio Coreaú Domain, NW Ceará, Brasil): Estudios Geológicos, v. 70, no. 2, p. 1–14. doi:10.3989/egeol.14702.
  • Slama, J., Kosler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plesovice zircon - A newnatural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1–35. doi:10.1016/j.chemgeo.2007.11.005.
  • Streckeisen, A.L., 1974, Classification and Nomenclature of Plutonic Rocks: Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau. Internationale Zeitschrift für Geologie. Stuttgart, v. 63, p. 773–786.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts, implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in the ocean basins, Volume 42: London, Geological Society of London, p. 313–345
  • Teixeira, W., Ávila, C.A., Dussin, I.A., Neto, A.C., Bongiolo, E.M., Santos, J.O., and Barbosa, N.S., 2015, A juvenile accretion episode (2.35–2.32 Ga) in the Mineiro belt and its role to the Minas accretionary orogeny: Zircon U-Pb-Hf and Geochemical Evidences Precambrian Research, v. 256, p. 148–169.
  • Teixeira, W., Carneiro, M.A., Noce, C.M., Machado, N., Sato, K., and Taylor, P.N., 1996, Pb, Sr and Nd isotope constraints on the Archean evolution of the gneissic-granitoid in the southern São Francisco Craton, Brazil: Precambrian Research, v. 78, p. 151–164. doi:10.1016/0301-9268(95)00075-5.
  • Teixeira, W., Oliveira, E.P., Peng, P., Dantas, E.L., and Hollanda, M.H.B.M., 2017a, U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences: Precambrian Research, v. 293, p. 91–111. doi:10.1016/j.precamres.2017.02.021.
  • Teixeira, W., Oliveira, E.P., and Marques, L.S., 2017b, Nature and evolution of the Archean Crust of the São Francisco Craton, in Heilbron, M., Alkmim, F., and Cordani, U.G., eds., São Francisco Craton, Eastern Brasil: Tectonic genealogy of a miniature continent: Regional Geology Review Series. Springer-Verlag, p. 29–56.
  • Vielzeuf, D., and Montel, J.M., 1994, Partialmelting ofmetagreywackes part I: Fluid-absent Experiments and Phase Relationships Contributions to Mineralogy and Petrology, v. 117, p. 375–393. doi:10.1007/BF00307272.
  • Walker, T.L., 1902, The geology of Kalahandi state, central provinces: Memoirs of the Geological Survey of India, v. 33, no. 3, p. 22 p.
  • Wan, Y.S., Song, B., Liu, D.Y., Wilde, S.A., Wu, J.S., Shi, Y.R., Yin, X.Y., and Zhou, H.Y., 2006, SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event: Precambrian Research, v. 149, p. 249–271. doi:10.1016/j.precamres.2006.06.006.
  • Werner, C.D., 1987, Saxonian granulites: A contribution to the geochemical diagnosis of original rocks in high-metamorphic complexes: Gerlands Beitraege zur Geophysik, v. 96, p. 271–290.
  • White, R., Powell, R., and Clarke, G.L., 2002, The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: Constraints from mineral equilibrium calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3: Journal of Metamorphic Geology, v. 20, p. 41–55. doi:10.1046/j.0263-4929.2001.00349.x.
  • White, R.W., Powell, R., and Holland, T.J.B., 2001, Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH): Journal of Metamorphic Geology, v. 19, p. 139p. doi:10.1046/j.0263-4929.2000.00303.x.
  • White, R.W., Powell, R., Holland, T.J.B., Johnson, T.E., and Green, E.C.R., 2014b, New mineral activity-composition relations for thermodynamic calculations in metapelitic systems: Journal of Metamorphic Geology, v. 32, p. 261–286. doi:10.1111/jmg.2014.32.issue-3.
  • White, R.W., Powell, R., Holland, T.J.B., and Worley, B.A., 2000, The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3: Journal of Metamorphic Geology, v. 18, p. 497–511. doi:10.1046/j.1525-1314.2000.00269.x.
  • White, R.W., Powell, R., and Johnson, T.E., 2014a, The effect of Mn on mineral stability in metapelites revisited: New a-x relations for manganese-bearing minerals: Journal of Metamorphic Geology, v. 32, p. 809–828. doi:10.1111/jmg.12095.
  • Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, no. 1, p. 185–187. doi:10.2138/am.2010.3371.
  • Williams, M.L., Jercinovic, M.J., and Hetherington, C.J., 2007, Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology: The Annual Review of Earth and Planetary Sciences, v. 35, p. 137–175. doi:10.1146/annurev.earth.35.031306.140228.
  • Winter, J.D., 2001, An introduction to igneous and metamorphic petrology: New Jersey, Prentice Hall, 695 p.
  • Zacchi, E.N.P., Silva, A.M., Toledo, C.L.B., and Souza Filho, C.R., 2007, As três anomalias elípticas da porção sul do Cráton São Francisco: Novos alvos para a mineralização de grafita? Revista Brasileira de Geofísica, v. 25, no. 4, p. 421–431.
  • Zhou, J., and Li, X., 2006, GeoPlot: An excel VBA program for geochemical data plotting: Computers e Geosciences, v. 32, p. 554–560. doi:10.1016/j.cageo.2005.07.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.