526
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Late Neoproterozoic mafic sills in the Suizhou area of the South Qinling block: constraints for the tectonic evolution of the northern margin of the Yangtze craton

, , &
Pages 834-850 | Received 22 Jul 2019, Accepted 16 Feb 2020, Published online: 24 Feb 2020

References

  • Cai, Z.Y., Xiong, X.L., Luo, H., and Wu, D.K., 2007, Forming age of the volcanic rocks of the Yaolinghe Group from Wudang Block, southern Qinling Mountain: Constraint from grain-zircon U-Pb dating: Acta Geologica Sinica, v. 81, p. 620–625.
  • Cann, J.R., 1970, Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks: Earth and Planetary Science Letters, v. 10, p. 7–11. doi:10.1016/0012-821X(70)90058-0
  • Cawood, P.A., Zhao, G.C., Yao, J.L., Wang, W., Xu, Y.J., and Wang, Y.J., 2018, Reconstructing South China in Phanerozoic and Precambrian supercontinents: Earth Science Reviews, v. 186, p. 173–194. doi:10.1016/j.earscirev.2017.06.001
  • Cox, K.G., and Bell, J.D., 1972, A crystal fractionation model for the basaltic rocks of the New Georgia Group, British Solomon Islands: Contributions to Mineralogy and Petrology, v. 37, p. 1–13. doi:10.1007/BF00377302
  • Cox, K.G., Bell, J.D., and Pankhurst, R.J., 1979, The interpretation of igneous rocks: Australia, Allen and Unwin, p. 12–41.
  • Dalziel, I.W.D., 1991, Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: Evidence and implications for an Eocambrian supercontinent: Geology, v. 19, p. 598–601. doi:10.1130/0091-7613(1991)019<0598:PMOLAE>2.3.CO;2
  • Dalziel, I.W.D., 1997, Neoproterozoic-Paleozoic geography and tectonics: Review, hypothesis, environmental speculation: Geological Society of America Bulletin, v. 109, p. 16–42. doi:10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2
  • Deng, H., Peng, S., Polat, A., Kusky, T., Jiang, X., Han, Q., Wang, L., Huang, Y., Wang, J., and Zeng, W., 2017, Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for evolving tectonic settings: Precambrian Research, v. 289, p. 75–94. doi:10.1016/j.precamres.2016.12.003
  • Deng, Q., Wang, J., Wang, Z.J., Wang, X.C., Qiu, Y.S., Yang, Q.X., Du, Q.D., Cui, X.Z., and Zhou, X.L., 2013, Continental flood basalts of the Huashan Group, northern margin of the Yangtze block-implications for the breakup of Rodinia: International Geology Review, v. 55, p. 1865–1884. doi:10.1080/00206814.2013.799257
  • Evans, D.A.D., 2013, Reconstructing pre-Pangean supercontinents: Geological Society of America Bulletin, v. 125, p. 1735–1751. doi:10.1130/B30950.1
  • Ewart, A., Milner, S.C., Armstrong, R.A., and Dungan, A.R., 1998, Etendeka Volcanism of the Goboboseb mountains and Messum igneous complex, Namibia. Part I: Geochemical evidence of Early Cretaceous Tristan Plume melts and the role of crustal contamination in the Paraná–Etendeka CFB: Journal of Petrology, v. 39, p. 227–253. doi:10.1093/petroj/39.2.227
  • Frey, F.A., Green, D.H., and Roy, S.D., 1978, Integrated models of Basalt Petrogenesis: A study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing geochemical and experimental petrological data: Journal of Petrology, v. 19, p. 463–513. doi:10.1093/petrology/19.3.463
  • Gaucher, C., Sial, A.N., Halverson, G.P., and Frimmel, H.E., 2009, The Neoproterozoic and Cambrian: A time of Upheavals, extremes and innovations, in Gaucher, C., Sial, A.N., Halverson, G.P., and Frimmel, H.E., eds., Neoproterozoic-Cambrian Tectonics, global change and evolution: A Focus on Southwestern Gondwana, developments in Precambrian geology: Amsterdam, Elsevier, p. 3–11.
  • Hastie, A.R., Kerr, A.C., Pearce, J.A., and Mitchell, S.F., 2007, Classification of altered Volcanic Island Arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram: Journal of Petrology, v. 48, p. 2341–2357. doi:10.1093/petrology/egm062
  • Hawkesworth, C.J., and van Calsteren, P., 1984, Radiogenic isotopes-some geological applications, in Henderson, P., ed., Rare earth element geochemistry: Amsterdam, Elsevier, p. 375–421.
  • Hoffman, P.F., 1991, Did the breakout of laurentia turn gondwanaland inside-out?: Science, v. 252, p. 1409–1412. doi:10.1126/science.252.5011.1409
  • Hong, J.A., Ma, B., and Huang, Q., 2009, The Dafushan mafic-ultramafic complex and genesis of the related rutile ore deposit at Zaoyang, Hubei: Chinese Journal of Geology, v. 44, p. 231–244 (in Chinese with English abstract).
  • Hou, G.T., Santosh, M., Qian, X.L., Lister, G.S., and Li, J.H., 2008, Configuration of the Late Paleoproterozoic supercontinent Columbia: Insights from radiating mafic dyke swarms: Gondwana Research, v. 14, p. 395–409. doi:10.1016/j.gr.2008.01.010
  • Hsü, K.J., Li, J., Chen, H., Wang, Q., Sun, S., and Şengör, A.M.C., 1990, Tectonics of South China: Key to understanding West Pacific geology: Tectonophysics, v. 183, p. 9–39. doi:10.1016/0040-1951(90)90186-C
  • Hu, J., Zhang, S.T., Zhang, G.Z., Tao, S.Y., and Zhang, Y., 2018, Geochemistry and tectonic setting of the Eshan granites in the Southwestern Margin of the Yangtze Plate, Yunnan: Journal of Earth Science, v. 29, p. 130–143. doi:10.1007/s12583-017-0747-3
  • Hubei, 1990, Regional geology of Hubei Province: Beijing, Geological Publishing House, 705 p. (in Chinese).
  • Irving, A.J., and Green, D.H., 1976, Geochemistry and petrogenesis of the newer basalts of Victoria and South Australia: Journal of the Geological Society of Australia, v. 23, p. 45–66. doi:10.1080/00167617608728920
  • Jiang, X.F., Peng, S.B., Kusky, T.M., Wang, L., and Deng, H., 2018, Petrogenesis and geotectonic significance of Early-Neoproterzoic Olivine-Gabbro within the Yangtze Craton: Constrains from the mineral composition, U-Pb age and Hf isotopes of Zircons: Journal of Earth Science, v. 29, p. 93–102. doi:10.1007/s12583-018-0821-5
  • Jiang, X.F., Peng, S.B., Polat, A., Kusky, T., Wang, L., Wu, T.Y., Lin, M.S., and Han, Q.S., 2016, Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze craton, China: Implications for geodynamic events: Precambrian Research, v. 279, p. 37–56. doi:10.1016/j.precamres.2016.04.004
  • Kelemen, P.B., Hanghøj, K., and Greene, A.R., 2003, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust: Treatise on Geochemistry, v. 138, p. 1–70.
  • Kirschvink, J.L., 1992, Late Proterozoic low-latitude global glaciation: The snowball earth, in Schopf, J.W., and Klein, C., eds., The Proterozoic biosphere: Cambridge, Cambridge University Press, p. 51–52.
  • Klemme, S., Günther, D., Hametner, K., Prowatke, S., and Zack, T., 2006, The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon: Chemical Geology, v. 234, p. 251–263. doi:10.1016/j.chemgeo.2006.05.005
  • Li, F.C., Hou, M.L., Luan, R.J., Lin, P.J., Li, Z.S., Zhao, L., Wang, J.L., and Xu, S., 2016, Optimization of analytical conditions for LA-ICP-MS and its application to zircon U-Pb dating: Rock and Mineral Analysis, v. 35, p. 17–23 (in Chinese with English abstract).
  • Li, Q.W., and Zhao, J.H., 2016, Petrogenesis of the Wudang mafic dikes: Implications of changing tectonic settings in South China during the Neoproterozoic: Precambrian Research, v. 272, p. 101–114. doi:10.1016/j.precamres.2015.10.019
  • Li, X.H., Li, Z.X., Ge, W., Zhou, H., Li, W., Liu, Y., and Wingate, M.T.D., 2003, Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?: Precambrian Research, v. 122, p. 45–83. doi:10.1016/S0301-9268(02)00207-3
  • Li, X.H., Li, Z.X., Sinclair, J.A., Li, W.X., and Carter, G., 2006, Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze Block, South China: Precambrian Research, v. 151, p. 14–30. doi:10.1016/j.precamres.2006.07.009
  • Li, X.W., and Wang, G.H., 2000, Stratigraphic sequence of Wudang rock group in southern Suizhou, Hubei: Hubei Geology and Mineral Resources, v. 14, p. 3–19 (in Chinese with English abstract).
  • Li, Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., Waele, B.D., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., and Jacobs, J., 2008, Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, v. 160, p. 179–210. doi:10.1016/j.precamres.2007.04.021
  • Li, Z.X., Li, X.H., Kinny, P.D., and Wang, J., 1999, The breakup of Rodinia: Did it start with a mantle plume beneath South China?: Earth and Planetary Science Letters, v. 173, p. 171–181. doi:10.1016/S0012-821X(99)00240-X
  • Li, Z.X., Zhang, L., and McPowell, C.A., 1995, South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia: Geology, v. 23, p. 407–410. doi:10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
  • Lightfoot, P.C., Hawkesworth, C.J., Hergt, J., Naldrett, A.J., Gorbachev, N.S., Fedorenko, V.A., and Doherty, W., 1993, Remobilisation of the continental lithosphere by a mantle plume: Major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia: Contributions to Mineralogy and Petrology, v. 114, p. 171–188. doi:10.1007/BF00307754
  • Ling, W.L., Gao, S., Zhang, B.R., Li, H.M., Liu, Y., and Cheng, J.P., 2003, Neoproterozoic tectonic evolution of the northwestern Yangtze croaton, South China: Implications for amalgamation and break-up the Rodinia Supercontinent: Precambrian Research, v. 122, p. 111–140. doi:10.1016/S0301-9268(02)00222-X
  • Ling, W.L., Ren, B.F., Duan, R.C., Liu, X.M., Mao, X.W., Peng, L.H., Liu, Z.X., Cheng, J.P., and Yang, H.M., 2008, Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication: Chinese Science Bulletin, v. 53, p. 2192–2199.
  • Liu, C., Runyon, S.E., Knoll, A.H., and Hazen, R.M., 2019, The same and not the same: Ore geology, mineralogy and geochemistry of Rodinia assembly versus other supercontinents: Earth-Science Reviews, v. 196, p. 102860. doi:10.1016/j.earscirev.2019.05.004
  • Liu, H., Zhao, J.H., Cawood, P.A., and Wang, W., 2018, South China in Rodinia: Constrains from the Neoproterozoic Suixian volcano-sedimentary group of the South Qinling Belt: Precambrian Research, v. 314, p. 170–193. doi:10.1016/j.precamres.2018.05.018
  • Liu, Y.S., Gao, S., Hu, Z.C., Gao, C.G., Zong, K.Q., and Wang, D.B., 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in Zircons from Mantle Xenoliths: Journal of Petrology, v. 51, p. 537–571. doi:10.1093/petrology/egp082
  • Loucks, R.R., 1990, Discrimination of ophiolitic from nonophiolitic ultramafic-mafic allochthons in orogenic belts by the Al/Ti ratio in clinopyroxene: Geology, v. 18, p. 346–349. doi:10.1130/0091-7613(1990)018<0346:DOOFNU>2.3.CO;2
  • Lu, S.N., Li, H.K., Zhang, C.L., and Niu, G.H., 2008, Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments: Precambrian Research, v. 160, p. 94–107. doi:10.1016/j.precamres.2007.04.025
  • Ludwig, K.R., 2003, ISOPLOT 3.0: A geochronological toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California): Berkeley, BGC Special Publication 1a, 55 p.
  • Lyu, P.L., Li, W.X., Wang, X.C., Pang, C.J., Cheng, J.X., and Li, X.H., 2017, Initial breakup of supercontinent Rodinia as recorded by ca 860–840 Ma bimodal volcanism along the southeastern margin of the Yangtze Block, South China: Precambrian Research, v. 296, p. 148–167. doi:10.1016/j.precamres.2017.04.039
  • McDonough, W.F., and Sun, S.S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253. doi:10.1016/0009-2541(94)00140-4
  • Mcmenamin, M.A.S., and McMenamin, D.L.S., 1990, The emergence of animals. The Cambrian breakthrough: New York, Columbia University Press, p. 217.
  • Meng, Q.R., and Zhang, G.W., 2000, Geologic framework and tectonic evolution of the Qinling orogen, central China: Tectonophysics, v. 323, p. 183–196. doi:10.1016/S0040-1951(00)00106-2
  • Merdith, A.S., Collins, A.S., Williams, S.E., Pisarevsky, S.A., Foden, J.D., Archibald, D.B., Blades, M.L., Alessio, B.L., Armistead, S., Plavsa, D., Clark, C., and Müller, R.D., 2017, A full-plate global reconstruction of the Neoproterozoic: Gondwana Research, v. 50, p. 84–134. doi:10.1016/j.gr.2017.04.001
  • Miyashiro, A., 1974, Volcanic rock series in island arcs and active continental margins: American Journal of Sciences, v. 274, p. 321–355.
  • Moores, E.M., 1991, Southwest U.S.-East Antarctic (SWEAT) connection: A hypothesis: Geology, v. 19, p. 425–428. doi:10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2
  • Niu, Y.L., 2004, Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges: Journal of Petrology, v. 45, p. 2423–2458. doi:10.1093/petrology/egh068
  • Peng, S.B., Kusky, T.M., Jiang, X.F., Wang, L., Wang, J.P., and Deng, H., 2012, Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China’s amalgamation history with the Rodinian supercontinent: Gondwana Research, v. 21, p. 577–594. doi:10.1016/j.gr.2011.07.010
  • Qin, Z.W., Ma, C.Q., Fu, J.M., Lu, Y.Y., Shi, H.F., and Xiong, F.H., 2018, The origin of mafic enclaves in Xiangjia granitic pluton of East Kunlun Orogenic Belt: Evidence from petrography and geochemistry: Earth Science-Journal of China University of Geosciences, v. 43, p. 2420–2437 (in Chinese with English abstract).
  • Qiu, X.F., Ling, W.L., Liu, X.M., Kusky, T., Berkana, W., Zhang, Y.H., Gao, Y.J., Lu, S.S., Kuang, H., and Liu, C.X., 2011, Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton: Precambrian Research, v. 191, p. 101–119. doi:10.1016/j.precamres.2011.09.011
  • Qiu, X.F., Yang, H.M., Zhang, L.G., Zhao, X.M., Duan, G.L., Lu, S.S., Tan, J.J., and Shi, N., 2015, Geochronology of Serpentinized Harzburgite in Miaowan Ophiolite, Yangtze block and its tectonic implications: Earth Science-Journal of China University of Geosciences, v. 40, p. 1121–1128 (in Chinese with English abstract).
  • Qiu, X.F., Yang, H.M., Zhao, X.M., Lu, S.S., Wu, N.W., Zhang, L.G., and Zhang, C.H., 2016, Early Triassic Gneissoid granites in the Gaozhou Area (Yunkai Massif), South China: Implications for the Amalgamation of the Indochina and South China blocks: Journal of Geology, v. 124, p. 395–409. doi:10.1086/685765
  • Raczek, I., Jochum, K.P., and Hofmann, A.W., 2003, Neodymium and Strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses: Geostandards and Geoanalytical Research, v. 27, p. 173–179. doi:10.1111/ggr.2003.27.issue-2
  • Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust, in Rudnick, R.L., ed., The crust. Treatise on geochemistry: Amsterdam, Elsevier, p. 1–64.
  • Stern, R.J., 2008, Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history: Gondwana Research, v. 14, p. 33–50. doi:10.1016/j.gr.2007.08.006
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in the Ocean Basins: Geological Society London Special Publications, p. 313–345.
  • Wang, M.X., Wang, C.Y., and Wei, B., 2018, Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of the ~635 Ma mafic intrusions in the northern margin of the Yangtze Block: A link of metasomatized subcontinental lithospheric mantle and Ni-Cu-(PGE) sulfide mineralization: Precambrian Research, v. 309, p. 325–342. doi:10.1016/j.precamres.2017.06.027
  • Wang, M.X., Wang, C.Y., and Zhao, J.H., 2013, Zircon U/Pb dating and Hf-O isotopes of the Zhouan ultramafic intrusion in the northern margin of the Yangtze Block, SW China: Constraints on the nature of mantle source and timing of the supercontinent Rodinia breakup: Chinese Science Bulletin, v. 58, p. 777–787. doi:10.1007/s11434-012-5435-1
  • Wen, B., Evans, D.A.D., and Li, Y.X., 2017, Neoproterozoic paleogeography of the Tarim Block: An extended or alternative “missing-link” model for Rodinia?: Earth and Planetary Science Letters, v. 458, p. 92–106. doi:10.1016/j.epsl.2016.10.030
  • Wen, B., Evans, D.A.D., Wang, C., Li, Y.X., and Jing, X.Q., 2018, A positive test for the Greater Tarim Block at the heart of Rodinia: Mega-dextral suturing of supercontinent assembly: Geology, v. 46, p. 687–690. doi:10.1130/G40254.1
  • Weyer, S., Münker, C., and Mezger, K., 2003, Nb/Ta, Zr/Hf and REE in the depleted mantle: Implications for the differentiation history of the crust-mantle system: Earth and Planetary Science Letters, v. 205, p. 309–324. doi:10.1016/S0012-821X(02)01059-2
  • Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J., and Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses: Geostandards and Geoanalytical Research, v. 19, p. 1–23. doi:10.1111/ggr.1995.19.issue-1
  • Wilson, M., 1989, Igneous petrogenesis: London, Springer, 466 p.
  • Wu, H., Zhang, Y.H., Ling, W.L., Bai, X., Ma, Q., Berkana, W., Cheng, J.P., and Peng, L.H., 2016, Recognition of mantle input and its tectonic implication for the nature of ~815 Ma magmatism in the Yangtze continental interior, South China: Precambrian Research, v. 279, p. 17–36. doi:10.1016/j.precamres.2016.04.005
  • Wu, Y.B., and Zheng, Y.F., 2004, Genesis of zircon and its constraints on interpretation of U-Pb age: Chinese Science Bulletin, v. 49, p. 1554–1569. doi:10.1007/BF03184122
  • Wu, Y.B., and Zheng, Y.F., 2013, Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt in central China: Gondwana Research, v. 23, p. 1402–1428. doi:10.1016/j.gr.2012.09.007
  • Xu, B., Jian, P., Zheng, H.F., Zou, H.B., Zhang, L.F., and Liu, D.Y., 2005, U-Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations: Precambrian Research, v. 136, p. 107–123. doi:10.1016/j.precamres.2004.09.007
  • Xu, Y., Yang, K.G., Polat, A., and Yang, Z.N., 2016, The ~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block, China: A record of oceanic subduction in the early Neoproterozoic: Precambrian Research, v. 275, p. 310–331. doi:10.1016/j.precamres.2016.01.021
  • Xu, Z.Q., He, B.Z., Zhang, C.L., Zhang, J.X., Wang, Z.M., and Cai, Z.H., 2013, Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples: Precambrian Research, v. 235, p. 150–162. doi:10.1016/j.precamres.2013.06.001
  • Xue, H.M., Ma, F., and Song, Y.Q., 2011, Geochemistry and SHRIMP zircon U-Pb data of Neoproterozoic meta-magmatic rocks in the Suizhou-Zaoyang area, northern margin of the Yangtze craton, Central China: Acta Petrologica Sinica, v. 27, p. 1116–1130 (in Chinese with English abstract).
  • Yang, Y.N., Wang, X.C., Li, Q.L., and Li, X.H., 2016, Integrated in situ U–Pb age and Hf–O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ 18 O magmas in the South China Block: Precambrian Research, v. 273, p. 151–164. doi:10.1016/j.precamres.2015.12.008
  • Yang, Z.N., Yang, K.G., Xu, Y., Deng, X., Cheng, W.Q., and Long, Z.Y., 2015, Zircon U-Pb geochronology, Hf isotopic composition, and geological implications of the Neoproterozoic meta-sedimentary rocks in Suizhou-Zaoyang area, the nouthern Yangtze Block: Science China: Earth Sciences, v. 58, p. 1910–1923. doi:10.1007/s11430-015-5073-y
  • Yao, J.L., Cawood, P.A., Shu, L.S., and Zhao, G.C., 2019, Jiangnan Orogen, South China: A ~970–820 Ma Rodinia margin accretionary belt: Earth-Science Reviews, v. 196, p. 102872. doi:10.1016/j.earscirev.2019.05.016
  • Zhang, C.L., Li, Z.X., Li, X.H., and Ye, H.M., 2009, Neoproterozoic mafic dyke swarms at the northern margin of the Tarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications: Journal of Asian Earth Sciences, v. 35, p. 167–179. doi:10.1016/j.jseaes.2009.02.003
  • Zhang, S.B., Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Yuan, H.L., and Wu, F.Y., 2008, Neoproterozoic anatexis of Archean lithosphere: Geochemical evidence from felsic to mafic intrusions at Xiaofeng in the Yangtze Gorge, South China: Precambrian Research, v. 163, p. 210–238. doi:10.1016/j.precamres.2007.12.003
  • Zhang, W.F., Xu, D.L., Peng, L.H., Deng, X., Liu, H., Jin, X.B., and Tan, J., 2018, The discovery and geological significance of the Neoproterozoic A1-type granite in the Pailou area, Wudang Uplift: Earth Science-Journal of China University of Geosciences, v. 43, p. 2389–2403 (in Chinese with English abstract).
  • Zhao, G.C., and Cawood, P.A., 2012, Precambrian geology of China: Precambrian Research, v. 222–223, p. 13–54. doi:10.1016/j.precamres.2012.09.017
  • Zhao, J.H., and Asimow, P.D., 2018, Formation and evolution of a magmatic system in a rifting continental margin: Neoproterozoic arc- and MORB-like dike swarms in South China: Journal of Petrology, v. 59, p. 1811–1844. doi:10.1093/petrology/egy080
  • Zhao, J.H., Asimow, P.D., Zhou, M.F., Zhang, J., Yan, D.P., and Zheng, J.P., 2017, An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in South China: Precambrian Research, v. 296, p. 93–111. doi:10.1016/j.precamres.2017.04.017
  • Zhao, J.H., and Zhou, M.F., 2009, Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze block, South China: Lithos, v. 107, p. 152–168. doi:10.1016/j.lithos.2008.09.017
  • Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X., Li, Z., and Wu, F.Y., 2007, Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust: Lithos, v. 96, p. 127–150. doi:10.1016/j.lithos.2006.10.003
  • Zhou, M.F., Yan, D.P., Kennedy, A.K., Li, Y., and Ding, J., 2002, SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China: Earth and Planetary Science Letters, v. 196, p. 51–67. doi:10.1016/S0012-821X(01)00595-7
  • Zhu, J., Peng, S.G., Peng, L.H., Xu, K., Zhuang, C., Liu, J.M., and Wang, X.D., 2019a, Geochronology of bimodal volcanic rocks from Dingyuan Formation in Western Dabie Orogen, Central China: Implications for extension during breakup of Rodinia: Earth Science-Journal of China University of Geosciences, v. 44, p. 355–365 (in Chinese with English abstract).
  • Zhu, J., Wu, B., Wang, L.X., Peng, S.G., and Zhou, H.W., 2019b, Neoproterozoic bimodal volcanic rocks and granites in the western Dabie area, northern margin of Yangtze block, China: Implications for extension during break-up of Rodinia: International Geology Review, v. 61, p. 1370–1390. doi:10.1080/00206814.2018.1512058
  • Zhu, W.B., Zheng, B.H., Shu, L.S., Ma, D.S., Wan, J.L., Zheng, D.W., Zhang, Z.Y., and Zhu, X.Q., 2011, Geochemistry and SHRIMP U–Pb zircon geochronology of the Korla mafic dykes: Constrains on the Neoproterozoic continental breakup in the Tarim Block, northwest China: Journal of Asian Earth Sciences, v. 42, p. 791–804. doi:10.1016/j.jseaes.2010.11.018
  • Zhu, X.Y., Chen, F.K., Nie, H., Siebel, W., Yang, Y.Z., Xue, Y.Y., and Zhai, M.G., 2014, Neoproterozoic tectonic evolution of South Qinling, China: Evidence from zircon ages and geochemistry of the Yaolinghe volcanic rocks: Precambrian Research, v. 245, p. 115–130. doi:10.1016/j.precamres.2014.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.