280
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Mesozoic crustal thickness variations and related hydrothermal Cu mineralization in eastern Heilongjiang and Jilin Provinces, China

, ORCID Icon, , ORCID Icon &
Pages 1331-1341 | Received 14 Jan 2020, Accepted 02 May 2020, Published online: 04 Jun 2020

References

  • Baranov, A., and Morelli, A., 2014, The global Moho depth map for continental crust: Geophysical Research Abstracts, 16, https://meetingorganizer.copernicus.org/EGU2014/EGU2014-16384.pdf.
  • Chai, P., Sun, J.G., Xing, S.W., Men, L.J., and Han, J.L., 2015, Early Cretaceous arc magmatism and high-sulphidation epithermal porphyry Cu–Au mineralization in Yanbian area, Northeast China. The Duhuangling example: International Geology Review, v. 57, no. 9–10, p. 1267–1293. doi:10.1080/00206814.2014.960013.
  • Chapman, J.B., Ducea, M.N., Profeta, L., & DeCelles, P.G. (2015). Tracking changes in crustal thickness during orogenic evolution with Sr/Y; An example from the Western U.S. Cordillera. Geology 43, 919–923
  • Chen, Y.J., 2015, The study on mineralization processes and metallogenic model of Ermi Cu deposit in Tonghua, Jilin Province [Master thesis]: Changchun, Jilin University.
  • Chiaradia, M. (2014). Copper enrichment in arc magmas controlled by overriding plate thickness. Nature Geoscience 7, 43–46
  • Chin, E.J., Lee, C.T.A., and Barnes, J.D., 2014, Thickening, refertilization, and the deep lithosphere filter in continental arcs: Constraints from major and trace elements and oxygen isotopes: Earth and Planetary Science Letters, v. 397, p. 184–200. doi:10.1016/j.epsl.2014.04.022.
  • Clark, A.H., 1993, Are outsize porphyry copper deposits either anatomically or environmentally distinctive?: Society of Economic Geologists Special Publication, v. 2, p. 213–282.
  • Cooke, D.R., and Hollings, P., 2005, Giant Porphyry deposits: Characteristics, distribution, and tectonic controls: Economic Geology, v. 100, no. 5, p. 801–818. doi:10.2113/gsecongeo.100.5.801.
  • Defant, M.J., and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, no. 6294, p. 662–665. doi:10.1038/347662a0.
  • Dong, Y., Ge, W.C., Yang, H., Ji, Z., Wang, Z.H., Bi, J.H., and Zhu, Y., 2016, Petrogenesis of Early Cretaceous granodiorite-porphyry from Huanan area in eastern Heilongjiang and its geological implication (in Chinese with English abstract): Global Geology, v. 35, p. 617–640.
  • Gao, J., Klemd, R., Zhu, M., Wang, X., and Campos, E., 2018, Large-scale porphyry-type mineralization in the Central Asian metallogenic domain: A review: Journal of Asian Earth Sciences, v. 165, p. 7–36. doi:10.1016/j.jseaes.2017.10.002.
  • Gill, J.B., 1981, Orogenic andesites and plate tectonics[M], Springer-Verlag.
  • Guo, Y.P., Zeng, Q.D., Yang, J.H., Guo, F., Guo, W.K., and Liu, J.M., 2018, Zircon U–Pb geochronology and geochemistry of Early-Middle Jurassic intrusions in the Daheishan ore district, NE China: Petrogenesis and implications for Mo mineralization: Journal of Asian Earth Sciences, v. 165, p. 59–78. doi:10.1016/j.jseaes.2018.04.033.
  • Han, J.L., Sun, J.G., Liu, Y., Ren, L., Wang, C.S., Zhang, X.T., He, Y.P., et al. (2019). Jurassic granitic magmatism in the lesser Xing’an-Zhangguangcai ranges of NE China: the Dong’an example. Internationao Geology Review 61, 2143–2163.
  • Hao, L.B., Sun, L.J., Zhao, Y.Y., and Lu, J.L., 2013, SHRIMP Zircon U-Pb Dating of Chajian Mafic-ultramafic Rocks in Hongqiling Mine field, Jilin Province, and its implications (in Chinese with English abstract): Earth Science, v. 38, p. l233–1240.
  • Hawkesworth, C.J., and Kemp, A.I.S., 2006, Evolution of the continental crust: Nature, v. 443, no. 7113, p. 811–817. doi:10.1038/nature05191.
  • He, S., 2017, Geochronological, geochemical characteristics and tectonic setting of granitic rocks in the Hulin area, Heilongjiang Province [Master’s thesis]: Changchun, Jilin University.
  • Hou, Z.Q., Gao, Y.F., Qu, X.M., Rui, Z.Y., & Mo, X.X. (2004). Origin of adakitic intrusives generated during mid–Miocene east–west extension in Southern Tibet. Earth and Planetary Science Letters 220, 139–155.
  • Hou, Z.Q., Yang, Z.M., Lu, Y.J., Kemp, A., Zheng, Y.C., Li, Q.Y., et al., 2015, A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones: Geology, v. 43, no. 3, p. 247–250. doi:10.1130/G36362.1.
  • Hou, Z.Q., Zhang, H.R., Pan, X.F., and Yang, Z.M., 2011, Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain: Ore Geology Reviews, v. 39, no. 1–2, p. 21–45. doi:10.1016/j.oregeorev.2010.09.002.
  • Hu, F., Ducea, M.N., Liu, S., and Chapman, J.B., 2017, Quantifying crustal thickness in continental collisional belts: Global perspective and a geologic application: Scientific Reports, v. 7, no. 1, p. 7058. doi:10.1038/s41598-017-07849-7.
  • Huang, M.W., Guo, F., Zhao, L., and Li, J.Y., 2015, Nd isotope constraint on crustal replacement induced by subduction of Paleo-Pacific plate in the Yanbian area, NE China (in Chinese with English abstract): Geotectonia Et Metallogenia, v. 39, p. 446–459.
  • un, J.G., He, Y.P., Han, J.L., & Wang, Z.Y. (2019).Genesis of the Wuxing Pt–Pd-rich Cu–Ni sulfide deposit in the eastern Central Asian Orogenic Belt: evidences from geochronology, elemental geochemistry, and Sr–Nd–Hf isotopic data. Canadian Journal of Earth Sciences 56, 380–398.
  • Jagoutz, O., and Behn, M.D., 2013, Foundering of lower island-arc crust as an explanation for the origin of the continental Moho: Nature, v. 504, no. 7478, p. 131–134. doi:10.1038/nature12758.
  • Jagoutz, O., and Kelemen, P.B., 2015, Role of arc processes in the formation of continental crust: Annual Review of Earth and Planetary Sciences, v. 43, no. 1, p. 363–404. doi:10.1146/annurev-earth-040809-152345.
  • Jenner, F.E. (2017). Cumulate causes for the low contents of sulfide-loving elementsin the continental crust. Nature Geoscience 10, 524–529.
  • Ji, Z., Meng, Q.A., Wan, C.B., Zhu, D.F., Ge, W.C., Zhang, Y.L., Yang, H., Dong, Y. (2019). Geodynamic Evolution of flat-slab Subduction of Paleo-Pacific Plate: Constraints From Jurassic Adakitic Lavas in the Hailar Basin, NE China. Tectonics 38, 4301–4319.
  • Kamenetsky, V.S., Maas, R., Fonseca, R.O.C., Ballhaus, C., Heuser, A., Brauns, M., et al., 2013, Noble metals potential of sulfide-saturated melts from the subcontinental lithosphere: Geology, v. 41, no. 5, p. 575–578. doi:10.1130/G34066.1.
  • Kelemen, P.B., and Behn, M.D., 2016, Formation of lower continental crust by relamination of buoyant arc lavas and plutons: Nature Geoscience, v. 9, no. 3, p. 197–205. doi:10.1038/ngeo2662.
  • Lü, L.S., Mao, J.W., Li, H.B., Pirajno, F., Zhang, Z.H., and Zhou, Z.H., 2011, Pyrrhotite Re-Os and SHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China: Ore Geology Reviews, v. 43, no. 1, p. 106–119. doi:10.1016/j.oregeorev.2011.02.003.
  • Lee, C.T.A., and Bachmann, O., 2014, How important is the role of crystal fractionation in making intermediate magmas? insights from Zr and P systematics: Earth and Planetary Science Letters, v. 393, p. 266–274. doi:10.1016/j.epsl.2014.02.044.
  • Lee, C.T.A., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., et al., 2012, Copper systematics in arc magmas and implications for crust-mantle differentiation: Science, v. 336, no. 6077, p. 64–68. doi:10.1126/science.1217313.
  • Lee, C.T.A., and Tang, M., 2020, How to make porphyry copper deposits: Earth and Planetary Science Letters, v. 529, p. 115868. doi:10.1016/j.epsl.2019.115868.
  • Levander, A., Bezada, M.J., Niu, F., Humphreys, E.D., Palomeras, I., Thurner, S.M., et al., 2014, Subduction-driven recycling of continental margin lithosphere: Nature, v. 515, no. 7526, p. 253–256. doi:10.1038/nature13878.
  • Li, S.Z., Suo, Y.H., Li, X.Y., et al., 2019a, Mesozoic tectono-magmatic response in the East Asian ocean-continent connection zone to subduction of the Paleo-Pacific Plate: Earth-Science Reviews, v. 192, p. 91–137. doi:10.1016/j.earscirev.2019.03.003.
  • Li, Y., Ling, M.X., Ding, X., Han, F., and Sun, W.D., 2009, Adakites or adakitic rocks and associated metallogenesis in eastern China (in Chinese with English abstract): Geotectonia Et Metallogenia, v. 33, p. 448–464.
  • Li, Y.Q., Zhang, D.H., Sun, X.D., and Lv, C.L., 2019b, Application of apatite fission-track analysis and zircon U-Pb geochronology to study the hydrothermal ore deposits in the Lesser Hinggan Range: Exhumation history and implications for mineral exploration: Journal of Geochemical Exploration, v. 199, p. 141–164. doi:10.1016/j.gexplo.2019.01.011.
  • Lieu, W.K., and Stern, R.J., 2019, The robustness of Sr/Y and La/Yb as proxies for crust thickness in modern arcs: Geosphere, v. 15, no. 3, p. 621–641. doi:10.1130/GES01667.1.
  • Liu, J.L., Sun, F.Y., Lin, B.L., Wang, Y.D., Wang, S., and Hu, A.X., 2015, Geochronology, geochemistry and zircon Hf isotope of Miantian granodiorite intrusion in Yanbian region, southern Jilin Province and its geological significance (in Chinese with English abstract): Earth Science-Journal of China University of Geoscience, v. 40, p. 49–60.
  • Liu, L., Yang, Y.C., Yang, Z.W., and Han, S.J., 2010, Geological and geochemical characteristics of Kanchuangou Mo–Cu deposit in Muling of Heilongjiang (in Chinese with English abstract): Global Geology, v. 29, p. 413–418.
  • Ma, X.H., Zhu, W.P., Zhou, Z.H., and Qiao, S.L., 2017, Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin–Heilongjiang Belt, NE China: Journal of Asian Earth Sciences, v. 144, p. 261–286. doi:10.1016/j.jseaes.2016.11.003.
  • Men, L.J., 2011, An ore–forming fluid study on Late Mesozoic epithermal Au-Cu deposits in Yanbian-Dongning area: Implication for the metallogenic mechanism [Doctoral thesis]: Changchun, Jilin University.
  • Middlemost, E.A.K., 1972, A simple classification of volcanic rocks: Bulletin Volcanologique, v. 36, no. 2, p. 382–397. doi:10.1007/BF02596878.
  • Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system: Earth-Science Reviews, v. 37, no. 3–4, p. 215–224. doi:10.1016/0012-8252(94)90029-9.
  • Nadeau, O., Stix, J., and Williams-Jones, A.E., 2016, Links between arc volcanoes and porphyry-epithermal ore deposits: Geology, v. 44, no. 1, p. 11–14. doi:10.1130/G37262.1.
  • Nelson, K.D., 1992, Are crustal thickness variations in old mountain belts like the appalachians a consequence of lithospheric delamination?: Geology, v. 20, no. 6, p. 498. doi:10.1130/0091-7613(1992)020<0498:ACTVIO>2.3.CO;2.
  • Peng, B., Sun, F.Y., and Li, B.L., 2019, Geochronology and geochemistry of Tianhexing porphyry CueMo deposit, northeast China: Journal of Geochemical Exploration, v. 197, p. 130–142. doi:10.1016/j.gexplo.2018.11.014.
  • Profeta, L., Ducea, M.N., Chapman, J.B., Paterson, S.R., Gonzales, S.M.H., Kirsch, M., et al., 2015, Quantifying crustal thickness over time in magmatic arcs: Scientific Reports, v. 5, no. 1, p. 17786. doi:10.1038/srep17786.
  • Ren, Y.S., Wang, H., Qu, W.J., Zhao, H.L., and Chu, G.Q., 2011, Re–Os isotopic dating of molybdenite from Xiaoxinancha copper–gold deposit in the Yanbian area and its geological significance (in Chinese with English abstract): Earth Science, v. 36, p. 721–728.
  • Richards, J.P. (2003). Tectono–Magmatic Precursors for Porphyry Cu–(Mo–Au) Deposit Formation. Economic Geology 98, 1515–1533.
  • Richards, J.P., 2009, Postsubduction porphyry Cu-Au and epithermal au deposits: Products of remelting of subduction-modified lithosphere: Geology, v. 37, no. 3, p. 247–250. doi:10.1130/G25451A.1.
  • Richards, J.P. (2011). HIGH Sr/Y ARC MAGMAS AND porpuyry Cu ± Mo ± Au DEPOSITS: JUST ADD WATER. Economic Geology 106, 1075–1081.
  • Richards, J.P., & Kerrich, R. (2007). Special Paper: Adakite–like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis: Economic Geology 102, 537–576. doi:10.2113/gsecongeo.102.4.537
  • Şjengör, A.M.C., Natal’In, B.A., and Burtman, V.S., 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia: Nature, v. 364, no. 6435, p. 299–307. doi:10.1038/364299a0.
  • Sillitoe, R.H. (2010). Porphyry copper systems. Economic geology 150, 3–41.
  • Stein, M., and Hofmann, A.W., 1994, Mantle plumes and episodic crustal growth: Nature, v. 372, no. 6501, p. 63–68. doi:10.1038/372063a0.
  • Sun, J.G., Men, L.J., Chen, D., Chen, L., Pang, W., Liang, S.N., et al., 2009, Constraint of magmatism on magmatic hydrothermal of gold and copper oreforming: Based on the Xiaoxinancha Au–rich Cu gold deposit (in Chinese with English abstract): Journal of Mineralogy and Petrology, v. 29, p. 43–52.
  • Sun, J.G., Xing, S.W., Zheng, Q.D. (2006). Geodynamic and geochemistry of nonferrous and noble metal deposits, Northeastern China. Changchun, Jilin University Press, pp.1–128.
  • Sun, W.D., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., et al. (2015). Porphyry deposits and oxidized magmas. Ore Geology Reviews 65, 97–131.
  • Sun, W.D., Liang, H.Y., Ling, M.X., Zhan, M.Z., Ding, X., Zhang, H., et al., 2013, The link between reduced porphyry copper deposits and oxidized magmas: Geochimica Et Cosmochimica Acta, v. 103, p. 263–275. doi:10.1016/j.gca.2012.10.054.
  • Tang, M., Lee, C.T.A., Rudnick, R.L., and Condie, K.C., 2019, Rapid mantle convection drove massive crustal thickening in the Late Archean: Geochimica Et Cosmochimica Acta, doi:10.1016/j.gca.2019.03.039.
  • Taylor, S.R., 1967, THe origin and growth of continents: Tectonophysics, v. 4, no. 1, p. 17–34. doi:10.1016/0040-1951(67)90056-X.
  • Wan, B., Deng, C., Najafi, A., Hezareh, M.R., Talebian, M., Dong, L.L., et al. (2018). Fertilizing porphyry Cu deposits through deep crustal hot zone melting. Gondwana research 60, 179–185.
  • Wang, L., 2013, Geological, geochemical characteristics and prospecting of Qiupigou copper polymetallic deposit in Heilongjiang: [Master’s thesis]: Changchun, Jilin University, 1–74 p.
  • Wang, Z.G., Xi, A.H., Ge, Y.H., Gong, P.H., and Wang, B., 2011, Chronology significance of intrusion group in Sandaogang Cu-Ni sulfide deposit, Panshi, Jilin province (in Chinese with English abstract): Journal of Jilin University (Earth Science Edition), v. 41, p. 126–132.
  • Wei, B., Wang, Y., Arndt, N.T., Prichard, H.M., and Fisher, P.C., 2015, Textural Relationship of Sulfide Ores, PGE, and Sr-Nd-Os Isotope Compositions of the Triassic Piaohechuan Ni-Cu Sulfide Deposit in NE China: Economic Geology, v. 110, no. 8, p. 2041–2062. doi:10.2113/econgeo.110.8.2041.
  • Wei, Y.L., 2015, Geological characteristics and prospecting direction of the Yuejinshan Cu-Au deposit, Heilongjiang Province [Master’s thesis]: Changchun, Jilin University.
  • Wilkinson, and Jamie, J., 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs: Nature Geoscience, v. 6, no. 11, p. 917–925. doi:10.1038/ngeo1940.
  • Wu, F.Y., Ge, W.C., and Sun, D.Y., 2002, The conception, identification marks and geological significance of adakites. Beijing: Geological Publishing House, p.172–191.
  • Wu, F.Y., Jahn, B.M., Wilde, S.A., and Sun, D.Y., 2000, Phanerozoic continental crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in Northeastern China: Tectonophysics, v. 328, no. 1–2, p. 89–113. doi:10.1016/S0040-1951(00)00179-7.
  • Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., and Jahn, B.M., 2011, Geochronology of the phanerozoic granitoids in Northeastern China: Journal of Asian Earth Sciences, v. 41, no. 1, p. 1–30. doi:10.1016/j.jseaes.2010.11.014.
  • Xi, A.H., Cai, Y.F., Ge, Y.H., Sun, G.S., and Li, B.L., 2008, LA-ICPMS zircon U-Pb age of Longwang gabbro of Shanmen silver deposit in Siping City and its geological significance (in Chinese with English abstract): Mineral Deposits, v. 27, p. 57–63.
  • Xiao, L., and Cemens, J.D., 2007, Origin of potassic (C-type) adakite magmas: Experimental and field constraints: Lithos, v. 95, no. 3–4, p. 399–414. doi:10.1016/j.lithos.2006.09.002.
  • Xu, W.L., Wang, F., Pei, F.P., Meng, E., Tang, J., Xu, M.J., and Wang, W., 2013, Mesozoic tectonic regimes and regional ore–forming background in NE China: Constrains from spatial and temporal variations of Mesozoic volcanic rock associations (in Chinese with English abstract): Acta Petrologica Sinica, v. 29, p. 339–353.
  • Yang, H., Ge, W., Zhao, G., Yu, J., and Zhang, Y., 2015, Early Permian–Late Triassic granitic magmatism in the Jiamusi–Khanka massif, eastern segment of the Central Asian orogenic belt and its implications: Gondwana Research, v. 27, no. 4, p. 1509–1533. doi:10.1016/j.gr.2014.01.011.
  • Yang, Y., Lei, J.S., Ai, Y.S., Zhang, G.W., Sun, C.Q., Fan, E.B., et al., 2019, Crustal structure beneath Northeast China from ambient noise tomography: Physics of the Earth and Planetary Interiors, v. 293, p. 106257. doi:10.1016/j.pepi.2019.04.008.
  • Zhang, Q., Wang, Y., Qian, Q., Yang, J.H., Wang, Y.L., Zhao, T.P., and Guo, G.J., 2001, The characteristics and tectonic-metallogenic significances of the adakites in Yanshan period from eastern China (in Chinese with English abstract): Acta Petrological Sinica, v. 17, p. 236–244.
  • Zhang, Y., Sun, J.G., Xing, S.W., Wang, Y., Zhang, Z.J., Ma, Y.B., and Li, C., 2017, Early Jurassic porphyry copper mineralization in NE China: A case study of the Yanghuidongzi deposit: Ore Geology Reviews, v. 91, p. 573–587. doi:10.1016/j.oregeorev.2017.09.001.
  • Zhang, Y., Xing, S.W., Song, Q.H., Wang, Y., Yu, Z.T., Du, X.H., et al., 2015, Re–Os and U–Pb Geochronology of Porphyry and Skarn Types Copper Deposits in Jilin Province, NE China: Resource Geology, v. 65, no. 4, p. 394–404. doi:10.1111/rge.12074.
  • Zheng, G.H., 2018, Study on the geological characteristics and enrichment regularities of mineralization of Linjiang Copper deposit [Master’s thesis]: Changchun, Jilin University.
  • Zhou, L.L., Zeng, Q.D., Liu, J.M., Zhang, Z.L., and Duan, X.X., 2018, What triggers fertile porphyritic Mo magmas in subduction setting: A case study from the giant Daheishan Mo deposit, NE China: Lithos, v. 316–317, p. 121–231.
  • Zhu, H.X., Tian, Y., Zhao, D.P., Li, H.H., and Liu, C., 2019, Seismic structure of the Changbai Intraplate Volcano in NE China From joint inversion of ambient noise and receiver functions: Journal of Geophysical Research: Solid Earth, v. 124, p. 4984–5002. doi:10.1029/2018JB016600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.