416
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Origin and tectonic implications of Late Jurassic high-Mg diorites along the Bangong-Nujiang suture zone, Tibet

ORCID Icon, , &
Pages 1406-1422 | Received 06 Mar 2020, Accepted 09 May 2020, Published online: 28 May 2020

References

  • Butler, J.P., and Beaumont, C., 2017, Subduction zone decoupling/retreat modeling explains south Tibet (Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases: Earth and Planetary Science Letters, v. 463, p. 101–117. doi: 10.1016/j.epsl.2017.01.025.
  • Cao, M., Qin, K., Li, G., Li, J., Zhao, J., Evans, N.J., and Hollings, P., 2016, Tectono-magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the west central Lhasa subterrane: Tibet: Gondwana Research, v. 39, p. 386–400.
  • Chiaradia, M., 2015, Crustal thickness control on Sr/Y signatures of recent arc magmas: An Earth scale perspective: Scientific Reports, v. 5, p. 8115. doi: 10.1038/srep08115.
  • DeCelles, P.G., Kapp, P., Ding, L., and Gehrels, G.E., 2007, Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain: Geological Society of America Bulletin, v. 119, no. 5–6, p. 654–680. doi: 10.1130/B26074.1.
  • Drummond, M.S., and Defant, M.J., 1990, A model for Trondhjemite‐Tonalite‐Dacite genesis and crustal growth via slab melting: Archean to modern comparisons: Journal of Geophysical Research Solid Earth, v. 95, no. B13, p. 21503–21521. doi: 10.1029/JB095iB13p21503.
  • Girardeau, J., Marcoux, J., Fourcade, E., Bassoullet, J.P., and Youking, T., 1985, Xainxa ultramafic rocks, central Tibet, China: Tectonic environment and geodynamic significance: Geology, v. 13, no. 5, p. 330. doi: 10.1130/0091-7613(1985)13<330:XURCTC>2.0.CO;2.
  • Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., and Schwartz, J.J., 2007, Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance: Geology, v. 35, no. 7, p. 643–646. doi: 10.1130/G23603A.1.
  • Hang, L., Ming, W., Wen, Z.X., Bo, L.A., Peng, Y.Y., and Jin, Z.X., 2020, Generation of Jurassic high-Mg diorite and plagiogranite intrusions of the Asa area, Tibet: Products of intra-oceanic subduction of the Meso-Tethys Ocean: Lithos, v. 362–363, p. 105481.
  • Ishiwatari, A., Yanagida, Y., Li, Y., Ishii, T., Haraguchi, S., Koizumi, K., Ichiyama, Y., and Umeka, M., 2006, Dredge petrology of the boninite- and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: An ophiolite or a serpentinite seamount?s: The Island Arc, v. 15, no. 1, p. 102–118. doi: 10.1111/j.1440-1738.2006.00512.x.
  • Ishizuka, O., Kimura, J., Li, Y.B., Stern, R.J., Reagan, M.K., Taylor, R.N., Ohara, Y., Bloomer, S.H., Ishii, T., and Hargrove, U.S., III, 2006, Early stages in the evolution of Izu–Bonin arc volcanism: New age, chemical, and isotopic constraints: Earth and Planetary Science Letters, v. 250, no. 1–2, p. 385–401. doi: 10.1016/j.epsl.2006.08.007.
  • Johnson, M.C., and Plank, T., 2000, Dehydration and melting experiments constrain the fate of subducted sediments: Geochemistry, Geophysics, Geosystems, v. 1, p. 12. doi: 10.1029/1999GC000014.
  • Kamei, A., Owada, M., Nagao, T., and Shiraki, K., 2004, High-Mg diorites derived from sanukitic HMA magmas, Kyushu Island, southwest Japan arc: Evidence from clinopyroxene and whole rock compositions: Lithos, v. 75, no. 3, p. 359–371. doi: 10.1016/j.lithos.2004.03.006.
  • Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L., and Guo, J., 2003, Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet: Tectonics, v. 22, p. 4. doi: 10.1029/2001TC001332.
  • Labanieh, S., Chauvel, C., Germa, A., and Quidelleur, X., 2018, Martinique: A clear case for sediment melting and slab dehydration as a function of distance to the Trench: Journal of Petrology, v. 53, no. 12, p. 2441–2464. doi: 10.1093/petrology/egs055.
  • Li, J., Qin, K., Li, G., Richards, J.P., Zhao, J., and Cao, M., 2014a, Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate–felsic intrusions in central Tibet: Petrogenetic and tectonic implications: Lithos, v. 198–199, p. 77–91. doi: 10.1016/j.lithos.2014.03.025.
  • Li, S., Ding, L., Guilmette, C., Fu, J., Xu, Q., Yue, Y., and Henrique-Pinto, R., 2017, The subduction-accretion history of the Bangong-Nujiang Ocean: Constraints from provenance and geochronology of the Mesozoic strata near Gaize: Central Tibet: Tectonophysics, v. 702, p. 42–60.
  • Li, S., Guilmette, C., Yin, C., Ding, L., Zhang, J., Wang, H., and Baral, U., 2019a, Timing and mechanism of Bangong-Nujiang ophiolite emplacement in the Gerze area of central Tibet: Gondwana Research, v. 71, p. 179–193. doi: 10.1016/j.gr.2019.01.019.
  • Li, S.M., Wang, Q., Zhu, D.C., Cawood, P.A., Stern, R.J., Weinberg, R., Zhao, Z., and Mo, X.X., 2020, Reconciling orogenic drivers for the evolution of the Bangong‐Nujiang Tethys During Middle‐Late Jurassic: Tectonics, v. 39, p. 2. doi: 10.1029/2019TC005951.
  • Li, S.M., Zhu, D.C., Wang, Q., Zhao, Z., Zhang, L.L., Liu, S.A., Chang, Q.S., Lu, Y.H., Dai, J.G., and Zheng, Y.C., 2016, Slab-derived adakites and subslab asthenosphere-derived OIB-type rocks at 156 ± 2 Ma from the north of Gerze, central Tibet: Records of the Bangong–Nujiang oceanic ridge subduction during the Late Jurassic: Lithos, v. 262, p. 456–469. doi: 10.1016/j.lithos.2016.07.029.
  • Li, S.M., Zhu, D.C., Wang, Q., Zhao, Z.D., Sui, Q.L., Liu, S.A., Liu, D., and Mo, X.X., 2014b, Northward subduction of Bangong–Nujiang Tethys: Insight from Late Jurassic intrusive rocks from Bangong Tso in western Tibet: Lithos, v. 205, no. 9, p. 284–297. doi: 10.1016/j.lithos.2014.07.010.
  • Li, X.B., Wang, B.D., Liu, H., Wang, L.Q., and Chen, L., 2015, The Late Jurassic high-Mg andesites in the Daru Tso area, Tibet: Evidence for the subduction of the Bangong Co-Nujiang River oceanic lithosphere: Geological Bulletin of China, v. 34, no. Z1, p. 251–261. in Chinese with English abstract.
  • Li, Z.J., Li, C.W., Gao, Y.M., and Zeng, M., 2019b, Geochronology and geochemistry characteristics of the late Mid-Jurassic (ca. 163Ma) OIB-type diabase and high-Mg diorites in Shiquanhe ophiolite: Products of early stage oceanic crust subduction?: Acta Petrologica Sinica, v. 35, no. 3, p. 816–832. in Chinese with English abstract. doi: 10.18654/1000-0569/2019.03.12.
  • Liu, D., Shi, M., and Jiang, S., 2019, Dating oceanic subduction in the Jurassic Bangong–Nujiang Oceanic Arc: A Zircon U–Pb Age and Lu–Hf Isotopes and Al-in-Hornblende Barometry Study of the Lameila Pluton in Western Tibet, China: Minerals, v. 9, no. 12, p. 754. doi: 10.3390/min9120754.
  • Liu, W., Xia, B., Zhong, Y., Cai, J., Li, J., Liu, H., Cai, Z., and Sun, Z., 2014, Age and composition of the Rebang Co and Julu ophiolites, central Tibet: Implications for the evolution of the Bangong Meso-Tethys: International Geology Review, v. 56, no. 4, p. 430–447. doi: 10.1080/00206814.2013.873356.
  • Liu, W.B., Qian, Q., Yue, G.L., Li, Q.S., Zhang, Q., and Zhou, M.F., 2002, The geochemical characteristics of fore-arc ophiolite from Dingqing area, Tibet: Acta Petrologica Sinica, v. 392-400.
  • Liu, W.L., Huang, Q.T., Gu, M., Zhong, Y., Zhou, R., Gu, X.D., Zheng, H., Liu, J.N., Lu, X.X., and Xia, B., 2018, Origin and tectonic implications of the Shiquanhe high-Mg andesite, western Bangong suture, Tibet: Gondwana Research, v. 60, p. 1–14. doi: 10.1016/j.gr.2018.03.017.
  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, no. 1–2, p. 34–43. doi: 10.1016/j.chemgeo.2008.08.004.
  • Liu, Y., Hu, Z., Zong, K., Gao, C., Gao, S., Xu, J., and Chen, H., 2010, Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS: Chinese Science Bulletin, v. 55, no. 15, p. 1535–1546. doi: 10.1007/s11434-010-3052-4.
  • Ludwig, K.R., 2003. User's manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel: Berkeley Geochronl. Cent. Spec. Publ., v. 4, p. 25-32.
  • Mallik, A., Dasgupta, R., Tsuno, K., and Nelson, J., 2016, Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones: Geochimica et cosmochimica acta, v. 195, p. 226–243. doi: 10.1016/j.gca.2016.08.018.
  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, no. 1–2, p. 1–24. doi: 10.1016/j.lithos.2004.04.048.
  • McCarron, J.J., and Smellie, J.L., 1998, Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites: Alexander Island, Antarctica: Journal of the Geological Society, v. 155, no. 2, p. 269–280. doi: 10.1144/gsjgs.155.2.0269.
  • Meffre, S., Falloon, T.J., Crawford, T.J., Hoernle, K., Hauff, F., Duncan, R.A., Bloomer, S.H., and Wright, D.J., 2012, Basalts erupted along the Tongan fore arc during subduction initiation: Evidence from geochronology of dredged rocks from the Tonga fore arc and trench: Geochemistry, Geophysics, Geosystems, v. 13, p. 12. doi: 10.1029/2012GC004335.
  • Nichols, G.T., Wyllie, P.J., and Stern, C.R., 1994, Subduction zone melting of pelagic sediments constrained by melting experiments: Nature, v. 371, no. 6500, p. 785. doi: 10.1038/371785a0.
  • Pan, G.T., Ding, J., Yao, D.S., and Wang, L.Q., 2004, Guidebook of 1: 1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas: Chengdu, China: Chengdu Cartographic Publishing House, v. 48, p. 63.
  • Peacock, S.M., 2003, Thermal structure and metamorphic evolution of subducting slabs: Geophysical Monograph-American Geophysical Union, v. 138, p. 7–22.
  • Peacock, S.M., 2003. Thermal structure and metamorphic evolution of subducting slabs: Geophysical Monograph-American Geophysical Union, v. 138, p. 7-22.
  • Pearce, J.A., 2014, Immobile element fingerprinting of ophiolites: Elements, v. 10, no. 2, p. 101–108. doi: 10.2113/gselements.10.2.101.
  • Pearce, J.A., and Robinson, P.T., 2010, The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting: Gondwana Research, v. 18, no. 1, p. 60–81. doi: 10.1016/j.gr.2009.12.003.
  • Pirard, C., and Hermann, J., 2015, Focused fluid transfer through the mantle above subduction zones: Geology, v. 43, no. 10, p. 915–918. doi: 10.1130/G37026.1.
  • Plank, T., and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, no. 3–4, p. 325–394. doi: 10.1016/S0009-2541(97)00150-2.
  • Reagan, M.K., Ishizuka, O., Stern, R.J., Kelley, K.A., Ohara, Y., Blichert Toft, J., Bloomer, S.H., Cash, J., Fryer, P., and Hanan, B.B., 2010, Fore‐arc basalts and subduction initiation in the Izu‐Bonin‐Mariana system: Geochemistry, Geophysics, Geosystems, v. 11, p. 3. doi: 10.1029/2009GC002871.
  • Saunders, A.D., Rogers, G., Marriner, G.F., Terrell, D.J., and Verma, S.P., 1987, Geochemistry of Cenezoic volcanic rocks, Baja California, Mexico: Implications for the petrogenesis of post-subduction magmas: Journal of Volcanology and Geothermal Research, v. 32, no. 1–3, p. 223–245. doi: 10.1016/0377-0273(87)90046-1.
  • Shaw, D.M., 2006, Trace elements in magmas: A theoretical treatment: Cambridge University Press.
  • Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, no. 1, p. 101–118. doi: 10.1016/0012-821X(82)90120-0.
  • Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K., and Jahn, B.M., 1998, Setouchi high-Mg andesites revisited: Geochemical evidence for melting of subducting sediments: Earth and Planetary Science Letters, v. 160, no. 3–4, p. 479–492. doi: 10.1016/S0012-821X(98)00105-8.
  • Singleton, J.S., and Cloos, M., 2013, Kinematic analysis of mélange fabrics in the Franciscan Complex near San Simeon, California: Evidence for sinistral slip on the Nacimiento fault zone?: Lithosphere, v. 5, no. 2, p. 179–188. doi: 10.1130/L259.1.
  • Skora, S., Blundy, J.D., Brooker, R.A., Green, E.C., de Hoog, J., and Connolly, J.A., 2015, Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions: Journal of Petrology, v. 56, no. 5, p. 953–980. doi: 10.1093/petrology/egv024.
  • Stern, R.J., 2002, Subduction zones[J]: Reviews of Geophysics, v. 40, no. 4, p. 1–40. doi: 10.1029/2001RG000108.
  • Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S., 2012, To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites: Lithosphere, v. 4, no. 6, p. 469–483. doi: 10.1130/L183.1.
  • Sun, G., Hu, X., Xu, Y., and BouDagher-Fadel, M.K., 2019, Discovery of Middle Jurassic trench deposits in the Bangong-Nujiang suture zone: Implications for the timing of Lhasa-Qiangtang initial collision: Tectonophysics, v. 750, p. 344–358. doi: 10.1016/j.tecto.2018.12.001.
  • Sun, S.S., and Mcdonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society London Special Publications, v. 42, no. 1, p. 313–345. doi: 10.1144/GSL.SP.1989.042.01.19.
  • Syracuse, E.M., van Keken, P.E., and Abers, G.A., 2010, The global range of subduction zone thermal models: Physics of the Earth and Planetary Interiors, v. 183, no. 1–2, p. 73–90. doi: 10.1016/j.pepi.2010.02.004.
  • Tang, G.J., and Wang, Q., 2010, High-Mg andesites and their geodynamic implications: Acta Petrologica Sinica, v. 26, no. 8, p. 2495–2512. in Chinese with English abstract.
  • Tang, Y., Zhai, Q., Chung, S., Hu, P., Wang, J., Xiao, X., Song, B., Wang, H., and Lee, H., 2020, First mid-ocean ridge-type ophiolite from the Meso-Tethys suture zone in the north-central Tibetan plateau: Geological Society of America Bulletin. doi: 10.1130/B35500.1.
  • Tatsumi, Y., and Hanyu, T., 2013, Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high‐Mg andesite formation in the Setouchi volcanic belt, SW Japan: Geochemistry Geophysics Geosystems, v. 4, p. 9.
  • van Hunen, J., and Allen, M.B., 2011, Continental collision and slab break-off: A comparison of 3-D numerical models with observations: Earth and Planetary Science Letters, v. 302, no. 1–2, p. 27–37. doi: 10.1016/j.epsl.2010.11.035.
  • Wang, B., Wang, L., Chung, S., Chen, J., Yin, F., Liu, H., Li, X., and Chen, L., 2016, Evolution of the Bangong–Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites: Lithos, v. 245, p. 18–33. doi: 10.1016/j.lithos.2015.07.016.
  • Wang, W., Aitchison, J.C., Lo, C. and Zeng, Q., 2008. Geochemistry and geochronology of the amphibolite blocks in ophiolitic mélanges along Bangong-Nujiang suture, central Tibet: Journal of Asian Earth Sciences, v. 33, no. 1–2, p. 122-138.
  • Watson, E.B., Wark, D.A., and Thomas, J.B., 2006, Crystallization thermometers for zircon and rutile: Contributions to Mineralogy & Petrology, v. 151, no. 4, p. 413. doi: 10.1007/s00410-006-0068-5.
  • Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, no. 4, p. 325–343. doi: 10.1016/0009-2541(77)90057-2.
  • Wood, B.J., and Turner, S.P., 2009, Origin of primitive high-Mg andesite: Constraints from natural examples and experiments: Earth and Planetary Science Letters, v. 283, no. 1, p. 59–66. doi: 10.1016/j.epsl.2009.03.032.
  • Xu, M., Li, C., Zhang, X., and Wu, Y., 2014, Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology: International Geology Review, v. 56, no. 9, p. 1072–1096. doi: 10.1080/00206814.2014.919616.
  • Xu, W., Li, C., Xu, M., Wu, Y., Fan, J., and Wu, H., 2015, Petrology, geochemistry, and geochronology of boninitic dikes from the Kangqiong ophiolite: Implications for the Early Cretaceous evolution of Bangong–Nujiang Neo-Tethys Ocean in Tibet: International Geology Review, v. 57, no. 16, p. 2028–2043. doi: 10.1080/00206814.2015.1050464.
  • Yan, L., and Zhang, K., 2020, Infant intra-oceanic arc magmatism due to initial subduction induced by oceanic plateau accretion: A case study of the Bangong Meso-Tethys, central Tibet, western China: Gondwana Research, v. 110-124.
  • Yin, A., and Harrison, T.M., 2000, Geologic evolution of the Himalayan-Tibetan Orogen: Annual Review of Earth and Planetary Sciences, v. 28, no. 1, p. 211–280. doi: 10.1146/annurev.earth.28.1.211.
  • Zeng, M., Chen, J. and Wei, C., 2017. The Mugagangri Group is an accretionary complex accreted onto the south margin of Qiangtang: Earth Science Frontiers, v. 24, no. 5, p. 207-217. doi:10.13745/j.esf.yx.2016-10-7
  • Zeng, M., Zhang, X., Cao, H., Ettensohn, F.R., Cheng, W., and Lang, X., 2016, Late Triassic initial subduction of the Bangong‐Nujiang Ocean beneath Qiangtang revealed: Stratigraphic and geochronological evidence from Gaize, Tibet: Basin Research, v. 28, no. 1, p. 147–157. doi: 10.1111/bre.12105.
  • Zeng, Y.C., Chen, J.L., Xu, J.F., Wang, B.D., and Huang, F., 2016b, Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high‐Mg andesites within ophiolite melange, central Tibet: Geochemistry Geophysics Geosystems, v. 17, p. 12. doi: 10.1002/2016GC006456.
  • Zhang, K.J., 2004, Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting: Earth and Planetary Science Letters, v. 229, no. 1, p. 73–89. doi: 10.1016/j.epsl.2004.10.030.
  • Zhang, Y., Zhang, K., Li, B., Wang, Y., Wei, Q., and Tang, X., 2007, Zircon SHRIMP U-PbU–Pb geochronology and petrogenesis of the plagiogranites from the Lagkor Lake ophiolite, Gerze, Tibet, China: Chinese Science Bulletin, v. 52, no. 5, p. 651–659. doi: 10.1007/s11434-007-0084-5.
  • Zheng, Y.Y., Xu, R.K., Ci, Q., and Pang, Z.J., 2004, Geological report and map of the Shiquanhe Region (1: 250,000): Geological Survey of China, p. 453.
  • Zheng, Y.Y., Xu, R.K., Ma, G.T., Gao, S.B., Zhang, G.Y., Ma, X.M., and Ci, Q., 2006, Ages of generation and subduction of Shiquan river ophiolite: Restriction from SHRIMP zircon dating: Acta Petrologica Sinica, v.. 895–904. in Chinese with English abstract.
  • Zhu, D., Li, S., Cawood, P.A., Wang, Q., Zhao, Z., Liu, S., and Wang, L., 2016, Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction: Lithos, v. 245, p. 7–17. doi: 10.1016/j.lithos.2015.06.023.
  • Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Hou, Z.Q., and Mo, X.X., 2013, The origin and pre-Cenozoic evolution of the Tibetan Plateau: Gondwana Research, v. 23, no. 4, p. 1429–1454. doi: 10.1016/j.gr.2012.02.002.
  • Zhu, D.-C.., Zhao, Z.-D.., Niu, Y., Dilek, Y. and Mo, X.-X.., 2011. Lhasa terrane in southern Tibet came from Australia: Geology, v. 39, no. 8, p. 727-730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.