352
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Contrasting latest Permian intracontinental gabbro and Late Triassic arc gabbro–diorite in the Gangdese constrain the subduction initiation of the Neo-Tethys

, ORCID Icon, &
Pages 2356-2375 | Received 05 Apr 2020, Accepted 11 Oct 2020, Published online: 23 Oct 2020

References

  • Ali, J.R., Cheung, H.M., Aitchison, J.C., and Sun, Y.D., 2013, Palaeomagnetic reinvestigation of Early Permian rift basalts from the Baoshan Block, SW China: Constraints on the site‐of‐origin of the Gondwana‐derived eastern Cimmerian terranes: Geophysical Journal International, v. 193, p. 650–663.
  • Andersen, T., 2002, Correction of common Pb in U–Pb analyses that do not report 204Pb: Chemical Geology, v. 192, p. 59–79.
  • Anderson, J.L., and Bender, E.E., 1989, Nature and origin of Proterozoic A-type granitic magmatism in the southwestern United States of America: Lithos, v. 23, no. 1–2, p. 19–52. doi:https://doi.org/10.1016/0024-4937(89)90021-2.
  • Becker, A., Holtz, F., and Johannes, W., 1998, Liquidus temperatures and phase compositions in the system Qz–Ab–Or at 5 kbar and very low water activities: Contributions to Mineralogy and Petrology, v. 130, p. 213–224. doi:https://doi.org/10.1007/s004100050361.
  • Bedard, J.H., 1994, A procedure for calculating the equilibrium distribution of trace elements among the minerals of cumulate rocks, and the concentration of trace elements in the coexisting liquids: Chemical Geology, v. 118, no. 1–4, p. 143–153. doi:https://doi.org/10.1016/0009-2541(94)90173-2.
  • Bernstein, S., Kelemen, P.B., Tegner, C., Kurz, M.D., Blusztajn, J., and Brooks., C.K., 1998, Post-breakup basaltic magmatism along the East Greenland tertiary rifted margin: Earth and Planetary Science Letters, v. 160, no. 3–4, p. 845–862. doi:https://doi.org/10.1016/S0012-821X(98)00132-0.
  • Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets: Earth and Planetary Science Letters, v. 273, p. 48–57.
  • Burg, J.P., Proust, F., Tapponnier, P., and Chen, G.M., 1983, Deformation phases and tectonic evolution of the Lhasa block, China: Eclogae Geologicae Helvetiae, v. 76, p. 643–665.
  • Cai, F.L., Ding, L., Laskowski, A.K., Kapp, P., Wang, H.Q., Xu, Q., and Zhang, L.Y., 2016, Late Triassic paleogeographic reconstruction along the Neo-Tethyan Ocean margins, southern Tibet: Earth and Planetary Science Letters, v. 435, p. 105–114.
  • Chu, M.F., Chung, S.L., Song, B., Liu, D.Y., O’Reilly, S.Y., Pearson, N.J., Ji, J.Q., and Wen, D.J., 2006, Zircon U–Pb and Hf Isotope Constraints on the Mesozoic Tectonics and crustal evolution of Southern Tibet: Geology, v. 34, p. 745–748.
  • Chung, S.L., Chu, M.F., Zhang, Y.Q., Xie, Y.W., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X.H., Zhang, Q., and Wang, Y.Z., 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism: Earth Science Reviews, v. 68, p. 173–196.
  • Corfu, F., Hanchar, J., Hoskin, P., and Kinny, P., 2003, Atlas of zircon textures: Reviews in Mineralogy and Geochemistry, v. 53, p. 469–500. doi:https://doi.org/10.2113/0530469.
  • Coulon, C., Maluski, H., Bollinger, C., and Wang, S., 1986, Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar–40Ar dating, petrological characteristics and geodynamical significance: Earth and Planetary Science Letters, v. 79, p. 281–302. doi:https://doi.org/10.1016/0012-821X(86)90186-X.
  • Crowhurst, P.V., Maas, R., Hill, K.C., Foster, D.A., and Fanning, C.M., 2004, Isotopic constraints on crustal architecture and Permo–Triassic tectonics in New Guinea: Possible links with eastern Australia: Australian Journal of Earth Sciences, v. 51, p. 109–124.
  • Davies, G.F., 1992, Temporal variation of the Hawaiian plume flux: Earth and Planetary Science Letters, v. 113, no. 1–2, p. 277–286. doi:https://doi.org/10.1016/0012-821X(92)90225-K.
  • Defant, M.J., Xu, J.F., Kepezhinskas, J., Wang, Q., Zhang, Q., and Xiao, L., 2002, Adakites: Some variations on a theme: Acta Petrologica Sinica, v. 18, p. 129–142.
  • England, P., and Searle, M., 1986, The Cretaceous–Tertiary deformation of the Lhasa block and its implications for crustal thickening in Tibet: Tectonics, v. 5, p. 1–14.
  • Fan, S., Ding, L., Murphy, M.A., Yao, W., and Yin, A., 2017, Late Paleozoic and Mesozoic evolution of the Lhasa Terrane in the Xainza area of southern Tibet: Tectonophysics, v. 721, p. 415–434. doi:https://doi.org/10.1016/j.tecto.2017.10.022.
  • Ferry, J.M., and Watson, E.B., 2007, New thermodynamic models and revised calibrations for the Ti in zircon and Zr in rutile thermometers: Contributions to Mineralogy and Petrology, v. 154, p. 429–437.
  • Franke, D., 2013, Rifting, lithosphere breakup and volcanism: Comparison of magma poor and volcanic rifted margins: Marine Petroleum and Geology, v. 43, p. 63–87.
  • Frey, F.A., Green, D.H., and Roy, S.D., 1978, Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data: Journal of Petrology, v. 19, no. 3, p. 463–513. doi:https://doi.org/10.1093/petrology/19.3.463.
  • Garzanti, E., Fort, P.L., and Sciunnach, D., 1999, First report of Lower Permian basalts in South Tibet: Tholeiitic magmatism during break-up and incipient opening of Neotethys: Journal of Asian Earth Sciences, v. 17, p. 533–546.
  • Garzanti, E., and Sciunnach, D., 1997, Early Carboniferous onset of Gondwanian glaciation and NeoTtethyan rifting in South Tibet: Earth and Planetary Science Letters, v. 148, p. 359–365.
  • Gill, J.B., 1981, Orogenic Andesites and Plate Tectonics: Berlin, Springer-Verlag.
  • Glassley, W., 1974, Geochemistry and tectonics of the crescent volcanic rocks, Olympic Peninsula, Washington: Geological Society of America Bulletin, v. 85, p. 785–794.
  • Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., van Achterbergh, E., O’Reilly, S.Y., and Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM–MC–ICP–MS analysis of zircon megacrysts in kimberlites: Geochimca et Cosmochimca Acta, v. 64, p. 133–147.
  • Grove, T.L., Till, C.B., and Krawczynski, M.J., 2012, The role of H2O in subduction zone magmatism: Annual Review of Earth and Planetary Sciences, v. 40, p. 413–439.
  • Hanski, E., Kamenetsky, V.S., Luo, Z.Y., Xu, Y.G., and Kuzmin, D.V., 2010, Primitive magmas in the Emeishan large igneous Province, southwestern China and northern Vietnam: Lithos, v. 119, p. 75–90.
  • Harlow, G.E., 1997, K in clinopyroxene at high pressure and temperature: An experimental study: American Mineralogist, v. 82, p. 259–269.
  • Hawkesworth, C.J., Turner, S.P., McDermott, F., Peate, D.W., and Van Calsteren, P., 1997, U–Th isotopes in arc magmas: Implications for element transfer from the subducted crust: Science, v. 276, p. 551–555.
  • He, S.D., Kapp, P., DeCelles, P.G., Gehrels, G.E., and Heizler, M., 2007, Cretaceous–Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet: Tectonophysics, v. 433, p. 15–37.
  • Hoskin, P.W.O., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Review in Mineralogy and Geochemistry, v. 53, p. 27–62.
  • Huang, B.C., Yan, Y.G., Piper, J.D.A., Zhang, D.H., Yi, Z.Y., Yu, S., and Zhou, T.H., 2018, Paleomagnetic constraints on the paleogeography of the East Asian blocks during Late Paleozoic and Early Mesozoic times: Earth Science Reviews, v. 186, p. 8–36.
  • Huismans, R.S., Podladchikov, Y.Y., and Cloetingh, S., 2001, Transition from passive to active rifting: Relative importance of asthenospheric doming and passive extension of the lithosphere: Journal of Geophysical Research-Solid Earth, v. 106, p. 11271–11291.
  • JGS (Jiangxi Geological Survey), 2002, Unpublished geological map with report, scale 1/250,000, block: Cuomai. H45C002002.
  • Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X., and Liu, C.Z., 2009, Zircon U–Pb chronology and Hf isotopic constraints on the petrogenesis of Gangdese batholiths, southern Tibet: Chemical Geology, v. 262, p. 229–245.
  • Kang, Z.Q., Xu, J.F., Wilde, S.A., Feng, Z.H., Chen, J.L., Wang, B.D., Fu, W.C., and Pan, H.B., 2014, Geochronology and geochemistry of the Sangri Group volcanic rocks, southern Lhasa terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese magmatic arc: Lithos, v. 200–201, p. 157–168.
  • Kelemen, P.B., Hanghoj, K., and Greene, A.R., 2003, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust: Treatise on Geochemistry, v. 3, p. 593–659.
  • Kepezhinskas, P., McDermott, F., Defant, M.J., Hochstaedter, A., Drummond, M.S., Hawkesworth, C.J., Koloskov, A., Maury, R., and Bellon, H., 1997, Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis: Geochimica et cosmochimica acta, v. 61, p. 577–600.
  • Klein, C., and Hurlbut, C.S., 1993, Manual of mineralogy (21st edition): New York: John Wiley and Sons Inc.
  • Leier, A.L., Kapp, P., Gehrels, G.E., and DeCelles, P.G., 2007, Detrital zircon geochronology of Carboniferous? Cretaceous strata in the Lhasa terrane, southern Tibet: Basin Research, v. 19, p. 361–378.
  • Li, F.Q., Liu, W., Zhang, S.Z., and Wang, B.D., 2012, Chronology and geochemical characteristics of Yawa mafic complex in the Dajiacuo area, southern Gangdese: Acta Geological Sinica, v. 86, p. 1592–1603.
  • Mayer, B., Jung, S., Romer, R.L., Pfänder, J.A., Klügel, A., Pack, A., and Gröner, E., 2014, Amphibole in alkaline basalts from intraplate settings: Implications for the petrogenesis of alkaline lavas from the metasomatised lithospheric mantle: Contributions to Mineralogy and Petrology, v. 167, p. 989.
  • Meng, Y.K., Xu, Z.Q., Santosh, M., Ma, X.X., Chen, X.J., and Liu, F., 2016, Late Triassic crustal growth in southern Tibet: Evidence from the Gangdese magmatic belt: Gondwana Research, v. 37, p. 449–464. doi:https://doi.org/10.1016/j.gr.2015.10.007.
  • Metcalfe, I., 2013, Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys: Journal of Asian Earth Sciences, v. 66, p. 1–33.
  • Middlemost, E.A.K., 1994, Naming Materials in the Magma/igneous Rock System: Earth-Science Reviews, v. 37, p. 215–224.
  • Neave, D.A., and Putirka, K.D., 2017, A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones: American Mineralogist, v. 102, p. 777–794.
  • Parsons, T., 1995, The Basin and Range province. in Olsen, K.H., ed., Continental rifts: Evolution, structure, tectonics: Amsterdam, Elsevier, p. 277–316.
  • Pearce, J.A., 1983, Role of the sub-continental lithosphere in magma genesis at active continental margines: Nantwich, Shiva Publications, p. 230–250p.
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, no. 1–4, p. 14–48. doi:https://doi.org/10.1016/j.lithos.2007.06.016.
  • Pearce, T.H., and Cann, J.R., 1973, Tectonic setting of basic volcanic rocks determined using trace element analysis: Earth and Planetary Science Letters, v. 19, p. 290–300.
  • Peccerillo, R., and Taylor, S.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey: Contributions to Mineralogy and Petrology, v. 58, p. 63–81.
  • Petford, N., and Atherton, M., 1996, Na-rich partial melts from newly underplated basaltic crust: The Cordillera Blanca Batholith, Peru: Journal of Petrology, v. 37, no. 6, p. 1491–1521. doi:https://doi.org/10.1093/petrology/37.6.1491.
  • Pilet, S., Baker, M.B., and Stolper, E.M., 2008, Metasomatized lithosphere and the origin of alkaline lavas: Science, v. 320, no. 5878, p. 916–919. doi:https://doi.org/10.1126/science.1156563.
  • Pindell, J., Graham, R., and Horn, B., 2014, Rapid outer marginal collapse at the rift to drift transition of passive margin evolution, with a Gulf of Mexico case study: Basin Research, v. 26, p. 701–725.
  • Plank, T., and Langmuir, C.H., 1998, The chemical composition of subducting sediment and its consequences for the crust and mantle: Chemical Geology, v. 145, no. 3–4, p. 325–394. doi:https://doi.org/10.1016/S0009-2541(97)00150-2.
  • Putirka, K., 2008, Thermometers and barometers for volcanic systems: Reviews in Mineralogy and Geochemistry, v. 69, no. 1, p. 61–120. doi:https://doi.org/10.2138/rmg.2008.69.3.
  • Qu, Y.G., Wang, Y.S., Zhang, S.Q., Lv, P., and Jiang, X.F., 2003, An inspiration from the section of the Late Triassic Duoburi Formation in the Xainza area: Stratigraphic constraints on the Indosinian movement in Gangdese: Geological Bulletin of China, v. 22, p. 470–473.
  • Reston, T., 2007, Extension discrepancy at North Atlantic nonvolcanic rifted margins: Depth-dependent stretching or unrecognized faulting?: Geology, v. 35, no. 4, p. 367–370. doi:https://doi.org/10.1130/G23213A.1.
  • Rooney, T.O., Nelson, W.R., Ayalew, D., Hanan, B., Yirgu, G., and Kappelman, J., 2017, Melting the lithosphere: Metasomes as a source for mantle-derived magmas: Earth and Planetary Science Letters, v. 461, p. 105–118.
  • Rosenthal, A., Foley, S.F., Pearson, D.G., Nowell, G.M., and Tappe, S., 2009, Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift: Earth and Planetary Science Letters, v. 284, no. 1–2, p. 236–248. doi:https://doi.org/10.1016/j.epsl.2009.04.036.
  • Saccani, E., Padoa, E., and Photiades, A., 2012, Triassic mid-ocean ridge basalts from the Argolis Peninsula (Greece): New constraints for the early oceanization phases of the Neo-Tethyan Pindos basin: Geological Society, London, Special Publications, v. 218, p. 109–127. doi:https://doi.org/10.1144/GSL.SP.2003.218.01.07.
  • Şengör, A.M.C., 1990, Plate tectonics and orogenic research after 25 years: A Tethyan perspective: Earth-Science Reviews, v. 195, p. 1–82.
  • Shellnutt, J.G., 2018, The Panjal traps: Geological Society, London, Special Publications, v. 463, no. 1, p. 59–86. doi:https://doi.org/10.1144/SP463.4.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society of London Special Publications, v. 42, p. 313–345.
  • Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R., and Foly, S.F., 2007, Trace-element partitioning between amphibole and silicate melt: Reviews in Mineralogy and Geochemistry, v. 67, p. 417–452.
  • Wang, C., Ding, L., Zhang, L.Y., Kapp, P., Pullen, A., and Yue, Y.H., 2016, Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere: Lithos, v. 262, p. 320–333.
  • Wang, Y.J., Yang, Q., Matsuoka, A., Kobayashi, K., Nagahashi, T., and Zeng, Q.G., 2002, Triassic radiolarians from the Yarlung Zangbo suture zone in the Jinlu area, Zetang county, southern Tibet: Acta Micropalaeontologica Sinica, v. 19, p. 215–227.
  • Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325–343.
  • Wu, F.Y., Ji, W.Q., Liu, C.Z., and Chung, S.L., 2010, Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet: Chemical Geology, v. 271, p. 13–25.
  • XZBGM (Xizang Bureau of Geology and Mineral Resources), 1993. Regional geology of Xizang Autonomous Region, China, with geologic map (1: 1500000). Beijing, Geological Publishing House. 707 p.
  • Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Günther, D., and Wu, F.Y., 2004, Accurate U–Pb age and trace element determinations of zircon by laser ablation–inductively coupled plasma mass spectrometry: Geostandards and Geoanalytical Research, v. 28, p. 353–370.
  • Zeng, Y.C., Xu, J.F., Ducea, M.N., Chen, J.L., Huang, F., and Zhang, L., 2019, Initial rifting of the Lhasa terrane from Gondwana: Insights from the Permian (~262 Ma) amphibole-rich lithospheric mantle-derived Yawa basanitic intrusions in southern Tibet: Journal of Geophysical Research: Solid Earth, v. 124, p. 2564–2581.
  • Zhang, K.J., 2004, Secular geochemical variations of the Lower Cretaceous siliciclastic rocks from central Tibet (China) indicate a tectonic transition from continental collision to back-arc rifting: Earth and Planetary Science Letters, v. 229, p. 73–89.
  • Zhang, K.J., Cai, J.X., Zhang, Y.X., and Zhao, T., 2006, Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications: Earth and Planetary Science Letters, v. 245, p. 722–729.
  • Zhang, K.J., Xia, B.D., and Liang, X.W., 2002, Mesozoic–Paleogene sedimentary facies and paleogeography of Tibet, western China: Tectonic implications: Geological Journal, v. 37, p. 217–246.
  • Zhang, K.J., Zhang, Y.X., Tang, X.C., and Xia, B., 2012a, Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo–Asian collision: Earth-Science Reviews, v. 114, p. 236–249.
  • Zhang, Y.C., and Shen, S.Z., 2007, The Lopingian Series in the Lhasa block, Tibet and its palaeogeographical implications: Journal of Stratigraphy, v. 31, p. 345–353.
  • Zhang, Y.X., and Zhang, K.J., 2017, Early permian Qiangtang flood basalts, northern Tibet China: A mantle plume that disintegrated northern Gondwana?: Gondwana Research, v. 44, p. 96–108.
  • Zhang, Z.M., Dong, X., Liu, F., Lin, Y., Yan, R., He, Z., and Santosh, M., 2012b, The making of Gondwana: Discovery of 650 Ma HP granulites from the North Lhasa, Tibet: Precambrian Research, v. 212–213, p. 107–116.
  • Zhao, F., Alves, T.M., Wu, S.G., Li, W., Huuse, M., Mi, L.J., Sun, Q.L., and Ma, B.J., 2016, Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea): Earth and Planetary Science Letters, v. 445, p. 79–91.
  • Zhu, D.C., Pan, G.T., Chung, S.L., Liao, Z.L., Wang, L.Q., and Li, G.M., 2008, SHRIMP zircon age and geochemical constraints on the origin of lower Jurassic volcanic rocks from the Yeba Formation, Southern Gangdese, South Tibet: International Geology Review, v. 50, p. 442–471.
  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., and Wu, F.Y., 2011, The Lhasa terrane: Record of microcontinent and its histories of drift and growth: Earth and Planetary Science Letters, v. 301, p. 241–255.
  • Zhu, J., Du, Y.S., Liu, Z.X., Feng, Q.L., Tian, W.X., Li, J.P., and Wang, C.P., 2006, Mesozoic radiolarian chert from the middle sector of the Yarlung Zangbo suture zone, Tibet and its tectonic implications: Science in China Series D–Earth Sciences, v. 49, p. 348–357.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.