444
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The Late Cretaceous magmatic arc of the south Aegean: Geodynamic implications from petrological and geochemical studies of granitoids from Anafi island (Cyclades – Greece)

ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon & show all
Pages 820-843 | Received 18 Aug 2020, Accepted 30 Jan 2021, Published online: 21 Mar 2021

References

  • Abu-Alam, T.S., and Stüwe, K., 2009, Exhumation during oblique transpression: The Feiran-Solaf region, Egypt: Journal of Metamorphic Geology, v. 27, p. 439–459.
  • Altherr, R., Kreuzer, H., Lenz, H., Wendt, I., Harre, W., and Dürr, S., 1994, Further evidence for a late Cretaceous low-pressure/high-temperature terrane in the Cyclades, Greece - Petrology and Geochronology of Crystalline Rocks from the Islands of Donoussa and Ikaria: Chemie Der Erde, v. 54, p. 319–328.
  • Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G.A., Keller, J., Harre, W., and Hohndorf, A., 1982,A late Oligocene/early Miocene high temperature belt in the Attic–Cycladic crystalline complex (S.E. Pelagonian, Greece): Geologisches Jahrbuch, v. E23, p. 97–164.
  • Andriessen, P.A.M., Banga, B., and Hebeda, E.H., 1987, Isotopic age study of pre‐Alpine rocks in the basal units on Naxos, Sikinos and Ios, Greek Cyclades: Geologie En Mijnbouw, 66:3, 3–14.
  • Avigad, D., and Garfunkel, Z. 1991, Uplift and exhumation of high-pressure metamorphic terrains;The Example of the Cycladic Blueschist Belt (Aegean Sea): Tectonophysics, v. 188, p. 357–372.
  • Bargnesi, E.A., Stockli, D.F., Mancktelow, N., and Soukis, K., 2013, Miocene core complex development and coeval supradetachment basin evolution of Paros, Greece: Insights from (U-Th)/He thermochronometry, Tectonophysics, 595–596:165–182. https://doi.org/10.1016/j.tecto.2012.07.015
  • Be’eri-Shlevin, Y., Avigad, D., and Matthews, A., 2009, Granitoid intrusion and high temperature metamorphism in the Asteroussia Unit, Anafi Island (Greece): Petrology and Geochronology, Israel Journal of Earth Sciences, 58:1, 13–27.
  • Beaudoin, A., Augier, R., Laurent, V., Jolivet, L., Lahfid, A., Bosse, V., Arbaret, L., Rabillard, A., and Menant, A., 2015, The ikaria high-temperature metamorphic core complex (Cyclades, Greece): Geometry, kinematics and thermal structure, Journal of Geodynamics 92:18–41. https://doi.org/10.1016/j.jog.2015.09.004
  • Blundy, J.D., and Holland, T.J.B., 1990, Calcic amphibole equilibria and a new amphibole – Plagioclase geothermometer, Contributions to Mineralogy and Petrology, 104:208–224. https://doi.org/10.1007/BF00306444.2
  • Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., and Schmitt, A.K., 2013, Zircon saturation re-revisited: Chemical Geology, 351:324–334.
  • Böger, H., 1983, Stratigraphische und tektonische Verknüpfungen kontinentaler Sedimente des Neogens im Ägäis-Raum: Geologische Rundschau, 72: 771–814, Schweizerische Rundschau fur Medizin Praxis = Revue suisse de medecine Praxis, 22.
  • Bolhar, R., Ring, U., and Allen, C.M., 2010, An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology, Contributions to Mineralogy and Petrology, 160(5):719–742
  • .Bonin, B., 2007, A-type granites and related rocks: Evolution of a concept, Problems and Prospects: Lithos, v. 97, p. 1–29.
  • Bonneau, M., 1984, Correlation of the Hellenic nappes in the south-east Aegean and their tectonic reconstruction. in Dixon, J.E., and Robertson, A.H.F. (Eds.). The Geological Evolution of the Eastern Mediterranean. Special Publication of the Geological Society of London. Blackwell Scientific Publications, Oxford, pp. 517–527.
  • Borisov, A., and Aranovich, L., 2019, Zircon solubility in silicate melts: New experiments and probability of zircon crystallization in deeply evolved basic melts, Chemical Geology 510:103–112. https://doi.org/10.1016/j.chemgeo.2019.02.019
  • Brichau, S., Ring, U., Ketcham, R.A., Carter, A., Stockli, D., and Brunel, M., 2006, Constraining the long-term evolution of the slip rate for a major extensional fault system in the central Aegean, Greece, Using Thermochronology: Earth and Planetary Science Letters, v. 241, p. 293–306.
  • Bröcker, M., and Franz, L., 1998, Rb–Sr isotope studies on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprint-ing and deformational activity: Geological Magazine, v. 135, p. 369–382.
  • Bröcker, M., and Franz, L., 2006, Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades, Greece): results of a Rb–Sr study: Geological Magazine, v. 143, p. 609–620.
  • Bröcker, M., Kreuzer, H., Matthews, A., and Okrusch, M., 1993, 40Ar/39 Ar and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt, Greece, Journal of Metamorphic Geology 11: 223–240, 2,https://doi.org/10.1111/j.1525-1314.1993.tb00144.x
  • Bröcker, M., and Pidgeon, R.T., 2007, Protolith ages of meta-igneous and meta-tuffaceousrocks from the Cycladic Blueschist Unit, Greece: Results of a Reconnaissance UPbzircon Study: Journal of Geology, v. 115, p. 83–98.
  • Buick, I.S., and Holland, T.J.B., 1989, The P-T-t path associated with crustal extension, Naxos, Cyclades, Greece, Geological Society, London, Special Publications 43: 365–369, 1,https://doi.org/10.1144/GSL.SP.1989.043.01.32
  • Castorina, F., Magganas, A., Masi, U., and Kyriakopoulos, K., 2020, Geochemical and Sr-Nd isotopic evidence for petrogenesis and geodynamic setting of Lower-Middle Triassic volcanogenic rocks from central Greece: Implications for the Neotethyan Pindos ocean, Mineralogy and Petrology 114: 39–56, 1,https://doi.org/10.1007/s00710-019-00687-7
  • Chappell, B.W., 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites: Lithos,46:535–551.
  • Chappell, B.W., and White, A.J.R., 2001, Two contrasting granite types: 25 years later, Australian Journal of Earth Sciences 48(4): 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • Clemens, J.D., 2003, S-type granitic magmas—petrogenetic issues, Models and Evidence: Earth-Science Reviews 61, p. 1–18.
  • Clemens, J.D., and Stevens, G., 2012, What controls chemical variation in granitic magmas? Lithos 134-135:317–329. https://doi.org/10.1016/j.lithos.2012.01.001
  • Clemens, J.D., Stevens, G., and Farina, F., 2011, The enigmatic sources of I-type granites: The peritectic connexion: Lithos, 126: 174–181, Schizophrenia Research, 1–3:https://doi.org/10.1016/j.schres.2010.10.024.
  • Coleman, M., Dubosq, R., Schneider, D.A., Grasemann, B., and Soukis, K., 2019, Along‐strike consistency of an extensional detachment system, West Cyclades, Greece, Terra Nova 31: 220–233, 3. https://doi.org/10.1111/ter.12388
  • Coleman, M.J., Schneider, D.A., Grasemann, B., Soukis, K., Lozios, S., and Hollinetz, M.S., 2020, Lateral Termination of a Cycladic‐Style Detachment System (Hymittos, Greece). Tectonics, v. 39, p. e2020TC006128.
  • Dan, W., Li, X.-H., Wang, Q., Wang, X.-C., Liu, Y., and Wyman, D.A., 2014, Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for Rapid Sediment Recycling during Slab Break-off, Precambrian Research, v. 254, p. 59–72.
  • Davies, J.H., and von Blanckenburg, F., 1995,Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens: Earth and Planetary Science Letters, 129 : 85–102, Journal of the Neurological Sciences. https://doi.org/10.1016/0022-510x(95)00072-a.
  • Deschamps, F., Guillot, S., Godard, M., Andreani, M., and Hattori, K., 2011, Serpentinites act as sponges for fiuid-mobile-elements in abyssal and subduction zone environments: Terra Nova, 23:171–178.
  • Dragovic, B., Baxter, E.F., and Caddick, M.J., 2015, Pulsed dehydration and garnet growth during subduction revealed by zoned garnet geochronology and thermodynamic modeling, Sifnos, Greece: Earth and Planetary Science Letters, v. 413, p. 111–122.
  • Dubois, R., and Bignot, G., 1979, Présence d’un‘hardground’nummulitique au de la série Cretacée d’Almyropotamos (Eubée méridionale, Grèce): Comptes Rendus de l’Académie des Sciences, Série II 289, p. 993–995.
  • Ducea, M.N., Paterson, S.R., and DeCelles, P.G., 2015, High-Volume Magmatic Events in Subduction Systems: Elements, 11:99–104.
  • Dürr, S., Altherr, R., Keller, J., Okrusch, M., and Seidel, E.,1978, The median Aegean crystal-line belt: Stratigraphy, structure, metamorphism, magmatism, Cloos, H., Roeder, D., and Schmidt, K., Editors, Alps, Appenines, Hellenides, v.38. Scheitzerbart:Stuttgart,455–477.
  • Eby, G.N., 1990, The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis: Lithos, 26:115–134.
  • Eby, G.N., and Kochhar, N., 1990, Geochemistry and petrogenesis of the Malani igneous suite, North Peninsular India: Journal of the Geological Society of India, 36:2, 109–130.
  • Flansburg, M.E., Stockli, D.F., Poulaki, E.M., and Soukis, K., 2019, Tectono‐magmatic and stratigraphic evolution of the Cycladic Basement, Ios Island, Greece, Tectonics, 38:2291–2316. https://doi.org/10.1029/2018tc005436.7
  • Foden, J., Sossi, P.A., and Wawryk, C.M., 2015, Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite, Lithos, 212-215:32–44. https://doi.org/10.1016/j.lithos.2014.10.015
  • Frost, B.R., and Frost, C.D., 2008, A Geochemical Classification for Feldspathic Igneous Rocks: Journal of Petrology, 49:1955–1969.
  • Gao, P., Zheng, Y.F., and Zhao, Z.F., 2016, Distinction between S-type and peraluminous I-typegranites: Zircon versus whole-rock geochemistry, Lithos 258-259:77–91,https://doi.org/10.1016/j.lithos.2016.04.019
  • Gautier, P., Brun, J.‐.P., and Jolivet, L., 1993, Structure and kinematics of Upper Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands, Greece),Tectonics, 12:5, 1180–1194. https://doi.org/10.1029/93TC01131
  • Gervasoni, F., Klemme, S., Rocha-Júnior, E.R.V., and Berndt, J., 2016, Zircon saturation in silicate melts: A new and improved model for aluminous and alkaline melts: Contributions to Mineralogy and Petrology, 171:21.
  • Gerya, T., 2011, Future directions in subduction modeling, Journal of Geodynamics, 52:344–378 https://doi.org/10.1016/j.jog.2011.06.005.5
  • Gill, J.B., 1981, Orogenetic Andesites and Plate Tectonics, Spinger:Berlin, 390.
  • Grasemann, B., Schneider, D.A., Stockli, D.F., and Iglseder, C., 2012, Miocene bivergent crustal extension in the Aegean: Evidence from the western Cyclades (Greece): Lithosphere, 4:23–39.
  • Hammarstrom, J.M., and Zen, E.A., 1986, Aluminum in hornblende: An empirical igneous geobarometer: American Mineralogist, 71:1297–1313.
  • Hattori, K.H., and Guillot, S., 2003, Volcanic fronts form as a consequence of serpentinite dehydration in the forearc mantle wedge: Geology, 31:525–528.
  • Healy, B., Collins, W.J., and Richards, S.W., 2004, A hybrid origin for Lachlan S-type granites: The Murrumbidgee Batholith example: Lithos, 78:197–216.
  • Hey, M.H., 1954, A new review of the chlorites: Mineralogical Magazine, v. 30, p. 277–292. doi:https://doi.org/10.1180/minmag
  • Huet, B., Labrousse, L., Monié, P., Malvoisin, B., and Jolivet, L., 2015, Coupled phengite 40Ar-39Ar geochronology and thermobarometry: P-T-t evolution of Andros Island (Cyclades, Greece). Geological Magazine, v. 152, p. 711–727.
  • Irvine, T.N., and Baragar, W.R.A., 1971, Guide to chemical classification of common volcanic Rocks: Canadian Journal of Earth Sciences, 8:523–548.
  • Jadamec, M., and Billen, M.I., 2010, Reconciling rapid 3-D mantle fiow and surface plate motions near the eastern Alaska slab edge, Nature 465: 338–341, 7296. https://doi.org/10.1038/nature09053
  • Jolivet, L., and Brun, J., 2010, Cenozoic geodynamic evolution of the Aegean, International Journal of Earth Sciences (Geologische Rundschau), 99:109–138. https://doi.org/10.1007/s00531-008-0366-4
  • Jolivet, L., Lecomte, E., Huet, B., Denèle, Y., Lacombe, O., Labrousse, L., Le Pourhiet, L., and Mehl, C., 2010, The North Cycladic Detachment System, Earth and Planetary Science Letters, 289:87–10., https://doi.org/10.1016/j.epsl.2009.10.032.1–2
  • Jolivet, L., Menant, A., Sternai, P., Rabillard, A., Arbaret, L., Augier, R., Laurent, V., Beaudoin, A., Grasemann, B., Huet, B., Labrousse, L., and Le Pourhiet, L., 2015, The geological signature of a slab tear below the Aegean, Tectonophysics, 659:166–182. https://doi.org/10.1016/j.tecto.2015.08.004
  • Jung, S., and Pfänder, J.A., 2007, Source composition and melting temperatures of orogenicgranitoids: Constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturationthermometry, European Journal of Mineralogy 19(6): 859–870. https://doi.org/10.1127/0935-1221/2007/0019-1774
  • Keay, S., Lister, G., and Buick, I., 2001, The timing of partial melting, Barrovian Metamor-phism and Granite Intrusion in the Naxos Metamorphic Core Complex, Cyclades, Aegean Sea, Greece: Tectonophysics, v. 342, p. 275–312.
  • Koutsovitis, P., 2017,High-pressure subduction-related serpentinites and metarodingites from East Thessaly (Greece), Implications for Their Metamorphic, Geochemical and Geodynamic Evolution in the Hellenic–Dinaric Ophiolite Context, Lithos, 276, 122–145,https://doi.org/10.1016/j.lithos.2016.11.008
  • Koutsovitis, P., Magganas, A., Ntaflos, T., Koukouzas, N., Rassios, A.E., and Soukis, K., 2020, Petrogenetic constraints on the origin and formation of the Hellenic Triassic rift-related lavas: Lithos, 368-369: 105604. https://doi.org/10.1016/j.lithos.2020.105604.
  • Koutsovitis, P., Magganas, A., Pomonis, P., and Ntafios, T., 2013,Subduction-related rodingites from East Othris, Greece, Mineral Reactions and Physicochemical Conditions of Formation, Lithos, 172-173, 139–157. https://doi.org/10.1016/j.lithos.2013.04.009
  • Lagos, M., Scherer, E.E., Tomaschek, F., Münker, C., Keiter, M., Berndt, J., and Ballhaus, C., 2007, High precision Lu–Hf geochronology of Eocene eclogite-facies rocks from Syros, Cyclades, Greece: Chemical Geology, v. 243, p. 16–35.
  • Langosch, A., Seidel, E., Stosch, H., and Okrusch, M., 2000, Intrusive rocks in the ophiolitic mélange of Crete – Witnesses to a Late Cretaceous thermal event of enigmatic geological position, Contributions to Mineralogy and Petrology, 139:339–355. https://doi.org/10.1007/s004100000136.3
  • Laurent, V., Jolivet, L., Roche, V., Augier, R., Scaillet, S., and Cardello, G.L., 2016, Strain localiza-tion in a fossilized subduction channel: Insights from the Cycladic BlueschistUnit (Syros, Greece), Tectonophysics, 672:150–169. https://doi.org/10.1016/j.tecto.2016.01.036
  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G., 1997, Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names: American Mineralogist, v. 82, p. 1019–1037.
  • Lecomte, E., Jolivet, L., Lacombe, O., Denèle, Y., Labrousse, L., and Le Pourhiet, L., 2010, Geometry and kinematics of a low-angle normal fault on Mykonos island (Cyclades, Greece), Evidence for Slip at Shallow Dip: Tectonics, v. 29, p. TC5012 https://doi.org/10.1029/2009TC002564.
  • Long, M.D., and Wirth, E.A., 2013, Mantle fiow in subduction systems: The mantle wedge fiow field and implications for wedge processes: Journal of Geophysical Research – Solid. Earth, v. 118, p. 583–606.
  • Malandri, C., Soukis, K., Maffione, M., Özkaptan, M., Vas-silakis, E., Lozios, S., and van Hinsbergen, D.J., 2017, Vertical-axis rotations accommodated along the Mid-Cycladic lineament on Paros Island in the extensional heart of the Aegean orocline (Greece), Lithosphere, 9:78–99, https://doi.org/10.1130/L575.1.1
  • Maluski, H., Bonneau, M., and Kienast, J.R., 1987, Dating the metamorphic events in the Cycladic area; 39 Ar/ 40 Ar data from metamorphic rocks of the Island of Syros (Greece), Bulletin de la Société géologique de France 3: 833–842, 5,https://doi.org/10.2113/gssgfbull.III.5.833
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, 101: 5,635–643.
  • Marschall, H., and Schumacher, J., 2012, Arc magmas sourced from mélange diapirs in subduction zones, Nature Geoscience, 5:862–867, https://doi.org/10.1038/ngeo1634.12
  • Martha, S.O., Dörr, W., Gerdes, A., Krahl, J., Linckens, J., and Zulauf, G., 2017, The tectonometamorphic and magmatic evolution of the Uppermost Unit in central Crete (Melambes area): Constraints on a Late Cretaceous magmatic arc in the Internal Hellenides (Greece), Gondwana Research, 48:50–71,https://doi.org/10.1016/j.gr.2017.04.004
  • Martha, S.O., Dörr, W., Gerdes, A., Petschick, R., Schastok, J., Xypolias, P., and Zulauf, G., 2016, New structural and U–Pb zircon data from Anafi crystalline basement (Cyclades, Greece), Constraints on the Evolution of a Late Cretaceous Magmatic Arc in the Internal Hellenides, International Journal of Earth Sciences (Geol Rundsch), V, 105:2031–2060,https://doi.org/10.1007/s00531-016-1346-8
  • Martha, S.O., Zulauf, G., Dörr, W., Binck, J.J., Nowara, P.M., and Xypolias, P., 2019, The tectonometamorphic evolution of the Uppermost Unit south of the Dikti Mountains, Crete: Geological Magazine, v. 156, p. 1003–1026. 10.1017/S0016756818000328
  • Mcdonough, W.F., and Sun, -S.-S., 1995, The composition of the Earth, Chemical Geology, 120:223–253, https://doi.org/10.1016/0009-2541(94)00140-4.3–4
  • Melidonis, N., 1963, Die Geologie der Insel Anaphi (Stratigraphie – Tektonik – Petrologie – Lagerstättenkunde): Geological, And Geophysics Research (I.G.S.R.), 8:3, 61–308
  • Menant, A., Jolivet, L., and Vrielynck, B., 2016, Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late cretaceous: Tectonophysics, 675:103–140.
  • Morimoto, N., 1988, Nomenclature of pyroxenes: Mineralogical Magazine, v. 52, p. 535–550. doi:https://doi.org/10.1180/minmag
  • Moyen, J.F., Laurent, O., Chelle-Michou, C., Couzinié, S., Vanderhaeghe, O., Zeh, A., Villaros, A., and Gardien, V., 2017, Collision vs. Subduction-related Magmatism: Two Contrasting Ways of Granite Formation and Implications for Crustal Growth, Lithos, v. 277, p. 154–177.
  • Nielsen, S.G., and Marschall, H.R., 2017, Geochemical evidence for mélange melting in global arcs, Science Advances, 3:e1602402, https://doi.org/10.1126/sciadv.1602402.4
  • Okrusch, M., and Bröcker, M., 1990, Eclogite facies rocks in the Cycladic blueschist belt, Greece: A Review, European Journal of Mineralogy, v. 2, p. 451–478.
  • Papanikolaou, D., 1987, Tectonic evolution of the Cycladic blueschist belt (Aegean Sea, Greece), in Chemical Transport in Metasomatic Processes, edited by. H.C., H., 429–450, D.Reidel:Dordrecht, Netherlands
  • Papanikolaou, D.J., 1979, Unités tectoniques et phases de déformations dans l’ile de Samos, Mer Egée, Grèce: Bulletin de la Société Géologique de France, 21:7, 745–762
  • Patzak, M., Okrusch, M., and Kreuzer, H., 1994, The Akrotiri Unit on the island of Tinos, Cyclades, Greece: Witness to a lost terrane of Late Cretaceous age. Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen, v. 194, p.211–252.
  • Pearce, J.A., and Parkinson, I.J., 1993, Trace element models for mantle melting: Application to volcanic arc petrogenesis,Prichard, H.M., Alabaster, T., Harris, N.B.W., and Neary, C.R., (eds.). Magmatic Processes and Plate Tectonics: Geological Society, London, Special Publications, Vol. 76.373–403.
  • Pearce, J.A., 1996, A user’s guide to basalt discrimination diagrams, Wyman, D.A. ed., Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration, Geological Association of Canada, Short Course Notes, Vol. 12. 79–113.
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100:14–48. https://doi.org/10.1016/j.lithos.2007.06.016.1–4
  • Pearce, J.A., and Peate, D.W., 1995, Tectonic Implications of the Composition of Volcanic ARC Magmas: Annual Review of Earth and Planetary Sciences, 23:251–285
  • Poulaki, E.M., Stockli, D.F., Flansburg, M.E., and Soukis, K., 2019, Zircon U‐Pb chronostratigraphy and provenance of the Cycladic Blueschist Unit and the nature of the contact with the Cycladic Basement on Sikinos and Ios Islands, Greece, Tectonics, 38:3586–3613, https://doi.org/10.1029/2018TC005403.10
  • Rabillard, A., Jolivet, L., Arbaret, L., Bessière, E., Laurent, V., Menant, A., Augier, R., and Beaudoin, A., 2018,Synextensional granitoids and detachment systems within Cycladic metamorphic core complexes (Aegean Sea, Greece), Toward a Regional Tectonomagmatic Model, Tectonics, v. 37, p, 2328–2362,https://doi.org/10.1029/2017TC004697
  • Reinecke, T., Altherr, R., Härtung, Β., Hatzipanagiotou., Κ., Kreuzer, Η., Harre, W., Klein., H., Keller, J., Geenen, E., and Böger, H., 1982, Remnants of late Cretaceous high temperature belt on the island of Anafi (Cyclades, Greece): Neus Jahrbuch fur Mineralogie Abhandlungen, v. 145, p. 157–182.
  • Ribeiro, J.M., Stern, R.J., Kelley, K.A., Martinez, F., Ishizuka, O., Manton, W.I., and Ohara, Y., 2013, Nature and distribution of slab‐derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochemistry, Geophysics, Geosystems 14: 4585–4607, 10,https://doi.org/10.1002/ggge.20244
  • Ridolfi, F., Renzulli, A., and Puerini, M., 2010, Stability and chemical equilibrium of amphibole in calc-alkaline magmas: An overview, new thermobarometric formulations and application to subduction-related volcanoes, Contributions to Mineralogy and Petrology, 160:45–66, https://doi.org/10.1007/s00410-009-0465-7.1
  • Ring, U., Glodny, J., Will, T., and Thomson, S., 2010, The Hellenic Subduction System: High-Pressure Metamorphism, Exhumation, Normal Faulting, and Large-Scale Extension: Annual Review of Earth and Planetary Sciences, v. 38, p. 45–76.
  • Rogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P.P., and Hatzipanagiotou, K., 2019, Mineralogical Evidence for Partial Melting and Melt-Rock Interaction Processes in the Mantle Peridotites of Edessa Ophiolite (North Greece): Minerals, 9:120.
  • Sánchez-Gómez, M., Avigad, D.O.V., and Heimann, A., 2002, Geochronology of clasts in allochthonous Miocene sedimentary sequences on Mykonos and Paros Islands: Implications for back-arc extension in the Aegean Sea, Journal of the Geological Society, London 159: 45–60, 1,https://doi.org/10.1144/0016-764901031
  • Schmidt, M.W., 1992, Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer, Contributions to Mineralogy and Petrology, 110:304–310, https://doi.org/10.1007/BF00310745.2–3
  • Schneider, D., Grasemann, B., Lion, A., Soukis, K., and Draganits, E., 2018, Geodynamic significance of the Santorini Detachment System (Cyclades, Greece): Terra Nova, v. 30, p. 414–422.
  • Seman, S., Stockli, D.F., and Soukis, K., 2017, The provenance and internal structure of the Cycladic Blueschist Unit revealed by detrital zircon geochronology, Western Cyclades, Greece, Tectonics 36: 1407–1429, 7,https://doi.org/10.1002/2016TC004378
  • Shaked, Y., Avigad, D., and Garfunkel, Z., 2000, Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geological Magazine, v. 137, p.367–380.
  • Sisson, T.W., and Grove, T.L., 1993, Experimental investigation of the role of water in calc-alkaline differentiation and subduction zone magmatism: Contributions toMineralogy and Petrology, 113:143–166.
  • Soukis, K., and Papanikolaou, D., 2004, Contrasting geometry between Alpine and late- to post-Alpine tectonic structures in AnafiIsland (Cyclades): Bulletin of the Geological Society of Greece, v, XXXVI(4), 1688–1696.
  • Soukis, K., and Stockli, D.F., 2013, Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic Islands, Greece: Tectonophysics, v. 595-596, p. 148–164.
  • Stern, R.J., and Gerya, T., 2018, Subduction initiation in nature and models: A review, Tectonophysics 746:173–198. https://doi.org/10.1016/j.tecto.2017.10.014
  • Stevens, G., Villaros, A., and Moyen, J.-F.O., 2007, Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites, Geology 35: 9–12, 1,https://doi.org/10.1130/G22959A.1
  • Stouraiti, C., Mitropoulos, P., Tarney, J., Barreiro, B., McGrath, A.M., and Baltatzis, E., 2010. Geochemistry and petrogenesis of late Miocene granitoids, Cyclades, Southern Aegean: Nature of Source Components, Lithos, v. 114, p. 337–352.
  • Streckeisen, A.L., 1976, Classification and Nomenclature of Igneous Rocks: Neues Jahrbuch für Mineralogie - Abhandlungen, 107:144–240.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, Saunders, A.D., and Norry, M.J., eds. Magmatism in the Ocean Basins, Geological Society London, Special Publications: Vol. 42, p 313–345.
  • Sylvester, R.J., 1998, Postcollisional strongly peraluminous granites: Lithos, 45:29–44.
  • Thomson, S.N., Stöckhert, B., Rauche, H., and Brix, M.R., 1998, Apatite fission-track thermochronology of the uppermost tectonic unit of Crete, Greece: Implications for the post-Eocene tectonic evolution of the Hellenic subduction system. In: van den Haute P., de Corte F. (eds), Advances in Fission-Track Geochronology, 187–205, Springer:Dordrecht
  • Till, C.B., Grove, T.L., and Withers, A.C., 2012, The beginnings of hydrous mantle wedge melting, Contributions to Mineralogy and Petrology, 163:669–688, https://doi.org/10.1007/s00410-011-0692-6.4
  • Tortorici, L., Catalano, S., Cirrincione, R., and Tortorici, G., 2012, The Cretan ophiolite-bearing mélange (Greece): A remnant of Alpine accretionary wedge, Tectonophysics 568-569:320–334,https://doi.org/10.1016/j.tecto.2011.08.022
  • Ulmer, P., 2001, Partial melting in the mantle wedge — The role of H2O in the genesis of mantle-derived ‘arc-related’ magmas, Physics of the Earth and Planetary Interiors 127: 215–232, 1–4,https://doi.org/10.1016/S0031-9201(01)00229-1
  • van Hinsbergen, D.J.J., Hafkenscheid, E., Spakman, W., Meulenkamp, J.E., and Wortel, R., 2005, Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece: Geology, 33:325–328
  • Wang, L., and He, X., 2020, Seismic Anisotropy in the Java-Banda and Philippine Subduction Zones and its Implications for the Mantle Flow System Beneath the Sunda Plate, Geochemistry, Geophysics, Geosystems, v. 21, p. e2019GC008658, https://doi.org/10.1029/2019GC008658. 21, 4
  • Wang, L.X., Ma, C.Q., Zhang, C., Zhang, J.Y., and Marks, M.A., 2014, Genesis of leucogranite by prolonged fractional crystallization. A Case Study of the Mufushan Complex, South China: Lithos, v. 206, p. 147–163.
  • Wang, X., Chao, Y., Zhang, Y.Y., Sun, M., Wang, L.X., Soldner, J., and Li, Z.F., 2018, S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, Southern Altaids: Implica-tions for the Tectonic Transition: Journal of Asian Earth Sciences 153:206–222,https://doi.org/10.1016/j.jseaes.2017.07.037
  • Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: Temperature and composition effects in a variety of crustal and magma types: Earth and Planetary Science Letters, 64:295–304
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, Discrimination and Petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419.
  • Whalen, J.B., and Hildebrand, R.S., 2019, Trace element discrimination of arc, slab failure, and A-type granitic rocks, Lithos, 348–349:105179,https://doi.org/10.1016/j.lithos.2019.105179
  • Whattam, S.A., and Stern, R.J., 2011, The ‘subduction initiation rule’: A key for linking ophiolites, intra-oceanic forearcs and subduction initiation, Contributions to Mineralogy and Petrology, 162:1031–1045, https://doi.org/10.1007/s00410-011-0638-z.5
  • Wright, J.B., 1969, A simple alkalinity ratio and its application to questions of non-orogenic granite genesis: Geological Magazine, v. 106, p. 370–384.
  • Wu, F.Y., Liu, Z.C., Liu, X.C., and Ji, W.Q., 2015, Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift: Acta Geologica Sinica, 31:1–36.
  • Yang, X.-M., 2017, Estimation of crystallization pressure of granite intrusions, Lithos 286-287:324–329,https://doi.org/10.1016/j.lithos.2017.06.018
  • Zeffren, S., Avigad, D., Heimann, A., and Gvirtzman, Z., 2005, Age resetting of hanging wall rocks above a low-angle detachment fault: Tinos Island (Aegean Sea), Tectonophysics 400: 1–25, 1–4,https://doi.org/10.1016/j.tecto.2005.01.003
  • Zlatkin, O., Avigad, D., and Gerdes, A., 2018, New detrital zircon geochronology from the cycladic basement (Greece): Implications for the paleozoic accretion of Peri‐Gondwanan Terranes to Laurussia, Tectonics 37: 4679–4699, 12,https://doi.org/10.1029/2018TC005046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.