251
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Neoproterozoic tectonic switch on the southwestern Yangtze Block: evidence from zircon U-Pb-Hf isotopes and geochemistry of the A- and I-type granites

, &
Pages 2338-2355 | Received 21 Jun 2020, Accepted 11 Oct 2020, Published online: 23 Oct 2020

References

  • Belousova, E., Suzanne, G.W., and Fisher, Y., 2002. Igneous zircon: trace element com position as an indicator of source rock type: Contributions to Mineralogy and Petrology,v. 143, no. 5, p. 602–622.
  • Brewer, T.S., Ahall, K.I., Menuge, J.F., Storey, C.D., and Parrish, R.R., 2004, Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pre-Sveconorwegian continental margin tectonism: Precambrian Research, v. 134, p. 249–273.
  • Champion, D.C., and Bultitude, R.J., 2013, The geochemical and Sr, Nd isotopic characteristics of Paleozoic fractionated S-types granites of North Queensland: Implications for S-type granite petrogenesis: Lithos, v. 162-163, no. 2, p. 37–56. doi:https://doi.org/10.1016/j.lithos.2012.11.022.
  • Chen, W.T., Sun, W.H., Wang, W., Zhao, J.H., and Zhou, M.F., 2014, ‘‘Grenvillian” intraplate mafic magmatism in the southwestern Yangtze Block, SW China: Precambrian Research, v. 242, p. 138–153. doi:https://doi.org/10.1016/j.precamres.2013.12.019.
  • Chen, W.T., Sun, W.H., Zhou, M.F., and Wang, W., 2018, Ca. 1050 Ma intra-continental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China: Precambrian Research, v. 309, p. 22–44. doi:https://doi.org/10.1016/j.precamres.2017.02.011.
  • Chen, W.T., Zhou, M.F., and Zhao, X.F., 2013, Late Paleoproterozoic sedimentary and mafic rocks in the Hekou area, SW China: Implication for the reconstruction of the Yangtze Block in Columbia: Precambrian Research, v. 231, p. 61–77. doi:https://doi.org/10.1016/j.precamres.2013.03.011.
  • Clemens, J., 2003, S-type granitic magmas-petrogenetic issues, models and evidence: Earth-Science Reviews, v. 61, no. 1/2, p. 1–18. doi:https://doi.org/10.1016/S0012-8252(02)00107-1.
  • Clemens, J.D., Darbyshire, D.P.F., and Flinders, J., 2009, Sources of post-orogenic calcalkaline magmas: The arrochar and garabal hill-glen fyne complexes, Scotland: Lithos, v. 112, p. 524–542. doi:https://doi.org/10.1016/j.lithos.2009.03.026.
  • Cui, X.Z., Jiang, X.S., Wang, J., Wang, X.C., Zhuo, J.W., Deng, Q., Liao, S.Y., Wu, H., Jiang, Z.F., and Wei, Y.N., 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China: New evidence for continental rifting related to the breakup of Rodinia supercontinent: Precambrian Research, v. 268 v. 268 268, p. 339–356.
  • Deng, S.X., 2000. The evolution of metamorphism and geochemistry for the Cangshan and Julin Groups in Central Yunnan, China. Unpublished Ph.D thesis, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. 41–49 (in Chinese with English abstract).
  • Du, L.L., Guo, J.H., Nutman, A.P., et al., 2014, Implications for Rodinia reconstructions for the initiation of Neoproterozoic subduction at similar to 860 Ma on the western margin of the Yangtze Block: Evidence from the Guandaoshan Pluton: Lithos., v. 196, p. 67–82.
  • Eby, G.N., 1992, Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications: Geology., v. 20, p. 641–644. doi:https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2.
  • Fan, W.M., Guo, F., Wang, Y.J., Lin, G., and Zhang, M., 2001, Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in Eastern China: Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, v. 26, no. 9–10, p. 133–146. doi:https://doi.org/10.1016/S1464-1895(01)00123-5.
  • Frost, C.D., Bell, J.M., Frost, B.R., et al., 2001, Crustal growth by magmatic underplating: Isotopic evidence from the northern Sherman batholith: Geology, v. 29, p. 515–518. doi:https://doi.org/10.1130/0091-7613(2001)029<0515:CGBMUI>2.0.CO;2.
  • Frost, C.D., and Frost, B.R., 2011, On ferroan (A-type) granitoids: Their compositional variability and modes of origin: Journal of Petrology, v. 52, no. 1, p. 39–53. doi:https://doi.org/10.1093/petrology/egq070.
  • Geng, Y.S., Kuang, H.W., Liu, Y.Q., et al., 2017, Subdivision and Correlation of the Mesoproterozoic Stratigraphy in the Western and Northern Margins of Yangtze Block: Acta Geologica Sinica, v. 91, no. 10, p. 2151–2174. (in Chinese with English abstract).
  • Geng, Y.S., Yang, C.H., Du, L.L., Wang, X.S., Ren, L.D., and Zhou, X.W., 2007. Chronology and Tectonic Environment of the Tianbaoshan Formation: New Evidence from Zircon SHRIMP U-Pb Age and Geochemistry: Geological Review, v. 53, no. 4, p. 556–563. (in Chinese with English Abstract)
  • Greentree, M.R., and Li, Z.X., 2008, The oldest known rocks in south-western China: SHRIMP U-Pb magmatic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group: Journal of Asian Earth Sciences, v. 33, p. 289–302.
  • Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006, Latest Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia: Precambrian Research, v. 151, p. 79–100. doi:https://doi.org/10.1016/j.precamres.2006.08.002.
  • Greentree, M.R., Li, Z-X., Li, X-H., and Wu, H.C., 2006. Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia: Precambrian Research,v. 151, p. 79–100.
  • Han, Q.S., Peng, S.B., Polat, A., et al., 2019, Petrogenesis and geochronology of Paleoproterozoic magmatic rocks in the Kongling complex: Evidence for a collisional orogenic event in the Yangtze craton: Lithos., v. 342-343, p. 513–529. doi:https://doi.org/10.1016/j.lithos.2019.05.015.
  • Huang, H.Q., Li, X.H., Li, W.X., and Li, Z.X., 2011, Formation of high 18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China: Geology., v. 39, p. 903–906.
  • Huang, X-L., Xu, Y-G., Li, X-H., Li, W-X., Lan, J-B., Zhang, H-H., Liu, Y-S., Wan, Y-B., Li, H-Y., Luo, Z-Y., and Yang, Q-J., 2008. Petrogenesis and tectonic implications of Neoproterozoic, highly fractionated A-type granites from Mianning, South China: Precambrian Research, v. 165, p. 190–204.
  • Hui, B., Dong, Y., Cheng, C., Long, X., Liu, X., Yang, Z., Sun, S., Zhang, F., and Varga, J., 2017, Zircon U-Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China: Precambrian Research, v. 301, p. 65–85.
  • Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., and Whitehouse, M.J., 2007, Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon: Science, v. 315, no. 5814, p. 980–983. doi:https://doi.org/10.1126/science.1136154.
  • Li, F.H., Tan, J.M., Shen, Y.L., Yu, F.X., Zhou, G.F., Pan, X.N., and Li, X.Z., 1988, The preSinian in the Kangdian area: Chongqing, Chongqing Publishing House, 396 p. (in Chinese with English abstract).
  • Li, J.Y., Wang, X.L., and Gu, Z.D., 2018, Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly: Precambrian Research, v. 309, p. 181–197. doi:https://doi.org/10.1016/j.precamres.2017.04.040.
  • Li, Q.W., and Zhao, J.H., 2018, The Neoproterozoic high-Mg dioritic dikes in South China formed by high pressures fractional crystallization of hydrous basaltic melts: Precambrian Research, v. 309, p. 198–211. doi:https://doi.org/10.1016/j.precamres.2017.04.009.
  • Li, X.H., Li, W.X., Li, Z.X., and Liu, Y., 2008, 850-790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia: Lithos., v. 102, p. 341–357.
  • Li, X.H., Li, W.X., Li, Z.X., Lo, C.H., Wang, J., Ye, M.F., and Yang, Y.H., 2009, Amalgamation between the Yangtze and Cathaysia blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks: Precambrian Research, v. 174, p. 117–128. doi:https://doi.org/10.1016/j.precamres.2009.07.004.
  • Li, X.H., Li, Z.X., Ge, W.C., Zhou, H.W., Li, W.X., Liu, Y., and Wingate, M.T.D., 2003a, Neoproterozoic granitoids in South China: Crustal melting above a mantle plume at ca. 825 Ma?: Precambrian Research, v. 122, no. 1–4, p. 45–83.
  • Li, X.H., Li, Z.X., Sinclair, J.A., Li, W.X., and Carter, G., 2006, Revisiting the “Yanbian Terrane”: Implications for Neoproterozoic tectonic evolution of the western Yangtze block, South China: Precambrian Research, v. 151, no. 1–2, p. 14–30.
  • Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y., and Kinny, P.D., 2002a, U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia: Precambrian Research, v. 113, p. 135–154. doi:https://doi.org/10.1016/S0301-9268(01)00207-8.
  • Li, X-H., Zhu, W-G., Zhong, H., Wang, X-C., He, D-F., Bai, Z-J., and Liu, F., 2010. The Tongde Picritic Dikes in the Western Yangtze Block: Evidence for Ca. 800-Ma Mantle Plume Magmatism in South China during the Breakup of Rodinia: The Journal of Geology, v. 118, p. 509–522.
  • Li, Z.X., Li, X.H., Kinny, P.D., and Wang, J., 1999, The breakup of Rodinia: Did it start with a mantle plume beneath South China?: Earth Planet Science Letter, v. 173, p. 171–181.
  • Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., and Zhou, H., 2003b, Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia: Precambrian Research, v. 122, p. 85–109. doi:https://doi.org/10.1016/S0301-9268(02)00208-5.
  • Li, Z.X., Li, X.H., Zhou, H.W., and Kinny, P.D., 2002b, Grenvillian continental collision in south China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia: Geology., v. 30, p. 163–166. doi:https://doi.org/10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2.
  • Lin, J., Liu, Y.S., Yang, Y.H., and Hu, Z.C., 2016, Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios: Solid Earth Sciences, v. 1, p. 5–27. doi:https://doi.org/10.1016/j.sesci.2016.04.002.
  • Lu, G.M., Wang, W., Ernst, R.E., et al., 2019, Petrogenesis of Paleo-Mesoproterozoic mafic rocks in the southwestern Yangtze Block of South China: Implications for tectonic evolution and paleogeographic reconstruction: Precambrian Research, v. 322, p. 66–84.
  • Middlemost, E.A.K., 1994, Naming materials in the magma/ igneous rock system: Earth-Science Reviews, v. 37, no. 3–4, p. 215–224. doi:https://doi.org/10.1016/0012-8252(94)90029-9.
  • Pearce, J.A., 1996, Sources and settings of granitic rocks: Episodes., v. 19, no. 4, p. 120–125. doi:https://doi.org/10.18814/epiiugs/1996/v19i4/005.
  • Peccerillo, A., Barberio, M.R., Yirgu, G., Ayalew, D., Barbieri, M., and Wu, T.W., 2003, Relationships between mafic and peralkaline silicic magmatism in continental rift settings: A petrological, geochemical and isotopic study of the Gedemsa Volcano, central Ethiopian rift: Journal of Petrology, v. 44, p. 2003–2032. doi:https://doi.org/10.1093/petrology/egg068.
  • Peng, M., Wu, Y.B., Wang, J., et al., 2009, Paleoproterozoic mafic dyke from Kongling terrain in the Yangtze Craton and its implication: Chinese Science Bulletin, v. 54, no. 6, p. 1098–1104.
  • Rapp, R.P., and Watson, E.B., 1995, Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 36, no. 4, p. 891–931. doi:https://doi.org/10.1093/petrology/36.4.891.
  • Saunders, A.D., and Tarney, J., 1984, Geochemical characteristics of basaltic volcanism within back-arc basins: London, Geological Society (Special Publications), Vol. 16, 59–76 p.
  • Shellnutt, J.G and Zhou, M.F., 2007. Permian peralkaline, peraluminous andmetaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume: Chemical Geology,v. 243, p. 286–316.
  • Smithies, R.H., and Champion, D.C., 2000, The archaean high-Mg diorite suite: Links to tonalite-Trondhjemite-Granodiorite magmatism and implications for early archaean crustal growth: Journal of Petrology, v. 41, no. 12, p. 1653–1671.
  • Soesoo, A., 2000, Fractional crystallization of mantle-derived melts as a mechanism for some I-type granite petrogenesis: An example from Lachlan Fold Belt, Australia: Journal of the Geological Society, v. 157, p. 135–149.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, no. 1, p. 313–345. doi:https://doi.org/10.1144/GSL.SP.1989.042.01.19.
  • Sun, W.H., and Zhou, M.F., 2008, The ~860 Ma, Cordilleran-type Guandaoshan dioritic pluton in the Yangtze Block, SW China: Implications for the origin of Neoproterozoic magmatism: The Journal of Geology, v. 116, p. 238–253.
  • Sun, W.H., Zhou, M.F., Gao, J.F., Yang, Y.H., Zhao, X.F., and Zhao, J.H., 2009, Detrital zircon U-Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China: Precambrian Research, v. 172, p. 99–126.
  • Sun, W.H., Zhou, M.F., and Zhao, J.H., 2007, Geochemistry and tectonic significance of basaltic lavas in the Neoproterozoic Yanbian Group, Southern Sichuan Province, Southwest China: International Geology Review, v. 49, p. 554–571.
  • Turner, S.P., Foden, J.D., and Morrison, R.S., 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia: Lithos., v. 28, p. 151–179.
  • Ukstins, I.A., Renne, P.R., Wolfenden, E., Baker, J., Ayalew, D., and Menzies, M., 2002, Matching conjugate volcanic rifted margins: 40Ar/39Ar chrono-stratigraphy of pre- and syn-rift bimodal flood volcanism in Ethiopia and Yemen: Earth and Planetary Science Letters, v. 198, p. 289–306.
  • Wang, D.B., Wang, B.D., and Yin, F.G., 2019a, Petrogenesis and tectonic implications of Late Mesoproterozoic A1- and A2-type felsic lavas from the Huili Group, southwestern Yangtze Block: Geological Magazine, v. 53, no. 6, p. 2449–2470.
  • Wang, J.Q., Shu, L.S., and Santosh, M., 2017, U-Pb and Lu-Hf isotopes of detrital zircon grains from Neoproterozoic sedimentary rocks in the central Jiangnan Orogen, South China: Implications for Precambrian crustal evolution: Precambrian Research, v. 294, p. 175–188.
  • Wang, K., Li, Z.X., Dong, S.W., Cui, J.J., Han, B.F., Zheng, T., and Xu, Y.L., 2018, Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9-2.6 Ga granitic rocks in the Zhongxiang Complex: Precambrian Research, v. 314, p. 325–352.
  • Wang, X.C., Li, X.H., Li, W.X., Li, Z.X., Liu, Y., Yang, Y.H., Liang, X.R., and Tu, X.L., 2008, The Bikou basalts in northwestern Yangtze Block, South China: Remains of 820-810 Ma continental flood basalts: Geological Society of America Bulletin, v. 120, p. 1478–1492.
  • Wang, X.L., Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O’Reilly, S.Y., Xu, X.S., Liu, X.M., and Zhang, G.L., 2007, Detrital zircon geochronology of Precambrian base ment sequences in the Jiangnan orogen: Dating the assembly of the Yangtze and Cathaysia blocks: Precambrian Research, v. 159, p. 117–131.
  • Wang, Y.J., Zhu, W.G., and Huang, H.Q., 2019b, Ca. 1.04 Ga hot Grenville granites in the western Yangtze Block, southwest China: Precambrian Research, v. 328, p. 217–234.
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419.
  • Yang, Y.J., Zhu, W.G., Bai, Z., Zhong, H., Ye, X.T., and Fan, H.P., 2016, Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic-Ultramafic dykes in the Panzhihua area, western Yangtze block, SW China: International Journal of Earth Sciences, v. 106, no. 1, p. 1–29.
  • Yang, Y.J., Zhu, W.G., Bai, Z.J., Zhong, H., Ye, X.T., and Fan, H.P., 2017. Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China: International Journal of Earth Sciences, v. 106 no.1, p. 185–213.
  • Zhang, C.H., Gao, L.Z., Wu, Z.J., et al., 2007, SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan; Evidence for Grenvillian orogeny in South China: Chinese Science Bulletin, v. 52, no. 11, p. 1517–1525. (in Chinese with English abstract).
  • Zhang, L.J., Ma, C.Q., Wang, L.X., She, Z.B., and Wang, S.M., 2011, Discovery of Paleoproterozoic rapakivi granite on the northern margin of the Yangtze block and its geological significance: Chinese Science Bulletin, v. 56, no. 3, p. 306–318.
  • Zhao, G.C., 2015, Jiangnan orogen in South China: Developing from divergent double subduction: Gondwana Research, v. 27, p. 1173–1180.
  • Zhao, J.H., Asimow, P.D., Zhou, M.F., Zhang, J., Yan, D.P., and Zheng, J.P., 2017, An Andean-type arc system in Rodinia constrained by the Neoproterozoic Shimian ophiolite in south china: Precambrian Research, v. 296, p. 93–111.
  • Zhao, J.H., Li, Q.W., Liu, H., and Wang, W., 2018, Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator: Earth Science Reviews, v. 187, p. 1–18.
  • Zhao, J.H., and Zhou, M.F., 2007a, Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): Implications for subduction-related metasomatism in the upper mantle: Precambrian Research, v. 152, no. 1, p. 27–47.
  • Zhao, J.H., and Zhou, M.F., 2007b, Neoproterozoic adakitic plutons and arc magmatism along the western margin of the Yangtze block, South China: The Journal of Geology, v. 115, no. 6, p. 675–689.
  • Zhao, J.H., Zhou, M.F., Wu, Y.B., Zheng, J.P., and Wang, W., 2019, Coupled evolution of Neoproterozoic arc mafc magmatism and mantle wedge in the western margin of the South China Craton: Contributions to Mineralogy and Petrology, v. 174, p. 36.
  • Zhao, J.H., Zhou, M.F., Zheng, J.P., and Griffin, W.L., 2013, Neoproterozoic tonalite and trondhjemite in the Huangling complex, South China: Crustal growth and reworking in a continental arc environment: American Journal of Science, v. 313, p. 540–583.
  • Zhao, X.F., Zhou, M.F., and Li, J.W., 2010, Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block: Precambrian Research, v. 182, p. 57–69.
  • Zhao, X.F., Zhou, M.F., Li, J.W., and Wu, F.Y., 2008, Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment: Chemical Geology, v. 257, p. 1–15.
  • Zheng, Y.F., Zhang, S.B., Zhao, Z.F., Wu, Y.B., Li, X.H., Li, Z.X., and Wu, F.Y., 2007, Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust: Lithos., v. 96, p. 127–150.
  • Zhou, B.G., Wang, S.W., Sun, X.M., Liao, Z.W., Guo, Y., Jiang, X.F., Zhu, H.P., Liu, C.Z., Luo, M.J., Ma, D., Shen, Z.W., and Zhang, H., 2012, SHRIMP U-Pb age and its significance of zircons in welded tuff of Wangchang Formation in Dongchuan area, Yunnan Province, SW China: Geological Review, v. 58, no. 2, p. 359–368. (in Chinese with English Abstract).
  • Zhou, M.F., Kennedy, A.K., Sun, M., Malpas, J., and Lesher, C.M., 2002, Late Proterozoic arc-related mafic intrusions along the northern margin of South China: Implications for the accretion of Rodinia: The Journal of Geology, v. 110, p. 611–618.
  • Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006a, The Yanbian terrane (southern Sichuan Province, SW China): A Neoproterozoic arc assemblage in the western margin of the Yangtze Block: Precambrian Research, v. 144, p. 19–38.
  • Zhou, M.F., Yan, D.P., Wang, C.L., et al., 2006b, Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China: Earth and Planetary Science Letters, v. 248, p. 271–285.
  • Zhu, W.G., Zhong, H., Li, Z.X., Bai, Z.J., and Yang, Y.J., 2016, SIMS zircon U-Pb ages, geochemistry and Nd-Hf isotopes of ca. 1.0 Ga mafic dykes and volcanic rocks in the Huili area, SW China: Origin and tectonic significance: Precambrian Research, v. 273, p. 67–89.
  • Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019a, Petrogenesis and geodynamic implications of Neoproterozoic gabbro-diorites, adakitic granites, and A-type granites in the southwestern margin of the Yangtze Block, South China: Journal of Asian Earth Sciences., v. 183, p. 1367–9120.
  • Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019b, Neoproterozoic peraluminous granites in the western margin of the Yangtze Block, South China: Implications for the reworking of mature continental crust: Precambrian Research, v. 333, p. 105443.
  • Zhu, Y., Lai, S.C., Qin, J.F., et al., 2020, Petrogenesis and geochemical diversity of Late Mesoproterozoic S-type granites in the western Yangtze Block, South China: Co-entrainment of peritectic selective phases and accessory minerals: Lithos., v. 352-353, p. 105326.
  • Zhu, Y., Lai, S.C., Qin, J.F., et al., 2019c. Geochemistry and zircon U–Pb–Hf isotopes of the 780 Ma I-type granites in the western Yangtze Block: petrogenesis and crustal evolution: International Geology Review, v. 61, no. 10, p. 1222–1243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.