318
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Spatial-temporal distribution and tectonic setting of Mesozoic W-mineralized granitoids in the Xing-Meng Orogenic Belt, NE China

, , , , , & show all
Pages 1845-1884 | Received 08 Dec 2020, Accepted 24 Jul 2021, Published online: 30 Aug 2021

References

  • Abrajevitch, A., Zyabrev, S., Didenko, A.N., and Kodama, K., 2012, Palaeomagnetism of the West Sakhalin Basin: Evidence for northward displacement during the Cretaceous. Geophysical Journal International, v. 190, p. 1439–1454. 3 https://doi.org/10.1111/j.1365-246X.2012.05572.x
  • Allègre, C.J., and Minster, J.F., 1978, Quantitative models of trace element behavior inmagmatic processes. Earth and Planetary Science Letters, v. 38, p. 1–25. https://doi.org/10.1016/0012-821X(78)90123-1
  • Annen, C., Blundy, J.D., and Sparks, R.S.J., 2006, The genesis of intermediate and silicicmagmas in deep crustal hot zones. Journal of Petrology, v. 47, p. 505–539. https://doi.org/10.1093/petrology/egi084
  • Arevalo, R.J., and McDonough, W.F., 2008, Tungsten geochemistry and implications for understanding the earth’s interior. Earth and Planetary Science Letters, v. 272, p. 656–665. https://doi.org/10.1016/j.epsl.2008.05.031
  • Arth, J.G., 1976, Behaviour of trace elements during magmatic processes: A summary of theoretical models and their applications. Journal of Research of the U.S. Geological Survey, v. 4, p. 41–47.
  • Bacon, C.R., and Druitt, T.H., 1988, Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, v. 98, p. 224–256. https://doi.org/10.1007/BF00402114
  • Badarch, G., Cunningham, W.D., and Windley, B.F., 2002, A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences, v. 21, p. 87–110. https://doi.org/10.1016/S1367-9120(02)00017-2
  • Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartese, R., and Vigneresse, J.L., 2016, Nb-Ta fractionation in peraluminous granites: A marker of magmatic-hydrothermal transition. Geology, v. 3, p. 231–234.
  • Batchelor, R.A., and Bowden, V.P., 1985, Petrogenetic interpretation of granitoids rock series using multicationic parameters. Chemical Geology, v. 48, p. 43–55. https://doi.org/10.1016/0009-2541(85)90034-8
  • Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf,and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, v. 123, p. 323–333. https://doi.org/10.1007/s004100050159
  • Bédard, J.H., 2006, A catalytic delamination-driven model for coupled genesis of Archean crust and sub-continental lithospheric mantle. Geochimica Et Cosmochimica Acta, v. 70, p. 1188–1214.
  • Bhalla, P., Holtz, F., Linnen, R.L., and Behrens, H., 2005, Solubility of cassiterite in evolved granitic melts: Effect of T, fO2, and additional volatiles. Lithos, v. 80, p. 387–400. https://doi.org/10.1016/j.lithos.2004.06.014
  • Blichert-Toft, J., and Arndt, N.T., 1999, Hf isotope compositions of komatiites. Earth and Planetary Science Letters, v. 171, p. 439–451. https://doi.org/10.1016/S0012-821X(99)00151-X
  • Blundy, J.D., and Shimizu, N., 1991, Trace element evidence for plagioclase recycling in calc-alkaline magmas. Earth and Planetary Science Letters, v. 102, p. 178–197. https://doi.org/10.1016/0012-821X(91)90007-5
  • Bonin, B., 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects. Lithos, v. 97, p. 1–29. https://doi.org/10.1016/j.lithos.2006.12.007
  • Breiter, K., Müller, A., Leichmann, J., and Gabašová, A., 2005, Textural and chemical evolution of a fractionated granitic system: The Podlesí stock, Czech Republic. Lithos, v. 80, p. 323–345. https://doi.org/10.1016/j.lithos.2003.11.004
  • Campbell, I.H., Stepanov, A.S., Liang, H.Y., Allen, C.M., Norman, M.D., Zhang, Y.Q., and Xie, Y.W., 2014, The origin of shoshonites: New insights from the Tertiary high-potassium intrusions of eastern Tibet. Contributions to Mineralogy and Petrology, v. 167, p. 983. https://doi.org/10.1007/s00410-014-0983-9
  • Cao, H.H., Xu, W.L., Pei, F.P., Wang, Z.W., Wang, F., and Wang, Z.J., 2013, Zircon U-Pb geochronology and petrogenesis of the Late Paleozoic-Early Mesozoic intrusive rocks in the eastern segment of the northern margin of the North China Block. Lithos, v. 170−171, p. 191–207.
  • Cao, J.Y., Wu, Q.H., Yang, X.Y., Deng, X.T., Li, H., Kong, H., and Xi, X.S., 2020, Geochemical factors revealing the differences between the Xitian and Dengfuxian composite plutons, middle Qin-Hang Belt: Implications to the W–Sn mineralization. Ore Geology Reviews, v. 118, p. 103353. https://doi.org/10.1016/j.oregeorev.2020.103353
  • Cao, J.Y., Yang, X.Y., Du, J.G., Wu, Q.H., Kong, H., Li, H., Wan, Q., Xi, X.S., Gong, Y.S., and Zhao, H.R., 2018, Formation and geodynamic implication of the early Yanshanian granites associated with W–Sn mineralization in the Nanling range, South China: An overview. International Geology Review, v. 60, p. 1744–1771. https://doi.org/10.1080/00206814.2018.1466370
  • Carpentier, M., Chauvel, C., Maury, R.C., and Mattielli, N., 2009, The “zircon effect” as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments. Earth and Planetary Science Letters, v. 287, p. 86–99. 1–2 https://doi.org/10.1016/j.epsl.2009.07.043
  • Castro, A., 2014, The off-crust origin of granite batholiths. Geoscience Frontiers, v. 5, p. 63–75. https://doi.org/10.1016/j.gsf.2013.06.006
  • CBLR (Chifeng Bureau of Land and Resources), and IMCIGMED (Inner Mongolian Chifeng Institute of Geology and Mineral Exploration and Development), 2018, Mineral resource records of Chifeng city. Beijing, Science Press, 1–952p (in Chinese).
  • Chappell, B.W., 1999, Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, v. 46, p. 535–551. https://doi.org/10.1016/S0024-4937(98)00086-3
  • Chappell, B.W., Bryant, C.J., and Wyborn, D., 2012, Peraluminous I-type granites. Lithos, v. 153, p. 142–153. https://doi.org/10.1016/j.lithos.2012.07.008
  • Chappell, B.W., and White, A.J.R., 1992, I-and S-type granites in the Lachlan fold belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, v. 83, p. 1–26. https://doi.org/10.1017/S0263593300007720
  • Chappell, B.W., and White, A.J.R., 2001, Two constrasting granite types: 25 years later. Australian Journal of Earth Sciences, v. 48, p. 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x
  • Chauvel, C., Marini, J.C., Plank, T., and Ludden, J.N., 2009, Hf-Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle: Geochemistry, Geophysics, Geosystems, v. 10, p. 1.
  • Chen, B., Jahn, B.M., and Tian, W., 2009a, Evolution of the Solonker suture zone: Constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences, v. 34, p. 245–257. https://doi.org/10.1016/j.jseaes.2008.05.007
  • Chen, G.Z., Wu, G., Li, T.G., Liu, R.L., Wu, L.W., Zhang, P.C., Zhang, T., and Chen, Y.C., 2018a, LA-ICP-MS zircon and cassiterite U-Pb ages of Daolundaba copper-tungstentin deposit in Inner Mongolia and their geological significance. Mineral Deposits, v. 37, p. 225–245 (in Chinese with English abstract).
  • Chen, L., Zhang, D., Di, Y.J., Xu, J., Wang, C., Wan, S., and Lai, S.H., 2009b, A study on the regional metallogenic regularity in the mid-southern segment of Da Hinggan Mountains, China. Contributions to Geology and Mineral Resources Research, v. 24, p. 267–281 (in Chinese with English abstract).
  • Chen, X., Liu, J.J., Zhang, D.H., Zhang, Q.B., Yang, S.S., Li, Y.C., and Cao, Q., 2017, Re-Os dating of molybdenites and S-Pb isotopic characteristics of the Cuihongshan iron polymetallic deposit, Heilongjiang Province. Acta Petrologica Sinica, v. 33, p. 529–544 (in Chinese with English abstract).
  • Chen, X.L., Liang, H.Y., Richards, J.P., Huang, W.T., Zhang, J., Wu, J., and Sotiriou, P., 2018b, Age and granite association of skarn W mineralization at Niutangjie district, South China Block. Ore Geology Reviews, v. 102, p. 268–283. https://doi.org/10.1016/j.oregeorev.2018.09.003
  • Choi, S.H., and Mukasa, S.B., 2012, Lu-Hf and Sm-Nd isotope systematics of Korean spinel peridotites: A case for metasomatically induced Nd-Hf decoupling. Lithos, v. 154, p. 263–276. https://doi.org/10.1016/j.lithos.2012.07.017
  • Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K., and Bea, F., 2006, Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, v. 70, p. 517–543.
  • Collins, W.J., Huang, H.Q., and Jiang, X.Y., 2016, Water-fluxed crustal melting produces Cordilleran batholiths. Geology, v. 44, p. 143–146. https://doi.org/10.1130/G37398.1
  • Congne, J.P., Kravchinsky, V.A., Halim, N., and Hankard, F., 2005, Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the trans-Baikal area (SE Siberia). Geophysical Journal International, v. 163, p. 813–832.
  • Cui, Y.X., 2013, Geological characteristics and genesis of Narenwula copper polymetallic deposit. Basic Science, v. 5, p. 103–104 (in Chinese).
  • Dai, X.L., 2008, The characteristics of granite mass and mineralization in the outer liner of Baishitouwa tungsten mineral deposit, Taipusiqi City, Inner Mongolia [M.D. thesis]. Changsha, Central South University, 60p (in Chinese with English abstract).
  • Deering, C.D., and Bachmann, O., 2010, Trace element indicators of crystal accumulation in silicic igneous rocks. Earth and Planetary Science Letters, v. 297, p. 324–331. https://doi.org/10.1016/j.epsl.2010.06.034
  • Defant, M.J., and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, v. 347, p. 662–665. https://doi.org/10.1038/347662a0
  • Deng, C.Z., Sun, D.Y., Han, J.S., Li, G.H., Feng, Y.Z., Xiao, B., Li, R.C., Shi, H.L., Xu, G.Z., and Yang, D.G., 2019, Ages and petrogenesis of the Late Mesozoic igneous rocks associated with the Xiaokele porphyry Cu–Mo deposit, NE China and their geodynamic implications. Ore Geology Reviews, v. 107, p. 417–433. https://doi.org/10.1016/j.oregeorev.2019.03.010
  • Dostal, J., and Chatterjee, A.K., 2000, Contrasting behavior of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chemical Geology, v. 163, p. 207–218. https://doi.org/10.1016/S0009-2541(99)00113-8
  • Dostal, J., Kontak, D.J., Gerel, O., Gregory, S.J., and Fayek, M., 2015, Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos, v. 236−237, p 173–189.
  • Du, M.Y., Li, C., Yang, N.F., Sun, Z.J., Wang, C.G., and Yu, H.N., 2011, Metallogenic fluid inclusions and sulfur isotope characteristics of Cuihongshan iron polymetallic deposit. Global Geology, v. 30, p. 538–543 (in Chinese with English abstract).
  • Eby, G.N., 1992, Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, v. 20, p. 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  • Eizenhöfer, P.R., Zhao, G.C., Zhang, J., and Sun, M., 2014, Final closure of the Paleo-Asian Ocean along the Solonker suture zone: Constraints from geochronological and geochemical data of Permian volcanic and sedimentary rocks. Tectonics, v. 33, p. 441–463. https://doi.org/10.1002/2013TC003357
  • El Bouseily, A.M., and El Sokkary, E.I. 1975, The relation between Rb, Ba and Sr in granitic rocks. Chemical Geology, v. 16, p. 207–219. https://doi.org/10.1016/0009-2541(75)90029-7
  • Farina, F., Stevens, G., Gerdes, A., and Frei, D., 2014, Small-scale Hf isotopic variability in the Peninsula pluton (South Africa): The processes that control inheritance of source 176Hf/177Hf diversity in S-type granites. Contributions to Mineralogy and Petrology, v. 168, p. 1065. https://doi.org/10.1007/s00410-014-1065-8
  • Fei, X.H., Zhang, Z.C., Cheng, Z.G., Santosh, M., Jin, Z.L., Wen, B.B., Li, Z.X., and Xu, L.J., 2018, Highly differentiated magmas linked with polymetallic mineralization: A case study from the Cuihongshan granitic intrusions, Lesser Xing’an Range, NE China. Lithos, v. 302−303, p. 158–177.
  • Feng, Y.Z., Chen, H.Y., Xiao, B., Li, R.C., Deng, C.Z., Han, J.S., Li, G.H., Shi, H.L., and Lai, C.K., 2020a, Late Mesozoic magmatism at Xiaokelehe Cu Mo deposit in Great Xing’an Range, NE China: Geodynamic and metallogenic implications. Lithos, v. 374−375, p. 105713. https://doi.org/10.1016/j.lithos.2020.105713
  • Feng, Z., Sun, D.Y., Yue, Y., Mao, A.Q., Tian, L., Sun, C., and Gou, J., 2020b, Petrogenesis of highly differentiated I-type volcanic rocks: Reinjection of high-temperature magma-An example from Suolun silicic volcanic rocks, central Great Xing’an Range, China. Geological Journal, v. 55, p. 6677–6695. https://doi.org/10.1002/gj.3838
  • Feng, Z.Q., Liu, Y.J., Li, L., Jin, W., Jiang, L.W., Li, W.M., Wen, Q.B., and Zhao, Y.L., 2019, Geochemical and geochronological constraints on the tectonic setting of the Xinlin ophiolite, northern Great Xing’an Range, NE China. Lithos, v. 326−327, p. 213–229.
  • Fritzell, E.H., Bull, A.L., and Shephard, G.E., 2016, Closure of the Mongol-Okhotsk Ocean: Insights from seismic tomography and numerical modelling. Earth and Planetary Science Letters, v. 445, p. 1–12. https://doi.org/10.1016/j.epsl.2016.03.042
  • Gao, X., Zhou, Z., Breiter, K., Ouyang, H., and Liu, J., 2019, Ore-formation mechanism of the Weilasituo tin–polymetallic deposit, NE China: Constraints from bulk-rock and mica chemistry, He–Ar isotopes, and Re–Os dating. Ore Geology Reviews, v. 109, p. 163–183. https://doi.org/10.1016/j.oregeorev.2019.04.007
  • Garcon, M., Chauvel, C., France-Lanord, C., Huyghe, P., and Lave, J., 2013, Continental sedimentary processes decouple Nd and Hf isotopes. Geochimica et Cosmochimica Acta, v. 121, p. 177–195. https://doi.org/10.1016/j.gca.2013.07.027
  • Ge, R.F., Zhang, Q.L., Wang, L.S., Xie, G.A., Xu, S.Y., Chen, J., and Wang, X.Y., 2010, Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China. Geological Review, v. 56, p. 180–195 (in Chinese with English abstract).
  • Ge, W.C., Wu, F.Y., Zhou, C.Y., and Zhang, J.H., 2007, Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications. Chinese Science Bulletin, v. 52, p. 3416–3427. https://doi.org/10.1007/s11434-007-0466-8
  • Gibert, F., Moine, B., Schott, J., and Dandurand, J.L., 1992, Modeling of the transport and deposition of tungsten in the scheelite-bearing calc-silicate gneisses of the Montagne Noire, France. Contributions to Mineralogy and Petrology, v. 112, p. 371–384. https://doi.org/10.1007/BF00310467
  • Gou, J., Sun, D.Y., and Qin, Z., 2019, Late Jurassic–Early Cretaceous tectonic evolution of the Great Xing’an Range: Geochronological and geochemical evidence from granitoids and volcanic rocks in the Erguna Block, NE China. International Geology Review, v. 61, p. 1842–1863. https://doi.org/10.1080/00206814.2018.1561336
  • Gou, J., Sun, D.Y., Ren, Y.S., Liu, Y.J., Zhang, S.Y., Fu, C.L., Wang, T.H., Wu, P.F., and Liu, X.M., 2013, Petrogenesis and geodynamic setting of Neoproterozoic and Late Paleozoic magmatism in the Manzhouli-Erguna area of Inner Mongolia, China: Geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences, v. 67–68, p. 114–137. https://doi.org/10.1016/j.jseaes.2013.02.016
  • Green, T.H., 1995, Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, v. 120, p. 347–359. https://doi.org/10.1016/0009-2541(94)00145-X
  • Green, T.H., and Pearson, N.J., 1986, Rare-earth element partitioning between titanite and coexisting silicate liquid at high pressure and temperature. Chemical Geology, v. 55, p. 105–119. https://doi.org/10.1016/0009-2541(86)90131-2
  • Green, T.H., Sie, S.H., Ryan, C.G., and Cousens, D.R., 1989, Proton microprobe-determined partitioning of Nb, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at high pressure and temperature. Chemical Geology, v. 74, p. 201–216. https://doi.org/10.1016/0009-2541(89)90032-6
  • Guo, F., Fan, W.M., Gao, X.F., Li, C.W., Miao, L.C., Zhao, L., and Li, H.X., 2010, Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China. Constraints on Tectonic Framework and Phanerozoic Crustal Growth: Lithos, v. 120, p. 563–578.
  • Guo, F., Li, H., Fan, W.M., Li, J., Zhao, L., Huang, M., and Xu, W., 2015a, Early Jurassic subduction of the Paleo-Pacific Ocean in NE China: Petrologic and geochemical evidence from the Tumen mafic intrusive complex. Lithos, v. 224−225, p. 46–60.
  • Guo, Z.J., Li, J.W., Chang, Y.L., Han, Z.G., Dong, X.Z., Yang, Y.C., Tian, J., She, H.Q., Xiang, A.P., and Kang, Y.J., 2015b, Genetic types and ore-forming geological significance of granites in the Honghuaerji scheelite deposit, Inner Mongolia. Acta Petrologica et Mineralogica, v. 34, p. 3 (in Chinese with English abstract).
  • Guo, Z.J., Li, J.W., Huang, G.J., Guan, J.D., Dong, X.Z., Tian, J., Yang, Y.C., She, H.Q., Xiang, A.P., and Kang, Y.J., 2014, Sr-Nd-Pb-Hf isotopic characteristics of ore-bearing granites in the Honghuaerji scheelite deposit, Inner Mongolia. Geology in China, v. 41, p. 1226–1241 (in Chinese with English abstract).
  • Guo, Z.J., Li, J.W., Huang, M.H., Guo, W.J., Dong, X.Z., Tian, J., Yang, Y.C., She, H.Q., Xiang, A.P., and Kang, Y.J., 2016a, Characteristics of ore-forming fluid in Honghuaerji scheelite deposit, Inner Mongolia. Mineral Deposits, v. 35, p. 1–17 (in Chinese with English abstract).
  • Guo, Z.J., Li, J.W., Xu, X.Y., Song, Z.Y., Dong, X.Z., Tian, J., Yang, Y.C., She, H.Q., Xiang, A.P., and Kang, Y.J., 2016b, Sm-Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China. Lithos, v. 261, p. 307–321. https://doi.org/10.1016/j.lithos.2016.03.006
  • Guo, Z.X., Yang, Y.T., Zyabrev, S., and Hou, Z.H., 2017, Tectonostratigraphic evolution of the Mohe-upper Amur Basin reflects the final closure of the Mongol-Okhotsk Ocean in the latest Jurassic-earliest Cretaceous. Journal of Asian Earth Sciences, v. 145, p. 494–511. https://doi.org/10.1016/j.jseaes.2017.06.020
  • Han, S.J., Wang, X., Wang, X., Wang, Y., and Zhang, Y., 2020, Geochronology and geochemistry of late Jurassic–Early Cretaceous volcanic rocks in the southern Great Xing’an range, NE China: Constraints for late Mesozoic tectono-magmatic evolution. International Geology Review, doi: https://doi.org/10.1080/00206814.00202020.01768442.
  • Hanson, G.N., 1978, The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth and Planetary Science Letters, v. 38, p. 26–43. https://doi.org/10.1016/0012-821X(78)90124-3
  • Hao, Y.J., Ren, Y.S., Zhao, H.L., Zou, X.T., Chen, C., Hou, Z.S., and Qu, W.J., 2013, Re-Os isotopic dating of the molybdenite from the Cuihongshan W-Mo polymetallic deposit in Heilongjiang Province and its geological significance. Journal of Jilin University (Earth Science Edition), v. 43, p. 1840–1850 (in Chinese with English abstract).
  • Harris, N.B., Pearce, J.A., and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism. London, Special Publications, 67–81p.
  • He, X.H., Tan, S.C., Liu, Z., Bai, Z.J., Wang, X.C., Wang, Y.C., and Zhong, H., 2020, Petrogenesis of the Early Cretaceous Aolunhua Adakitic Monzogranite Porphyries, Southern Great Xing’an Range, NE China: Implication for Geodynamic Setting of Mo Mineralization. Minerals, v. 10, p. 332–352. https://doi.org/10.3390/min10040332
  • Hermann, J., and Rubatto, D., 2009, Accessory phase control on the trace element signature of sediment melts in subduction zones. Chemical Geology, v. 265, p. 512–526. https://doi.org/10.1016/j.chemgeo.2009.05.018
  • Hirose, K., 1997, Melting experiments on Iherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, v. 25, p. 42–44. https://doi.org/10.1130/0091-7613(1997)025<0042:MEOLKU>2.3.CO;2
  • HPGSI (Heilongjiang Provincial Geophysical Survey Institute), 2014, The report of resource substitution exploration in Gongpengzi Cu-Zn-W deposit, Binxian County. Heilongjiang Province, 1–60p (in Chinese).
  • Hu, P., Nie, F.J., He, Y., and Liu, Y., 2006, A peraluminous granite with positive εNd(t) values: The Shamai pluton in Inner Mongolia, northeast China. Acta Petrologica Sinica, v. 22, p. 2781–2790 (in Chinese with English abstract).
  • Hu, P., Nie, F.J., He, Y., Zhang, Y., and Liu, Y., 2005, Geological features and fluid inclusions of Shamai tungsten deposit, Inner Mongolia. Mineral Deposits, v. 24, p. 603–612 (in Chinese with English abstract).
  • Hu, X.L., Ding, Z.J., He, M.C., Yao, S.Z., Zhu, B.P., Shen, J., and Chen, B., 2014, Two epochs of magmatism and metallogeny in the Cuihongshan Fe-polymetallic deposit, Heilongjiang Province, NE China: Constrains from U–Pb and Re–Os geochronology and Lu–Hf isotopes. Journal of Geochemical Exploration, v. 143, p. 116–126. https://doi.org/10.1016/j.gexplo.2014.03.027
  • Hu, X.Y., Bi, X.W., Shang, L.B., Hu, R.Z., Cai, G.S., and Chen, Y.W., 2009, An experimental study of tin partition between melt and aqueous fluid in F/Cl-coexisting magma. Chinese Science Bulletin, v. 54, p. 1087–1097.
  • Huang, H., Niu, Y.L., and Mo, X.X., 2017, Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau. Lithos, v. 274–275, p. 31–38. https://doi.org/10.1016/j.lithos.2016.12.025
  • Huang, H., Niu, Y.L., Teng, F.Z., and Wang, S.J., 2019, Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling. Geochimica et Cosmochimica Acta, v. 259, p. 17–36. https://doi.org/10.1016/j.gca.2019.05.031
  • Huang, L.C., and Jiang, S.Y., 2014, Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan orogen, southeast China: Geochronology, petrogenesis and their relationship with W-mineralization. Lithos, v. 202−203, p. 207–226.
  • Huang, Y.Q., Jiang, Y.D., Yu, Y., Collett, S., Wang, S., Shu, T., and Xu, K., 2020, Nd-Hf Isotopic decoupling of the Silurian—Devonian Granitoids in the Chinese Altai: A Consequence of Crustal Recycling of the Ordovician Accretionary Wedge. Journal of Earth Science, v. 31, p. 102–114. https://doi.org/10.1007/s12583-019-1217-x
  • Icenhower, J., and London, D., 1995, An experimental study of element partitioning among biotite, muscovite and coexisting peraluminous silicic melt at 200 MPa (H2O). American Mineralogist, v. 80, p. 1229–1251. https://doi.org/10.2138/am-1995-11-1213
  • IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources), 1991, Regional geology of Inner Mongolia. Beijing, Geological Publishing House, 1–725p (in Chinese).
  • Ji, D., Liu, H.C., and Li, Y.L., 2019, Large-scale early cretaceous lower-crust melting derived adakitic rocks in NE China: Implications for convergent bidirectional subduction and slab rollback. International Geology Review, doi: https://doi.org/10.1080/00206814.00202019.01697968.
  • Ji, Z., Ge, W.C., Wang, Q.H., Yang, H., Zhao, G.C., Bi, J.H., and Dong, Y., 2016, Petrogenesis of early Cretaceous volcanic rocks of the Manketouebo formation in the Wuchagou region, central great Xing’an range, NE China, and tectonic implications: Geochronological, geochemical, and Hf isotopic evidence. International Geology Review, v. 58, p. 556–573. https://doi.org/10.1080/00206814.2015.1095132
  • Jia, Z.D., 2014, Metallogenic characteristics and prospecting prediction in Tianbaogou tungsten copper polymetallic ore exploration of Inner Mongolia . Beijing, China University of Geosciences (Beijing), 46p (in Chinese with English abstract).
  • Jiang, H., Jiang, S.Y., Li, W.Q., Zhao, K.D., and Peng, N.J., 2018, Highly fractionated Jurassic I-type granites and related tungsten mineralization in the Shirenzhang deposit, northern Guangdong, south China: Evidence from cassiterite and zircon U-Pb ages, geochemistry and Sr-Nd-Pb-Hf isotopes. Lithos, v. 312−313, p. 186–203. 1 0.1 016/j.li thos.2 018.04.030
  • Jiang, S.H., Bagas, L., Hu, P., Han, N., Chen, C.L., Liu, Y., and Kang, H., 2016, Zircon U–Pb ages and Sr–Nd–Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis. Lithos, v. 261, p. 322–339. https://doi.org/10.1016/j.lithos.2015.12.021
  • Jiang, S.H., Chen, C.L., Bagas, L., Liu, Y., Han, N., Kang, H., and Wang, Z.H., 2017, Two mineralization events in the Baiyinnuoer Zn-Pb deposit in Inner Mongolia China: Evidence from field observations, S-Pb isotopic compositions and U-Pb zircon ages. Journal of Asian Earth Sciences, v. 144, p. 339–367. https://doi.org/10.1016/j.jseaes.2016.12.042
  • Jiang, S.H., Nie, F.J., Liu, Y.F., Huo, W.R., Bai, D.M., Liu, Y., and Liang, Q.L., 2011, Geochronology of intrusive rocks occurring in and around the Mengentaolegai silver-polymetallic deposit, Inner Mongolia. Journal of Jilin University (Earth Science Edition), v. 41, p. 1756–1769 (in Chinese with English abstract).
  • Jiang, S.H., Nie, F.J., Liu, Y.F., and Yun, F., 2010, Sulfur and lead isotopic compositions of Bairendaba and Weiasituo silver-polymetallic deposits, Inner Mongolia. Mineral Deposits, v. 29, p. 101–112 (in Chinese with English abstract).
  • Keay, S., Collins, W.J., and McCulloch, M.T., 1997, A three-component Sr-Nd isotopic mixing model for granitoid genesis, Lachlan fold belt, eastern Australia. Geology, v. 25, p. 307–310. https://doi.org/10.1130/0091-7613(1997)025<0307:ATCSNI>2.3.CO;2
  • Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., and Whitehouse, M.J., 2007, Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, v. 315, p. 980–983. https://doi.org/10.1126/science.1136154
  • Keppler, H., and Wyllie, P.J., 1991, Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contributions to Mineralogy and Petrology, v. 109, p. 139–150. https://doi.org/10.1007/BF00306474
  • Khanchuk, A.I., 2001, Pre-Neogene tectonics of the Sea-of-Japan regions: A view from the Russian side. Earth Science, v. 55, p. 275–291.
  • King, P.L., White, A.J.R., Chappell, W., and Allen, C.M., 1997, Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, v. 38, p. 371–391. https://doi.org/10.1093/petroj/38.3.371
  • Kong, X.Y., Zhang, C., Liu, D.D., Jiang, S., Luo, Q., Zeng, J.H., Liu, L.F., Luo, L., Shao, H.B., Liu, D., Liu, X.Y., and Wang, X.P., 2018, Disequilibrium partial melting of metasediments in subduction zones: Evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai. Lithosphere, v. 11, p. 149–168. 1 https://doi.org/10.1130/L1039.1
  • Kravchinsky, V.A., Cogné, J.P., Harbert, W.P., and Kuzmin, M.I., 2002, Evolution of the Mongol-Okhotsk Ocean as constrained by new palaeomagnetic data from the Mongol-Okhotsk suture zone, Siberia. Geophysical Journal International, v. 148, p. 34–57. 1 https://doi.org/10.1046/j.1365-246x.2002.01557.x
  • Lehmann, B., 1987, Tin granites, geochemical heritage, magmatic differentiation. Geologische Rundschau, v. 76, p. 177–185. 1 https://doi.org/10.1007/BF01820581
  • Lehmann, B., Ishihara, S., Michel, H., Miller, J., Rapela, C., Sanchez, A., Tistl, M., and Winkelmann, L., 1990, The Bolivian tin province and regional tin distribution in the Cental Andes: A reassessment. Economic Geology, v. 85, p. 1044–1058. 5 https://doi.org/10.2113/gsecongeo.85.5.1044
  • Li, J., Huang, X.L., Fu, Q., and Li, W.X., 2021, Tungsten mineralization during the evolution of a magmatic-hydrothermal system: Mineralogical evidence from the Xihuashan rare-metal granite in South China. American Mineralogist, v. 106, p. 443–460. 3 https://doi.org/10.2138/am-2020-7514
  • Li, J.J., Fu, C., Tang, W.L., Li, H.M., Lin, Y.X., Zhang, T., Wang, S.G., Zhao, Z.L., Dang, Z.C., and Zhao, L.J., 2016a, The metallogenic age of the Shamai wolframite deposit in Dong Ujimqin Banner, Inner Mongolia. Geological Bulletin of China, v. 35, p. 524–530 (in Chinese with English abstract).
  • Li, J.J., Zhou, Y., Dang, Z.C., Zhao, Z.L., Li, C., Qu, W.J., Cao, Z.C., Yang, G.J., Fu, C., and Tang, W.L., 2016b, Re-Os isotopic dating of molybdenites from the Sansheng W-Mo deposit in Huada County, Inner Mongolia, and its geological significance. Geological Bulletin of China, v. 35, p. 531–536 (in Chinese with English abstract).
  • Li, J.Y., Gao, L.M., Sun, G.H., Li, Y.P., and Wang, Y.B., 2007, Shuangjingzi Middle Triassic syn-collisional crust-derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates. Acta Petrologica Sinica, v. 23, p. 565–582 (in Chinese with English abstract).
  • Li, S., Chung, S.L., Wang, T., Wilde, S.A., Chu, M.F., and Guo, Q.Q., 2017, Tectonic significance and geodynamic processes of large-scale Early Cretaceous granitoids magmatic events in the southern Great Xing’an Range, North China. Tectonics, v. 36, p. 615–633. 4 https://doi.org/10.1002/2016TC004422
  • Li, S.C., Liu, Z.H., Xu, Z.Y., Li, G., and Zhang, C., 2015a, Age and tectonic setting of volcanic rocks of the Tamulangou Formation in the Great Xing’an Range, NE China. Journal of Asian Earth Sciences, v. 113, p. 471–480. https://doi.org/10.1016/j.jseaes.2014.09.014
  • Li, W.S., Ni, P., Wang, G.G., Yang, Y.L., Pan, J.Y., Wang, X.L., Chen, L.L., and Fan, M.S., 2020, A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion, Nanling region, South China. Journal of Asian Earth Sciences, v. 193, p. 104314. https://doi.org/10.1016/j.jseaes.2020.104314
  • Li, Y., Ding, L.L., Xu, W.L., Wang, F., Tang, J., Zhao, S., and Wang, Z.J., 2015b, Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: Implications for the timing of closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, v. 31, p. 56–66 (in Chinese with English abstract).
  • Li, Y.L., Zhou, H.W., Brouwer, F.M., Xiao, W.J., Wijbrans, J.R., Zhao, J.H., Zhong, Z.Q., and Liu, H.F., 2014, Nature and timing of the Solonker suture of the Central Asian Orogenic Belt: Insights from geochronology and geochemistry of basic intrusions in the Xilin Gol Complex, Inner Mongolia, China. International Journal of Earth Sciences, v. 103, p. 41–60. 1 https://doi.org/10.1007/s00531-013-0931-3
  • Li, Y.S., Yu, X.F., Mi, K.F., Carranza, E.J.M., Liu, J.J., Jia, W.B., and He, S., 2019, Deposit geology, geochronology and geochemistry of the Gongpengzi skarn Cu-Zn-W polymetallic deposit, NE China. Ore Geology Reviews, v. 109, p. 465–481. https://doi.org/10.1016/j.oregeorev.2019.04.026
  • Li, Z.M., Huang, H.L., Zhang, Z., Zhou, L.Y., Li, J.Q., and Wang, H.W., 2010, The exploration report of the Dongshanwan polymetal deposit in Balinzuoqi, Inner Mongolia. No. 243 Geological Team, national nuclear industry geology bureau. Chifeng, 1–57p (in Chinese with English abstract).
  • Linnen, R.L., and Keppler, H., 1997, Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the Earth’s crust. Contributions to Mineralogy and Petrology, v. 128, p. 213–227. https://doi.org/10.1007/s004100050304
  • Linnen, R.L., and Keppler, H., 2002, Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, v. 66, p. 3293–3301.
  • Litvinovsky, B.A., Jahn, B.M., and Eyal, M., 2015, Mantle-derived sources of syenites from the A-type igneous suites-new approach to the provenance of alkaline silicic magmas. Lithos, v. 232, p. 242–265. https://doi.org/10.1016/j.lithos.2015.06.008
  • Liu, C., Deng, J.F., Kong, W.Q., Xu, L.Q., Zhao, G.C., Luo, Z.H., and Li, N., 2011, LA-ICP-MS zircon U-Pb geochronology of the fine-grained granite and molybdenite Re-Os dating in the Wurinitu molybdenum deposit, Inner Mongolia, China. Acta Geologica Sinica (English Edition), v. 85, p. 1057–1066. 5 https://doi.org/10.1111/j.1755-6724.2011.00540.x
  • Liu, J.L., Qin, M.K., Cai, Y.Q., Liu, Z.Y., Zhang, Z.M., Yao, L., and Liu, Y., 2019, Late Mesozoic tectonic evolution of the southern Great Xing’an Range, northeastern China: Constraints from detrital zircon U–Pb and Hf isotopes of Late Cretaceous sandstones in the southwestern Songliao Basin. Geological Journal, v. 55, p. 4415–4425.
  • Liu, L.J., and Stegman, D.R., 2012, Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, v. 482, p. 386–389.
  • Liu, R.L., Wu, G., Li, T.G., Chen, G.Z., Wu, L.W., Zhang, P.C., Zhang, T., Jiang, B., and Liu, W.Y., 2018, LA-ICP-MS cassiterite and zircon U-Pb ages of the Weilasituo tin-polymetallic deposit in the southern Great Xing’an Range and their geological significance. Earth Science Frontiers, v. 25, p. 183–201 (in Chinese with English abstract).
  • Liu, Y., Jiang, S., and Bagas, L., 2016, The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu–(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China. Ore Geology Reviews, v. 75, p. 150–173. https://doi.org/10.1016/j.oregeorev.2015.12.006
  • Liu, Y.J., Li, W.M., Feng, Z.Q., Wen, Q.B., Neubauer, F., and Liang, C.Y., 2017, A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research, v. 43, p. 123–148.
  • Loiselle, M.C., and Wones, D.R., 1979, Characteristics of anorogenic granites. Geological Society of America Abstracts with Programs, v. 11, p. 468.
  • Ma, X.H., Zhu, W.P., Zhou, Z.H., and Qiao, S.L., 2017, Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China: Journal of Asian Earth Sciences, v. 144, p. 261–286.
  • Ma, Y.P., 2018, Ore genesis and tectonic setting of scheelite mineralization of Yangbishan iron-tungsten deposit in Shuangyashan of Heilongjaing Province, NE China [M.D. thesis]. Changchun, Jilin University, 44p (in Chinese with English abstract).
  • Mahood, G., and Hildreth, W., 1983, Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, v. 47, p. 11–30.
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoids. Geological Society of America Bulletin, v. 101, p. 635–643. 5 https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  • Manya, S., and Maboko, M.A.H., 2016, Generation of Palaeoproterozoic tonalites and associated high-K granites in southwestern Tanzania by partial melting of underplated mafic crust in an intracontinental setting: Constraints from geochemical and isotopic data. Lithos, v. 260, p. 120–133.
  • Mao, A.Q., Sun, D.Y., Gou, J., Yang, D.G., and Zheng, H., 2020, Late Palaeozoic–Early Mesozoic southward subduction of the Mongol–Okhotsk oceanic slab: Geochronological, geochemical, and Hf isotopic evidence from intrusive rocks in the Erguna Massif (NE China). International Geology Review, doi: https://doi.org/10.1080/00206814.00202020.01758968.
  • Maruyama, S., Isozaki, Y., Kimura, G., and Terabayashi, M., 1997, Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, v. 6, p. 121–142. 1 https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  • McCurry, M., Hayden, K.P., Morse, L.H., and Mertzmann, S., 2008, Genesis of post-hotspot, A-type rhyolite of the Eastern Snake River Plain volcanic field by extreme fractional crystallization of olivine tholeiite. Bulletin of Volcanology, v. 70, p. 361–383. 3 https://doi.org/10.1007/s00445-007-0143-4
  • McDonough, W.F., and Sun, S.S., 1995, The composition of the earth. Chemical Geology, v. 120, p. 223–253. 3–4 https://doi.org/10.1016/0009-2541(94)00140-4
  • Mei, W., Lu, X.B., Cao, X.F., Liu, Z., Zhao, Y., Ai, Z.L., Tang, R.K., and Abfaua, M.M., 2015a, Ore genesis and hydrothermal evolution of the Huanggang skarn iron-tin polymetallic deposit, southern Great Xing’an Range: Evidence from fluid inclusions and isotope analyses. Ore Geology Reviews, v. 64, p. 239–252. https://doi.org/10.1016/j.oregeorev.2014.07.015
  • Mei, W., Lu, X.B., Liu, Z., Tang, R.K., Ai, Z.L., Wang, X.D., and Cisse, M., 2015b, Geochronological and geochemical constraints on the ore-related granites in Huanggang deposit, southern Great Xing’an Range, NE China and its tectonic significance. Geosciences Journal, v. 19, p. 53–67. 1 https://doi.org/10.1007/s12303-014-0021-y
  • Mi, K.F., Lü, Z.C., Zhao, S.J., Yan, T.J., Yu, H.Y., and Dong, S.Y., 2021, Petrogenesis and metallogenic implications of the Late Jurassic Dagayin pluton, southern Great Xing’an Range, northeast China: Integrated geochronological, petrological, and geochemical constraints. Journal of Geochemical Exploration, v. 220, p. 106666. https://doi.org/10.1016/j.gexplo.2020.106666
  • Middlemost, E.A.K., 1994, Naming materials in the magma/igneous rock system. Earth-Science Reviews, v. 37, p. 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
  • Miller, C.F., and Mittlefehldt, D.W., 1982, Depletion of light rare-earth elements in felsic magmas. Geology, v. 10, p. 129–133. 3 https://doi.org/10.1130/0091-7613(1982)10<129:DOLREI>2.0.CO;2
  • Miller, C.F., and Mittlefehldt, D.W., 1984, Extreme fractionation in felsic magma chambers: A product of liquid-state diffusion or fractional crystallization? Earth and Planetary Science Letters, v. 68, p. 151−158.
  • Mingram, B., Trumbull, R.B., Littman, S., and Gerstenberger, H., 2000, A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: Evidence for mixing of crust and mantle-derived components. Lithos, v. 54, p. 1–22. https://doi.org/10.1016/S0024-4937(00)00033-5
  • Mushkin, A., Navon, O., Halicz, L., Hartmann, G., and Stein, M., 2003, The petrogenesis of A-type magmas from the Amram Massif, southern Israel. Journal of Petrology, v. 44, p. 815–832. 5 https://doi.org/10.1093/petrology/44.5.815
  • Ouyang, H.G., Mao, J.W., Santosh, M., Wu, Y., Hou, L., and Wang, X.F., 2014, The Early Cretaceous Weilasituo Zn–Cu–Ag vein deposit in the southern Great Xing’an Range, northeast China: Fluid inclusions, H, O, S, Pb isotope geochemistry and genetic implications. Ore Geology Reviews, v. 56, p. 503–515. https://doi.org/10.1016/j.oregeorev.2013.06.015
  • Ouyang, H.G., Mao, J.W., Santosh, M., Zhou, J., Zhou, Z.H., Wu, Y., and Hou, L., 2013, Geodynamic setting of Mesozoic magmatism in NE China and surrounding regions: Perspectives from spatio-temporal distribution patterns of ore deposits. Journal of Asian Earth Sciences, v. 78, p. 222–236. https://doi.org/10.1016/j.jseaes.2013.07.011
  • Ouyang, H.G., Mao, J.W., Zhou, Z.H., and Su, H.M., 2015, Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing’an Range, northeastern China. Gondwana Research, v. 27, p. 1153–1172. https://doi.org/10.1016/j.gr.2014.08.010
  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, v. 25, p. 956–983. 4 https://doi.org/10.1093/petrology/25.4.956
  • Pearce, J.A., Kempton, P.D., Nowell, G.M., and Noble, S.R., 1999, Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in western Pacific arc-basin systems. Journal of Petrology, v. 40, p. 1579–1611. https://doi.org/10.1093/petroj/40.11.1579
  • Peccerillo, A., and Taylor, S.R., 1976, Geochemistry of eocene calc-alkaline volcanic rocks form the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, v. 58, p. 63–81. 1 https://doi.org/10.1007/BF00384745
  • Peng, N.L., Xi, X.S., Kong, H., Chen, Z.F., and Wang, G., 2015, Re-Os isotopic dating of molybdenites from the Shazigou W-Mo polymetallic deposit, Inner Mongolia and its geological implications. Geology and Exploration, v. 51, p. 838–848 (in Chinese with English abstract).
  • Plank, T., 2005, Constraints from thorium/lanthanum on sediment recyeling at subduction zones and the evolution of the continents. Journal of Petrology, v. 46, p. 921–944. 5 https://doi.org/10.1093/petrology/egi005
  • Pu, J.D., 2010, Geological characteristics and genesis of Liudaogou tungsten deposit, Jilin Province. Mineral Exploration, v. 1, p. 52–55 (in Chinese)
  • Rapp, P.R., and Watson, E.B., 1995, Dehydration melting of metabasalt at 8-32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, v. 36, p. 891–931. 4 https://doi.org/10.1093/petrology/36.4.891
  • Ren, Q., Zhang, S., Wu, H., Liang, Z., Miao, X., Zhao, H., Li, H., Yang, T., Pei, J., and Davis, G.A., 2016, Further paleomagnetic results from the ~ 155 Ma Tiaojishan Formation, Yanshan Belt, North China, and their implications for the tectonic evolution of the Mongol-Okhotsk suture. Gondwana Research, v. 35, p. 180–191. https://doi.org/10.1016/j.gr.2015.05.002
  • Ren, Y.S., Niu, J.P., Lei, E., Wang, H., and Wang, X., 2010, Geological and geochemical characteristics and metallogenesis of Sanjiazi scheelite deposit in Siping area, Jilin Province. Journal of Jilin University (Earth Science Edition), v. 40, p. 314–320 (in Chinese with English abstract).
  • Romer, R.L., and Kroner, U., 2015, Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Mineralium Deposita, v. 50, p. 327–338. 3 https://doi.org/10.1007/s00126-014-0540-5
  • Romer, R.L., and Kroner, U., 2016, Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Research, v. 31, p. 60–95.
  • Romer, R.L., Meixner, A., and Förster, H.J., 2014, Lithium and boron in late-orogenic granites – Isotopic fingerprints for the source of crustal melts? Geochimica Et Cosmochimica Acta, v. 131, p. 98–114. https://doi.org/10.1016/j.gca.2014.01.018
  • Rudnick, R.L., and Gao, S., 2003, 3.01−Composition of the continental crust. Treatise on Geochemistry, v. 3, p. 1–64.
  • Schmitz, M.D., Vervoort, J.D., Bowring, S.A., and Patchett, P.J., 2004, Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa. Geology, v. 32, p. 405–408. https://doi.org/10.1130/G20241.1
  • Shang, Q.Q., Ren, Y.S., Chen, C., Zhao, H.L., and Li, C.H., 2017, Metallogenic age and ore-forming material source of Yangjin’gou gold deposit in eastern Yanbian region. Gold, v. 38, p. 7–12 (in Chinese with English abstract).
  • Shao, J., Li, X.R., and Yang, H.Z., 2011, Zircon SHRIMP U-Pb dating of granite in the Cuihongshan polymetallic deposit and its geological implications. Acta Geoscientica Sinica, v. 32, p. 163–170 (in Chinese with English abstract).
  • Shao, J.A., and Tang, K.D., 2015, Research on the Mesozoic ocean-continent transitional zone in the Northeast Asia and its implication. Acta Petrologica Sinica, v. 31, p. 3147–3154 (in Chinese with English abstract).
  • She, H.Q., Li, J.W., Xiang, A.P., Guan, J.D., Yang, Y.C., Zhang, D.Q., Tan, G., and Zhang, B., 2012, U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, v. 28, p. 571–594 (in Chinese with English abstract).
  • Sheng, J., Liu, L., Wang, D., Chen, Z., Ying, L., Huang, F., Wang, J., and Zeng, L., 2015, A preliminary review of metallogenic regularity of tungsten deposits in China. Acta Geologica Sinica (English Edition), v. 89, p. 1359–1374.
  • Shi, K.T., Wang, K.Y., Ma, X.L., Li, S.D., Li, J., and Wang, R., 2020, Fluid inclusions, C–H–O–S–Pb isotope systematics, geochronology and geochemistry of the Budunhua Cu deposit, northeast China: Implications for ore genesis. Geoscience Frontiers, v. 11, p. 1145–1161. 4 https://doi.org/10.1016/j.gsf.2019.09.010
  • Singh, S.K., and Singh, S., 2001, Geochemistry and tungsten metallogeny of the Balda granite, Rajasthan. India: Gondwana Research, v. 4, p. 487–495.
  • Skjerlie, K.P., and Johnston, A.D., 1993, Vapor-absent melting at 10 kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, v. 20, p. 263–266.
  • Song, Z.J., Wu, Z.M., and Li, C.J., 2009, Geological characteristics of Guanniaohe Cu-W deposit. Silicon Valiey, v. 1, p. 2–3 (in Chinese).
  • Sorokin, A.A., Sorokin, A.P., Ponomarchuk, V.A., and Travin, A.V., 2010, The age and geochemistry of volcanic rocks on the eastern flank of the Umlekan–Ogodzha volcanoplutonic belt (Amur region). Russian Geology and Geophysics, v. 51, p. 369–379. 4 https://doi.org/10.1016/j.rgg.2010.03.004
  • Sorokin, A.A., Zaika, V.A., Kovach, V.P., Kotov, A.B., Xu, W.L., and Yang, H., 2020, Timing of closure of the eastern Mongol-Okhotsk Ocean: Constrains from U-Pb and Hf isotopic data of detrital zircons from metasediments along the Dzhagdy Transect. Gondwana Research, v. 81, p. 58–78. https://doi.org/10.1016/j.gr.2019.11.009
  • Steiner, B.M., 2019, W and Li-Cs-Ta geochemical signatures in I-type granites−a case study from the Vosges Mountains, NE France. Journal of Geochemical Exploration, v. 197, p. 238–250. https://doi.org/10.1016/j.gexplo.2018.12.009
  • Sun, D.Y., Wu, F.Y., Zhang, Y.B., and Gao, S., 2004, The final closing time of the west Lamulun River-Changchun-Yanji plate suture zone: Evidence from the Dayushan granitic pluton, Jilin Province. Journal of Jilin University (Earth Science Edition), v. 34, p. 174–181 (in Chinese with English abstract).
  • Sun, K.K., Chen, B., and Deng, J., 2019, Biotite in highly evolved granites from the Shimensi W–Cu–Mo polymetallic ore deposit, China: Insights into magma source and evolution. Lithos, v. 350-351, p. 105245. https://doi.org/10.1016/j.lithos.2019.105245
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D., and Norry, M.J. (eds.). Magmatism in the Ocean Basins. London, Special Publications, 313–345p
  • Sun, Y.G., Li, B.L., Sun, F.Y., Ding, Q.F., Wang, B.Y., Li, Y.J., and Wang, K., 2020, Mineralization events in the Xiaokele porphyry Cu (–Mo) deposit, NE China: Evidence from zircon U–Pb and K‐feldspar Ar–Ar geochronology and petrochemistry. Resource Geology, v. 70, p. 254–272. 3 https://doi.org/10.1111/rge.12233
  • Tang, J., Xu, W.L., Wang, F., and Ge, W.C., 2018, Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia. Science China Earth Sciences, v. 61, p. 527–559. 5 https://doi.org/10.1007/s11430-017-9174-1
  • Tang, J., Xu, W.L., Wang, F., Zhao, S., and Wang, W., 2016, Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Research, v. 31, p. 218–240. https://doi.org/10.1016/j.gr.2014.12.010
  • Tang, Z.Y., Sun, D.Y., and Mao, A.Q., 2020, Geochemistry of Late Mesozoic volcanic rocks in the central Great Xing’an Range, NE China: Petrogenesis and crustal growth in comparison with adjacent areas. International Geology Review, v. 62, p. 1–28. 1 https://doi.org/10.1080/00206814.2019.1590867
  • Tang, Z.Y., Sun, D.Y., Mao, A.Q., Yang, D.G., Deng, C.Z., and Liu, Y., 2019, Timing and evolution of Mesozoic volcanism in the central Great Xing’an Range, northeastern China. Geological Journal, v. 54, p. 3737–3754. 6 https://doi.org/10.1002/gj.3366
  • Taylor, S.R., and McLennan, S.M., 1995, The geochemical evolution of the continental crust. Reviews of Geophysics, v. 33, p. 241–265. 2 https://doi.org/10.1029/95RG00262
  • Thomas, R., Förster, H.J., Rickers, K., and Webster, J.D., 2005, Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contributions to Mineralogy and Petrology, v. 148, p. 582–601. 5 https://doi.org/10.1007/s00410-004-0624-9
  • Tomurtogoo, O., Windley, B.F., Kroner, A., Badarch, G., and Liu, D.Y., 2005, Zircon age and occurrence of the Adaatsagophiolite and Muron shear zone, central Mongolia: Constraints on the evolution of the Mongol-Okhotsk ocean, suture and orogen. Journal of the Geological Society, v. 162, p. 197–229. 1 https://doi.org/10.1144/0016-764903-146
  • Turner, S.P., Foden, J.D., and Morrison, R.S., 1992, Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Padthaway Ridge, South Australia. Lithos, v. 28, p. 151–179. https://doi.org/10.1016/0024-4937(92)90029-X
  • Vervoort, J.D., Patchett, P.J., Albarède, F., Blichert-Toft, J., Rudnick, R., and Downes, H., 2000, Hf-Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, v. 181, p. 115–129. 1–2 https://doi.org/10.1016/S0012-821X(00)00170-9
  • Vervoort, J.D., Patchett, P.J., Blichert-Toft, J., and Albarède, F., 1999, Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, v. 168, p. 79–99. 1–2 https://doi.org/10.1016/S0012-821X(99)00047-3
  • Vervoort, J.D., Plank, T., and Prytulak, J., 2011, The Hf-Nd isotopic composition of marine sediments. Geochimica et Cosmochimica Acta, v. 75, p. 5903–5926. 20 https://doi.org/10.1016/j.gca.2011.07.046
  • Wan, L., Lu, C.D., Zeng, Z.X., Mohammed, A.S., Liu, Z.H., Dai, Q.Q., and Chen, K.L., 2019, Nature and significance of the late Mesozoic granitoids in the southern Great Xing’an range, eastern Central Asian Orogenic Belt. International Geology Review, v. 61, p. 584–606. 5 https://doi.org/10.1080/00206814.2018.1440645
  • Wang, C.Y., Wang, K.Y., Zhou, X.B., Li, W., Huang, G.H., Li, J.F., Zhang, X.B., and Yu, Q., 2015a, Geochemical characteristics of ore-forming fluids and genesis of Dongshanwan tungsten-molybdenum polymetallic deposit in Inner Mongolia. Journal of Jilin University (Earth Science Edition), v. 45, p. 759–771 (in Chinese with English abstract).
  • Wang, C.Z., Gao, Q., Ren, L., Chen, J.W., Wang, W.B., and Zheng, D.H., 2019, Fluid inclusions, H-O isotope and metallogenic epoch of the Xin’antun W-Mo deposit in Jiaohe City, Jilin Province. Geology and Exploration, v. 55, p. 673–684 (in Chinese with English abstract).
  • Wang, F., Bagas, L., Jiang, S., and Liu, Y., 2017a, Geological, geochemical, and geochronological characteristics of Weilasituo Sn-polymetal deposit, Inner Mongolia, China. Ore Geology Reviews, v. 80, p. 1206–1229. https://doi.org/10.1016/j.oregeorev.2016.09.021
  • Wang, F., Zhou, X.-H., Zhang, L.-C., Ying, J.-F., Zhang, Y.-T., Wu, F.-Y., and Zhu, R.-X., 2006, Late Mesozoic volcanism in the Great Xing’an Range (NE China): Timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters, v. 251, p. 179–198 1–2 https://doi.org/10.1016/j.epsl.2006.09.007
  • Wang, J., Hou, Q.Y., Chen, Y.L., Liu, J.B., Wang, Z., and Leng, F.R., 2010, Fluid inclusion study of the Weilasituo Cu polymetal deposit in Inner Mongolia. Geoscience, v. 24, p. 847–855 (in Chinese with English abstract).
  • Wang, J.X., Zhang, X.N., and Zhang, F., 2014a, Metallogenic geology of the Shalahada quartz-vein type wolfram deposit in Inner Mongolia. Geology and Resources, v. 23, p. 154–157 (in Chinese with English abstract).
  • Wang, L., Tang, L., Zhang, S.T., Santosh, M., Pei, Q.M., Cao, H.W., and Liu, F.G., 2020a, Genesis of the Yujiadian F-Pb-Zn-Ag deposit, Inner Mongolia, NE China: Constraints from geochemistry, fluid inclusion, zircon geochronology and stable isotopes. Ore Geology Reviews, v. 122, p. 103528. https://doi.org/10.1016/j.oregeorev.2020.103528
  • Wang, M.Y., and He, L., 2013, Re-Os dating of molybdenites from Chamuhan W-Mo deposit, Inner Mongolia and its geological implications. Geotectonica Et Metallogenia, v. 37, p. 49–56 (in Chinese with English abstract).
  • Wang, R.L., Zeng, Q.D., Zhang, Z.C., Guo, Y.P., and Lu, J.H., 2020b, Fluid Evolution, H-O Isotope and Re-Os Age of Molybdenite from the Baiyinhan Tungsten Deposit in the Eastern Central Asian Orogenic Belt, NE China, and Its Geological Significance: Minerals, v. 10, p. 1−18
  • Wang, R.L., Zeng, Q.D., Zhang, Z.C., Zhou, L.L., and Qin, K.Z., 2021, Extensive mineralization in the eastern segment of the Xingmeng orogenic belt, NE China: A regional view. Ore Geology Reviews, v. 135, p. 104204.
  • Wang, T., Guo, L., Zheng, Y.D., Donskaya, T., Gladkochub, D., Zeng, L.S., Li, J., Wang, Y.B., and Mazukabzov, A.M., 2012a, Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, v. 154, p. 315–345. https://doi.org/10.1016/j.lithos.2012.07.020
  • Wang, T., Shang, H.S., Shao, J.D., Zhao, Y.M., Wang, S.G., and Li, S.W., 2012b, Geological characteristics and ore prospecting criteria of the Wurinitu tungsten-molybdenum deposit in Sunitezuo counry, Inner Mongolia. Contributions to Geology and Mineral Resources Research, v. 27, p. 168–173 (in Chinese with English abstract).
  • Wang, T., Tong, Y., Zhang, L., Li, S., Huang, H., Zhang, J.J., Guo, L., Yang, Q.D., Hong, D.W., Donskaya, T., Gladkochub, D.P., and Tserendash, N., 2017b, Phanerozoic granitoids in the central and eastern parts of Central Asia and their tectonic significance. Journal of Asian Earth Sciences, v. 145, p. 368–392.
  • Wang, T., Zheng, Y., Zhang, J., Zeng, L., Donskaya, T., Guo, L., and Li, J., 2011, Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics, v. 30, p. 1–27. https://doi.org/10.1029/2011TC002896
  • Wang, W., Tang, J., Xu, W.L., and Wang, F., 2015b, Geochronology and geochemistry of Early Jurassic volcanic rocks in the Erguna Massif, northeast China: Petrogenesis and implications for the tectonic evolution of the Mongol–Okhotsk suture belt. Lithos, v. 218−219, p. 73–86.
  • Wang, X., Ren, M., and Chen, J., 2017c, The muscovite granites: Parental rocks to the Nanling range tungsten mineralization in south China. Ore Geology Reviews, v. 88, p. 702–717. https://doi.org/10.1016/j.oregeorev.2016.07.001
  • Wang, Y., Xu, B., Cheng, S.D., Liao, W., Shao, J., and Wang, Y., 2014b, Zircon U-Pb dating of the mafic lava frrom Wudaoshimen, Hexigten, Inner Mongolia and its geological significance. Acta Petrologica Sinica, v. 30, p. 2055–2062 (in Chinese with Englsih abstract).
  • Wang, Y.H., Zhang, F.F., Liu, J.J., Xue, C.J., and Zhang, Z.C., 2018, Genesis of the Wurinitu W-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, fluid inclusions and isotope systematics. Ore Geology Reviews, v. 94, p. 367–382. https://doi.org/10.1016/j.oregeorev.2018.01.031
  • Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, v. 64, p. 295–304. 2 https://doi.org/10.1016/0012-821X(83)90211-X
  • Webster, J., Thomas, R., Förster, H.J., Seltmann, R., and Tappen, C., 2004, Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, v. 39, p. 452–472. 4 https://doi.org/10.1007/s00126-004-0423-2
  • Wedepohl, K.H., 1995, The composition of the continental crust. Geochimica Et Cosmochimica Acta, v. 59, p. 1217–1232.
  • Wei, W., Zou, T., Huang, X.K., Jiang, B.B., Zhu, X.Y., and Wu, X.Y., 2020, Petrogenesis of early Cretaceous granitoids in the southern Great Xing’an Range, NE China: Constraints from the Haliheiba pluton. Geochemistry, v. 80, p. 125608. https://doi.org/10.1016/j.chemer.2020.125608
  • Wei, Z.X., An, W.T., and Zhang, H.R., 2017, Geological characteristics and the analysis about the law of ore-forming fluid migration of Wulegeerjidaban Sn-W-Mo deposit in Inner Mongolia Keqi. Western Resources, v. 14, p. 73–79 (in Chinese with English abstract).
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, v. 95, p. 407–419. 4 https://doi.org/10.1007/BF00402202
  • Wilde, S.A., 2015, Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction–A review of the evidence. Tectonophysics, v. 662, p. 345–362. https://doi.org/10.1016/j.tecto.2015.05.006
  • Wolf, M.B., and Wyllie, P.J., 1994, Dehydration-melting of amphibolite at 10 kbar: The effects of temperature and time. Contributions to Mineralogy and Petrology, v. 115, p. 369–383. 4 https://doi.org/10.1007/BF00320972
  • Wood, S.A., and Samson, I.M., 2000, The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of TP, pH, and m NaCl, . Economic Geology, v. 95, p. 143–182. 1 https://doi.org/10.2113/gsecongeo.95.1.143
  • Wu, F.Y., Jahn, B.M., Wilde, S.A., and Sun, D.Y., 2000, Phanerozoic continental crustal growth. U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics, v. 328, p. 89–113.
  • Wu, F.-Y., Sun, D.-Y., Ge, W.-C., Zhang, Y.-B., Grant, M.L., Wilde, S.A., and Jahn, B.-M., 2011, Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, v. 41, p. 1–30. 1 https://doi.org/10.1016/j.jseaes.2010.11.014
  • Wu, F.Y., Sun, D.Y., Li, H.M., Jahn, B.M., and Wilde, S., 2002, A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, v. 187, p. 143–173. 1–2 https://doi.org/10.1016/S0009-2541(02)00018-9
  • Xiang, A.P., Chen, Y.C., Bagas, L., She, H.Q., Kang, Y.J., Yang, W.S., and Li, C.J., 2016a, Molybdenite Re–Os and U–Pb zircon dating and genesis of the Dayana W-Mo deposit in eastern Ujumchin, Inner Mongolia. Ore Geology Reviews, v. 78, p. 268–280. https://doi.org/10.1016/j.oregeorev.2016.03.012
  • Xiang, A.P., Chen, Y.C., She, H.Q., Li, G.M., and Li, Y.X., 2018, Chronology and geochemical characteristics of granite in Weilianhe of Inner Mongolia and its geological significance. Geology in China, v. 45, p. 963–976 (in Chinese with English abstract).
  • Xiang, A.P., She, H.Q., Chen, Y.C., Qin, D.J., Wang, Y.J., Han, Z.G., and Kang, Y.J., 2016b, Ar-Ar age of muscovite from the greisenization alteration zones of the Honghuaerji tungsten polymetallic deposit, Inner Mongolia, and its geological significance. Rock and Mineral Analysis, v. 35, p. 108–116 (in Chinese with English abstract).
  • Xiang, A.P., Wang, Y.J., Qin, D.J., She, H.Q., Han, Z.G., Guan, J.D., and Kang, Y.J., 2014, Metallogenic and diagenetic age of Honghuaerji tungsten polymetallic deposit in Inner Mongolia. Mineral Deposits, v. 33, p. 428–439 (in Chinese with English abstract).
  • Xu, W.L., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., and Wang, W., 2013a, Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic systems. Journal of Asian Earth Sciences, v. 74, p. 167–193. https://doi.org/10.1016/j.jseaes.2013.04.003
  • Xu, W.L., Wang, F., Pei, F.P., Meng, E., Tang, J., Xu, M.J., and Wang, W., 2013b, Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations. Acta Petrologica Sinica, v. 29, p. 339–353 (in Chinese with English abstract).
  • Yang, F., Sun, J., Wang, Y., Fu, J., Na, F., Fan, Z., and Hu, Z., 2019, Geology, Geochronology and Geochemistry of Weilasituo Sn-Polymetallic Deposit in Inner Mongolia, China. Minerals, v. 9, p. 1–28. 2 https://doi.org/10.3390/min9020104
  • Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W., and Liu, X.M., 2006, Constrains on the timing of uplift of the Yanshan fold and thrust belt, North China. Earth and Planetary Science Letters, v. 246, p. 336–352. 3–4 https://doi.org/10.1016/j.epsl.2006.04.029
  • Yang, J.S., Lü, X.B., Gun, M.S., and Chen, C., 2020, Early Mesozoic subduction of the Mongol-Okhotsk Ocean and its effect on the central Great Xing’an Range: Insights from the monzodiorite in the Erdaohe deposit. Geological Journal, doi: https://doi.org/10.1002/gj.4002.
  • Yang, Z.H., Wang, J.P., Liu, J.J., Wang, S.G., Wang, Q.Y., and Kang, S.G., 2012, Characteristics and its geological significance of fluid inclusions of the Wurinitu W-Mo deposit in Inner Mongolia, China. Earth Science-Journal of China University of Geosciences, v. 37, p. 1268–1278.
  • Yang, Z.H., Wang, J.P., Liu, J.J., Wang, S.G., Wang, Q.Y., Kang, S.G., Zhang, J.X., and Zhao, Y., 2013, Isotope geochemistry of the Wurinitu W-Mo deposit in Sunid Zuoqi, Inner Mongolia, China. Geoscience, v. 27, p. 13–23 (in Chinese with English abstract).
  • Yang, Z.H., Wang, J.P., Liu, J.J., Wang, S.G., Wang, Q.Y., Kang, S.G., Zhang, J.X., and Zhao, Y., 2016, Geochronology and geochemistry of the Wurinitu granites in Inner Mongolia and their geological implications. Geoscience, v. 30, p. 528–540 (in Chinese with English abstract).
  • Yu, Y., Sun, M., Huang, X.L., Zhao, G.C., Li, P.F., Long, X.P., Cai, K.D., and Xia, X.P., 2017a, Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai. Lithos, v. 284-285, p. 207–221. https://doi.org/10.1016/j.lithos.2017.04.004
  • Yu, Y., Sun, M., Long, X.P., Li, P.F., Zhao, G.C., Kröner, A., Broussolle, A., and Yang, J.H., 2017b, Whole-rock Nd–Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: Constraints on the nature of the lower crust and tectonic setting. Gondwana Research, v. 47, p. 131–141. https://doi.org/10.1016/j.gr.2016.07.003
  • Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., Xia, X., and Long, X., 2007, Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, v. 242, p. 22–39. 1–2 https://doi.org/10.1016/j.chemgeo.2007.02.013
  • Yuan, S.D., Williams-Jones, A.E., Mao, J.W., Zhao, P.L., Yan, C., and Zhang, D.L., 2018, The origin of the Zhangjialong tungsten deposit, South China: Implications for W-Sn mineralization in large granite batholiths. Economic Geology, v. 113, p. 1193–1208. 5 https://doi.org/10.5382/econgeo.2018.4587
  • Yuan, S.D., Williams-Jones, A.E., Romer, R.L., Zhao, P.L., and Mao, J.W., 2019, Protolith-Related thermal controls on the decoupling of Sn and W in Sn-W Metallogenic Provinces. Insights from the Nanling Region, China: Economic Geology, v. 114, p. 1005–1012.
  • Yuan, X.P., 2018, Geological characteristics and genesis study of Xiaolaogualinzi W-Mo polymetallic deposit in Hexigten Baner, Inner Mongolia. Mineral Resources and Geology, v. 32, p. 276–282 (in Chinese with English abstract).
  • Zeng, Q.D., Liu, J.M., Chu, S.X., Wang, Y.B., Sun, Y., Duan, X.X., and Zhou, L.L., 2012, Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: Characteristics and tectonic setting. International Geology Review, v. 54, p. 1843–1869. 16 https://doi.org/10.1080/00206814.2012.677498
  • Zeng, Q.D., Liu, J.M., Qin, F., and Zhang, Z.L., 2010, Geochronology of the Xiaodonggou Porphyry Mo Deposit in Northern Margin of North China Craton. Resource Geology, v. 60, p. 192–202. 2 https://doi.org/10.1111/j.1751-3928.2010.00125.x
  • Zeng, Q.D., Liu, J.M., Yu, C.M., Ye, J., and Liu, H.T., 2011, Metal deposits in the Da Hinggan Mountains, NE China: Styles, characteristics, and exploration potential. International Geology Review, v. 53, p. 846–878. 7 https://doi.org/10.1080/00206810903211492
  • Zeng, Q.D., Qin, K.Z., Liu, J.M., Li, G.M., Zhai, M.G., Chu, S.X., and Guo, Y.P., 2015a, Porphyry molybdenum deposits in the Tianshan–Xingmeng orogenic belt, northern China. International Journal of Earth Sciences, v. 104, p. 991–1023. 4 https://doi.org/10.1007/s00531-014-1122-6
  • Zeng, Q.D., Sun, Y., Chu, S.X., Duan, X.X., and Liu, J.M., 2015b, Geochemistry and geochronology of the Dongshanwan porphyry Mo–W deposit, Northeast China: Implications for the Late Jurassic tectonic setting. Journal of Asian Earth Sciences, v. 97, p. 472–485. https://doi.org/10.1016/j.jseaes.2014.07.027
  • Zhai, D.G., Liu, J.J., Li, J.M., Zhang, M., Li, B.Y., Fu, X., Jiang, H.C., Ma, L.J., and Qi, L., 2016, Geochronological study of Weilasituo porphyry type Sn deposit in Inner Mongolia and its geological significance. Mineral Deposits, v. 35, p. 1011–1022 (in Chinese with English abstract).
  • Zhang, C., Quan, J.Y., Zhang, Y.J., Liu, Z.H., Li, W., Wang, Y., Qian, C., Zhang, L., and Ge, J.T., 2020a, Late Mesozoic tectonic evolution of the southern Great Xing’an Range, NE China: Evidence from whole-rock geochemistry, and zircon U Pb ages and Hf isotopes from volcanic rocks. Lithos, v. 362-363, p. 105409. https://doi.org/10.1016/j.lithos.2020.105409
  • Zhang, C., Santosh, M., Luo, Q., Jiang, S., Liu, L.F., and Liu, D.D., 2019, Impact of residual zircon on Nd-Hf isotope decoupling during sediment recycling in subduction zone. Geoscience Frontiers, v. 10, p. 241–251. 1 https://doi.org/10.1016/j.gsf.2018.03.015
  • Zhang, F., Li, Z.D., Duan, M., Wei, J.L., Xie, Y., Yu, R.A., and Zhang, Q., 2017a, Geological and geochemical characteristics of Bayandulan copper deposit, Dong Ujimqin banner, Inner Mongolia and the significance. Contributions to Geology and Mineral Resources Research, v. 32, p. 161–171 (in Chinese with English abstract).
  • Zhang, F.Q., Chen, H.L., Yu, X., Dong, C.W., Yang, S.F., Pang, Y.M., and Batt, G.E., 2011, Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamic implication. Gondwana Research, v. 19, p. 163–176. 1 https://doi.org/10.1016/j.gr.2010.03.011
  • Zhang, G.-L., Xie, W., Wen, S.-Q., Gong, E.-P., Guo, -R.-R., and Tang, T.-Q., 2020b, Petrogenesis and tectonic implications of Late Mesozoic volcanic rocks in the northern and central Great Xing’an Range, NE China: Constraints from geochronology and geochemistry. Geological Journal, v. 55, p. 8282–8308. 12 https://doi.org/10.1002/gj.3920
  • Zhang, H.H., Zheng, Y.J., Chen, S.W., Li, Y.F., Zhang, J., Bian, X.F., Su, F., Gong, F.H., and Huang, X., 2015, Zircon U-Pb age, geochemical characteristics and geological significance of the Triassic granite in Keerginyouyizhongyi, Inner Mongolia. Journal of Jilin University (Earth Science Edition), v. 45, p. 417–428 (in Chinese with English abstract).
  • Zhang, J.H., Gao, S., Ge, W.C., Wu, F.Y., Yang, J.H., Wilde, S.A., and Li, M., 2010, Geochronology of the Mesozoic volcanic rocks in the Great Xing’an Range, northeastern China. Implications for Subduction-induced Delamination: Chemical Geology, v. 276, p. 144–165.
  • Zhang, J.-H., Ge, W.-C., Wu, F.-Y., Wilde, S.A., Yang, J.-H., and Liu, X.-M., 2008, Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, northeastern China. Lithos, v. 102, p. 138–157 1–2 https://doi.org/10.1016/j.lithos.2007.08.011
  • Zhang, X.B., Wang, K.Y., Wang, C.Y., Li, W., Yu, Q., Wang, Y.C., Li, J.F., Wan, D., and Huang, G.H., 2017b, Age, genesis, and tectonic setting of the Mo-W mineralized Dongshanwan granite porphyry from the Xilamulun metallogenic belt, NE China: Journal of Earth Science, v. 28, p. 433–446.
  • Zhang, Y., Yang, J.H., Chen, J.Y., Wang, H., and Xiang, Y.X., 2017c, Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China: Evidence from whole-rock geochemistry and zircon U–Pb and Hf–O isotopes. Lithos, v. 278-281, p. 166–180. https://doi.org/10.1016/j.lithos.2017.01.018
  • Zhang, Y.T., Zhang, L.C., Ying, J.F., and Zhou, X.H., 2006, Geochemistry of Zhalantun dyke swarm in north Da Hinggan Mountain and its geological implication. Acta Petrologica Sinica, v. 22, p. 2733–2742 (in Chinese with English abstract).
  • Zhang, Z.J., Cheng, Q.M., Yao, L.Q., Bai, H.S., and Li, C., 2016, Zircon U-Pb-Hf isotopic systematics and geochemistry of the granites in the Wurintu molybdenum deposit, Inner Mongolia, China: Implications for tectonic setting and genetic type of mineralization. Acta Geologica Sinica (English Edition), v. 90, p. 2066–2079. https://doi.org/10.1111/1755-6724.13022
  • Zhao, H.L., 2014, Ore genesis and geodynamic settings of tungsten deposits in Eastern Jilin and Heilongjiang Provinces[Ph.D. thesis]. Changchun, Jilin University, 139p (in Chinese with English abstract).
  • Zhao, M.Y., Bo, J.R., and Zhang, Y., 2009, Geologic features and prospecting direction of Xinglong W-Mo deposit, Huadian, Jilin Province. Jilin Geology, v. 28, p. 45–48 (in Chinese with English abstract).
  • Zhao, S., Xu, W.L., Tang, J., Li, Y., and Guo, P., 2016, Timing of formation and tectonic nature of the purportedly Neoproterozoic Jiageda formation of the Erguna Massif, NE China: Constraints from field geology and U-Pb geochronology of detrital and magmatic zircons. Precambrian Research, v. 281, p. 585–601. https://doi.org/10.1016/j.precamres.2016.06.014
  • Zheng, T., Su, H., Li, B.W., and Li, D.S., 2017, Ore-controlling geological conditions and ore genesis of the Weijiang tungsten and molybdenum deposits in Heilongjiang. Non-ferrous Mining and Metallurgy, v. 33, p. 1–3 (in Chinese with English abstract).
  • Zheng, Y.F., Chen, Y.X., Dai, L.Q., and Zhao, Z.F., 2015, Development plate tectonics theory from oceanic subduction zones to collisional orogens. Science China Earth Sciences, v. 58, p. 1045–1069. 7 https://doi.org/10.1007/s11430-015-5097-3
  • Zhou, J.B., Wilde, S.A., Zhang, X.Z., Ren, S.M., and Zheng, C.Q., 2011, Early Paleozoic metamorphic rocks of the Erguna block in the Great Xing’an Range, NE China: Evidence for the timing of magmatic and metamorphic events and their tectonic implications. Tectonophysics, v. 499, p. 105–117. 1–4 https://doi.org/10.1016/j.tecto.2010.12.009
  • Zhou, J.B., Wilde, S.A., Zhao, G.C., and Han, J., 2017, Nature and assembly of microcontinental blocks within the Paleo-Asian Ocean. Earth Sciences Reviews, v. 186, p. 76–93.
  • Zhou, -L.-L., Zeng, Q.-D., Liu, J.-M., Friis, H., Zhang, Z.-L., Duan, -X.-X., and Lan, T.-G., 2014, Geochronology of magmatism and mineralization of the Daheishan giant porphyry molybdenum deposit, Jilin Province, Northeast China: Constraints on ore genesis and implications for geodynamic setting. International Geology Review, v. 56, p. 929–953. 8 https://doi.org/10.1080/00206814.2014.900728
  • Zhou, Y., 2013, The mineralization of Sansheng W-Mo deposit in Huade, Inner Mongolia [M.D. thesis]. Beijing, Chinese Academy of Geological Science, 73p(in Chinese with English abstract).
  • Zhou, Z.H., Lu, L.S., Feng, J.R., Li, C., and Li, T., 2010a, Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance, Inner Mongolia. Acta Petrologica Sinica, v. 26, p. 667–679 (in Chinese with English abstract).
  • Zhou, Z.H., Lu, L.S., Yang, Y.J., and Li, T., 2010b, Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia: Constraints from zircon U-Pb dating and geochemistry. Acta Petrologica Sinica, v. 26, p. 3521–3537 (in Chinese with English abstract).
  • Zhu, R.Z., Lai, S.C., Qin, J.F., and Zhao, S.W., 2015, Early-Cretaceous highly fractionated I-type granites from the northern Tengchong block, western Yunnan, SW China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, v. 100, p. 145–163. https://doi.org/10.1016/j.jseaes.2015.01.014
  • Zhu, X.Y., Zhang, Z.H., Fu, X., Li, B.Y., Wang, Y.L., Jiao, S.T., and Sun, Y.L., 2016, Geological and geochemical characteristics of the Weilasito Sn-Zn deposit, Inner Mongolia. Geology in China, v. 43, p. 188–208 (in Chinese with English abstract).
  • Zorin, Y.A., 1999, Geodynamics of the western part of the Mongol-Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics, v. 306, p. 33–56. 1 https://doi.org/10.1016/S0040-1951(99)00042-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.