1,251
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Neoproterozoic to Jurassic tectono-metamorphic events in the Sierra Nevada de Santa Marta Massif, Colombia: insights from zircon U-Pb geochronology and trace element geochemistry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1933-1965 | Received 04 Feb 2020, Accepted 25 Jul 2021, Published online: 25 Aug 2021

References

  • Cardona, A., Valencia, V.A., Weber, M., Duque, J., Montes, C., Ojeda, G., Reiners, P., Domanik, K., Nicolescu, S., and Villagomez, D., 2011b, Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocksin the Santa Marta massif and Serranía de Jarara, northern Colombia: Geologica Acta, v. 9, p. 445–469, doi:10.1344/105.000001739.
  • Améglio, L., and Vigneresse, J.L., 2000, Geophysical imaging of the shape of granitic intrusions at depth: A review: Geological Society Special Publication, v. 168, p. 39–54, doi:10.1144/GSL.SP.1999.168.01.04.
  • Arvizu, H.E., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Solís-Pichardo, G., Foster, D.A., and Cruz, R.L.S., 2009, Rocas graníticas pérmicas en la Sierra Pinta, NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norteamérica: Revista Mexicana De Ciencias Geologicas, v. 26, p. 709–728, http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1026-87742009000300013 accessed May 2020.
  • Baquero, M., S. Grande, F. Urbani, U. Cordani, C. Hall, and R. Armstrong, 2015, New Evidence for Putumayo Crust in the Basement of the Falcon Basin and Guajira Peninsula, Northwestern Venezuela, in C. Bartolini and P. Mann, Petroleum Geology and Potential of the Colombian Caribbean Margin: AAPG Memoir 108, p. 105–138. http://archives.datapages.com/data/specpubs/memoir108/data/103_aapg-sp1970103.htm
  • Bayona, G., Bustamante, C., Nova, G., and Salazar-Franco, A.M., 2019, Jurassic evolution of the Northwestern corner of Gondwana: Present knowledge and future challenges in studying Colombian Jurassic rocks, in The geology of Colombia Vol. 2, p. 37. doi:10.32685/pub.esp.36.2019.05
  • Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J., and Cordani, U., 2010, Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations: Journal of South American Earth Sciences, v. 29, p. 817–831, doi:10.1016/j.jsames.2009.10.005.
  • Bayona, G., Montes, C., Cardona, A., Jaramillo, C., Ojeda, G., Valencia, V., and Ayala-Calvo, C., 2011, Intraplate subsidence and basin filling adjacent to an oceanic arc–continent collision: A case from the southern Caribbean-South America plate margin: Basin Research, v. 23, p. 403–422, doi:10.1111/j.1365-2117.2010.00495.x.
  • Benítez-Pérez, J.M., Castiñeiras, P., Gómez-Barreiro, J., Martínez Catalán, J.R., Kylander-Clark, A., and Holdsworth, R., 2020, Unravelling the origins and P-T-t evolution of the allochthonous Sobrado unit (Órdenes Complex, NW Iberia) using combined U-Pb titanite, monazite and zircon geochronology and REE geochemistry: Solid Earth Discussions, p. 1–38, doi:10.5194/se-2020-38.
  • Black, L.P., Kamo, S.L., Allen, C.M., Aleinikoff, J.N., Davis, D.W., Korsch, R.J., and Foudoulis, C., 2003, TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology: Chemical Geology, v. 200, p. 155–170, doi:10.1016/S0009-2541(03)00165-7.
  • Blanco-Quintero, I.F., García-Casco, A., Toro, L.M., Moreno, M., Ruiz, E.C., Vinasco, C.J., Cardona, A., Lázaro, C., and Morata, D., 2014, Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia): International Geology Review, v. 56, p. 1852–1872, doi:10.1080/00206814.2014.963710.
  • Bustamante, A., Juliani, C., Essene, E.J., Hall, C.M., and Hyppolito, T., 2012, Geochemical constraints on blueschist- and amphibolite-facies rocks of the Central Cordillera of Colombia: The Andean Barragan region: International Geology Review, v. 54, p. 1013–1030, doi:10.1080/00206814.2011.594226.
  • Bustamante, A., Juliani, C., Hall, C.M., and Essene, E.J., 2011, 40Ar/40Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia: Implications on the styles of accretion in the Northern Andes: Geologica Acta, v. 9, p. 351–362, doi:10.1344/105.000001697.
  • Bustamante, C., Archanjo, C.J., Cardona, A., Bustamante, A., and Valencia, V.A., 2017, U-pb ages and hf isotopes in zircons from parautochthonous mesozoic terranes in the Western margin of Pangea: Implications for the terrane configurations in the northern andes: Journal of Geology, v. 125, p. 487–500, doi:10.1086/693014.
  • Bustamante, C., Cardona, A., Saldarriaga, M., García-casco, A., Valencia, V., and Weber, M., 2009, METAMORFISMO DE LOS ESQUISTOS VERDES YANFIBOLITAS PERTENECIENTES A LOS ESQUISTOS DE SANTA MARTA, SIERRA NEVADA DE SANTA MARTA (COLOMBIA): ¿REGISTRO DE LA COLISIÓN ENTRE EL ARCO CARIBE Y LAMARGEN SURAMERICANA? METAMORPHISM OF THE GREENSCHISTS AND AMPHIBOLITES FROM THE SANTA MARTA SCHISTS, SIERRA NEVADA DE SANTA MARTA (COLOMBIA): ARC-CONTINENT COLLISION BETWEEN THE CARIBBEAN AND THE SOUTH AMERICAN CONTINENT?
  • Cardona, A., Garcia­Casco, A., Ruiz, J., Valencia, V., Bustamante, C., Garzón, A., Saldarriaga, M. and Weber, M., 2008b. Late Cretaceous Caribbean­South America interactions: insights from the metamorphic record of the NW Sierra Nevada de Santa Marta, Colombia. 18va Conferencia Geológica del Caribe. República Dominicana.
  • Cardona, A., Chew, D., Valencia, V.A., Bayona, G., Mišković, A., and Ibañez-Mejía, M., 2010a, Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives: Journal of South American Earth Sciences, v. 29, p. 92–104, doi:10.1016/j.jsames.2009.07.011.
  • Cardona, A., Cordani, U.G., MacDonald, W.D., Cardona, A., Cordani, U.G., and MacDonald, W.D., 2006, Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region: Journal of South American Earth Sciences, v. 21, p. 337–354, doi:10.1016/j.jsames.2006.07.009.
  • Cardona, A., Valencia, V., Bustamante, C., García-casco, A., Ojeda, G., Ruiz, J., Saldarriaga, M., and Weber, M., 2010b, Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent: Journal of South American Earth Sciences, v. 29, p. 784–804, doi:10.1016/j.jsames.2009.08.012.
  • Cardona, A., Valencia, V., Garzón, A., Montes, C., Ojeda, G., Ruiz, J., and Weber, M., 2010c, Permian to Triassic I to S-type magmatic switch in the northeast Sierra Nevada de Santa Marta and adjacent regions, Colombian Caribbean: Tectonic setting and implications within Pangea paleogeography: Journal of South American Earth Sciences, v. 29, p. 772–783, doi:10.1016/j.jsames.2009.12.005.
  • Cardona, A., Valencia, V.A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., Jaramillo, C., Montes, C., Ojeda, G., and Ruiz, J., 2011a, Early-subduction-related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia: Terra Nova, v. 23, p. 26–34, doi:10.1111/j.1365-3121.2010.00979.x.
  • Chew, D.M., Schaltegger, U., Kosler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R.A., and Miskovic, A., 2007, U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes: Geological Society of America Bulletin, v. 119, p. 697–711, doi:10.1130/B26080.1.
  • Cochrane, R., Spikings, R., Gerdes, A., Ulianov, A., Mora, A., Villagómez, D., Putlitz, B., and Chiaradia, M., 2014a, Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea: Lithos, v. 190–191, p. 383–402, doi:10.1016/j.lithos.2013.12.020.
  • Cochrane, R., Spikings, R., Gerdes, A., Winkler, W., Ulianov, A., Mora, A., and Chiaradia, M., 2014b, Distinguishing between in-situ and accretionary growth of continents along active margins: Lithos, v. 202–203, p. 382–394, doi:10.1016/j.lithos.2014.05.031.
  • Colmenares, F., 2007, Evolución Geohistorica de la Sierra Nevada de Santa Marta: INGEOMINAS, http://myslide.es/documents/evolucion-geohistorica-de-la-sierra-nevada-de-santa-marta.html
  • Colmenares, F., Román García, L., Sánchez, J.M., and Ramirez, J.C., 2019, Diagnostic structural features of NW South America: Structural cross sections based upon detailed field transects: Frontiers in Earth Sciences, p. 651–672, doi:10.1007/978-3-319-76132-9_9.
  • Coombs, H.E., Kerr, A.C., Pindell, J., Buchs, D., Weber, B., and Solari, L., 2020, Petrogenesis of the crystalline basement along the western Gulf of Mexico: Postcollisional magmatism during the formation of Pangea, In Martens, U. & Molina, R.S. (editors) ,Southern and Central Mexico: Basement framework, tectonic evolution, and provenance of Mesozoic–Cenozoic Basins: Geological Society of America, p. 1–24. doi:10.1130/2020.2546(02).
  • Cordani, U.G., Cardona, A., Jimenez, D.M., Liu, D., and Nutman, A.P., 2005, Geochronology of Proterozoic basement inliers in the Colombian Andes: Tectonic history of remnants of a fragmented Grenville belt: Geological Society, London, Special Publications, v. 246, p. 329–346, doi:10.1144/GSL.SP.2005.246.01.13.
  • Correa Martínez, A.M., 2007, Petrogênese e Evolução do Ofiolito de Aburrá, Cordilheira Central Dos Andes Colombianos: Universidade de Brasília, Instituto de Geociências, Departamento de Mineralogia e Petrologia, Brasilía, 343 p.
  • Cruden, A.R., and Weinberg, R.F., 2018, Mechanisms of magma transport and storage in the lower and middle crust-magma segregation, ascent and emplacement, in Volcanic and igneous plumbing systems: In Burchardt, S. (editor), Understanding Magma transport, storage, and evolution in the Earth’s Crust: Elsevier, p. 13–53, doi:10.1016/B978-0-12-809749-6.00002-9.
  • Dickinson, W.R., and Gehrels, G.E., 2009, Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database: Earth and Planetary Science Letters, v. 288, p. 115–125, doi:10.1016/j.epsl.2009.09.013.
  • Doolan, B., 1970, Structure and metamorphism of the Santa Marta Area Colombia, South America [microform]: https://www.researchgate.net/publication/34351494_Structure_and_metamorphism_of_the_Santa_Marta_Area_Colombia_South_America_microform
  • Duque, T., 2009, Geocronología (U/Pb y 40Ar/39Ar) y geoquímica de los intrusivos paleógenos de la Sierra Nevada de Santa Marta y sus relaciones con la tectónica del Caribe y el arco magmático circun-caribeñ:, http://www.lareferencia.org/vufind/Record/MX_81c5790059ba2a100aa6d80159e8397a
  • Duque-Trujillo, J., Bustamante, C., Solari, L., Gómez-Mafla, Á., Toro-Villegas, G., and Hoyos, S., 2019, Reviewing the Antioquia batholith and satellite bodies: A record of late cretaceous to Eocene syn-to post-collisional arc magmatism in the central cordillera of Colombia: Andean Geology, v. 46, p. 82–101, doi:10.5027/andgeov46n1-3120.
  • Estrada-Carmona, J., Weber, B., Hecht, L., and Martens, U., 2009, P-T-t trajectory of metamorphic rocks from the central Chiapas Massif Complex: The custepec unit: Chiapas, Mexico: Revista Mexicana De Ciencias Geologicas, v. 26, p. 243–259.
  • Estrada-Carmona, J., Weber, B., Martens, U., and López-Martínez, M., 2012, Petrogenesis of Ordovician magmatic rocks in the southern Chiapas Massif Complex: Relations with the early Palaeozoic magmatic belts of northwestern Gondwana: International Geology Review, v. 54, p. 1918–1943, doi:10.1080/00206814.2012.685553.
  • Forero, A., 1970, Estratigrafía del Precretácico en el flanco occidental de la Serranía de Perijá: Geología Colombiana, v. 7, p. 7–77, https://revistas.unal.edu.co/index.php/geocol/article/view/30383
  • Gansser, A., 1955, Ein Beitrag zur Geologie und Petrographie der Sierra Nevada de Santa Marta (Kolumbien, Sudamerika): Schweiz. Mineral. Petrogr. Mitt., v. 35, n. 2, p. 209–279. https://www.scienceopen.com/document?vid=4e79968d-e8d6-46bb-a6e6-9d2be3087a6e
  • Geisler, T., Schaltegger, U., and Tomaschek, F., 2007, Re-equilibration of Zircon in aqueous fluids and melts: Elements, v. 3, p. 43–50, doi:10.2113/gselements.3.1.43.
  • Gómez, C., Kammer, A., Bernet, M., Piraquive, A., and von Quadt, A., 2021, Late Triassic rift tectonics at the northernmost Andean margin (Sierra Nevada de Santa Marta): Journal of South American Earth Sciences, v. 105, p. 102953, doi:10.1016/j.jsames.2020.102953
  • Gómez, J., Nohora, E., and Ramírez, M., 2015, Mapa Geológico de Colombia: http://www2.sgc.gov.co/Geologia/Mapa-geologico-de-Colombia.aspx
  • Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., and Schwartz, J.J., 2007, Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance: Geology, v. 35, p. 643–646, doi:10.1130/G23603A.1.
  • Grimes, C.B., Wooden, J.L., Cheadle, M.J., and John, B.E., 2015, “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon: Contributions to Mineralogy and Petrology, v. 170, p. 1–26, doi:10.1007/s00410-015-1199-3.
  • Guillong, M., Von Quadt, A., Sakata, S., Peytcheva, I., and Bachmann, O., 2014, LA-ICP-MS Pb-U dating of young zircons from the Kos-Nisyros volcanic centre, SE Aegean arc: Journal of Analytical Atomic Spectrometry, Royal Society of Chemistry, v. 29, p. 963–970, doi:10.1039/c4ja00009a.
  • Harley, S.L., Kelly, N.M., and Möller, A., 2007, Zircon behaviour and the thermal histories of mountain chains: Elements, v. 3, p. 25–30, doi:10.2113/gselements.3.1.25.
  • Horstwood, M.S.A., et al., 2016, Community-derived standards for LA-ICP-MS U-(Th-)Pb geochronology-uncertainty propagation, Age Interpretation and Data Reporting: doi:10.1111/j.1751-908X.2016.00379.x.
  • Hoskin, P.W.O., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, p. 27–62, doi:10.2113/0530027.
  • Ibañez–Mejia, M. 2020. The Putumayo Orogen of Amazonia: A synthesis. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, p. 101–131. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.06.
  • Ibanez-Mejia, M., Ruiz, J., Valencia, V.A., Cardona, A., Gehrels, G.E., and Mora, A.R., 2011, The Putumayo orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America: Precambrian Research, v. 191, p. 58–77, doi:10.1016/j.precamres.2011.09.005.
  • Irving, E., 1975, Structural evolution of the Northernmost Andes, Colombia: Geological Survey Professional, v. 846, p. 47.
  • Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, v. 211, p. 47–69, doi:10.1016/j.chemgeo.2004.06.017.
  • Kellogg, J.N., 1984, Cenozoic tectonic history of the Sierra de Perijá, Venezuela-Colombia, and adjacent basins: Memoir of the Geological Society of America, v. 162, p. 239–261, doi:10.1130/MEM162-p239.
  • Kelly, N.M., Clarke, G.L., and Fanning, C.M., 2004, Archaean crust in the Rayner complex of east Antarctica: Oygarden group of islands, Kemp Land: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 95, p. 491–510, doi:10.1017/S0263593300001176.
  • Keppie, D.F., and Keppie, J.D., 2012, An alternative Pangea reconstruction for Middle America with the Chortis block in the Gulf of Mexico: Tectonic implications: International Geology Review, v. 54, p. 1685–1696, doi:10.1080/00206814.2012.676361.
  • Keppie, J.D., et al., 2008, Ordovician-earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean: Tectonophysics, v. 461, p. 130–156, doi:10.1016/j.tecto.2008.01.010.
  • Kohn, M.J., Corrie, S.L., and Markley, C., 2015, The fall and rise of metamorphic zircon: American Mineralogist, v. 100, p. 897–908, doi:10.2138/am-2015-5064.
  • Kohn, M.J., and Kelly, N.M., 2017, Petrology and geochronology of metamorphic zircon, In Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M., Tait, K. (editors), Microstructural geochronology: American Geophysical Union, Wiley, Planetary Records Down to Atom Scale p.35–61, doi:10.1002/9781119227250.ch2.
  • Lanari, P., and Engi, M., 2017, Local bulk composition effects on metamorphic mineral assemblages: Reviews in Mineralogy and Geochemistry, v. 83, p. 55–102, doi:10.2138/rmg.2017.83.3.
  • Leal-Mejía, H., 2011, Phanerozoic gold metallogeny in the Colombian Andes: A tectono-magmatic approach: Tesis de Doctorado, p. 1000.
  • Ludwig, K., and Mundil, R., 2002, Extracting reliable U-Pb ages and errors from complex populations of zircons from Phanerozoic tuffs, in Goldschmidt Conference Abstract, p. A463, Davos, Switzerland. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Extracting+reliable+U-Pb+ages+and+errors+from+complex+populations+of+zircons+from+Phanerozoic+tuffs#0 (accessed August 2020).
  • Luzieux, L.D.A., Heller, F., Spikings, R., Vallejo, C.F., and Winkler, W., 2006, Origin and Cretaceous tectonic history of the coastal Ecuadorian forearc between 1°N and 3°S: Paleomagnetic, radiometric and fossil evidence: Earth and Planetary Science Letters, v. 249, p. 400–414, doi:10.1016/j.epsl.2006.07.008.
  • MacDonald, W.D., Doolan, B.L., and Cordani, U.G., 1971, Cretaceous-early tertiary metamorphic K-Ar age values from the South Caribbean: Geological Society of America Bulletin, v. 82, p. 1381–1388, doi:10.1130/0016-7606(1971)82[1381:CTMKAV]2.0.CO;2.
  • Macdonald, W.D., and Hurley, P.M., 1969, Precambrian Gneisses from Northern Colombia, South America: Geological Society of America Bulletin, v. 80, p. 1867, doi:10.1130/0016-7606(1969)80[1867:PGFNCS]2.0.CO;2.
  • Martens, U., Restrepo, J.J., Ordóñez-Carmona, O., and Correa-Martínez, A.M., 2014, The Tahamí and Anacona Terranes of the Colombian Andes: Missing links between the South American and Mexican Gondwana Margins: The Journal of Geology, v. 122, p. 507–530, doi:10.1086/677177.
  • Mazuera, F., Schmitz, M., Escalona, A., Zelt, C., and Levander, A., 2019, Lithospheric structure of Northwestern Venezuela from wide-angle seismic data: Implications for the understanding of continental margin evolution: Journal of Geophysical Research: Solid Earth, v. 124, p. 13124–13149, doi:10.1029/2019JB017892.
  • McDonough, W.F., and Sun, S.-S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253, doi:10.1016/0009-2541(94)00140-4.
  • Mišković, A., Spikings, R.A., Chew, D.M., Košler, J., Ulianov, A., and Schaltegger, U., 2009, Tectonomagmatic evolution of Western Amazonia: geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids: Geological Society of America Bulletin, v. 121, p. 1298–1324, doi:10.1130/B26488.1.
  • Möller, A., and Kennedy, A., 2006, Extremely high Th/U in metamorphic zircon: In situ dating of the Labwor Hills granulites: Geochimica et Cosmochimica Acta, v. 70, p. A425, doi:10.1016/j.gca.2006.06.855.
  • Möller, A., ÓBrien, P.J., Kennedy, A., and Kröner, A., 2003, The Use and Abuse of Th-U ratios in the interpretation of Zircon, in EGS - AGU - EUG Joint Assembly, http://adsabs.harvard.edu/abs/2003EAEJA….12113M
  • Montes, C., Guzman, G., Bayona, G., Cardona, A., Valencia, V., and Jaramillo, C., 2010, Clockwise rotation of the Santa Marta massif and simultaneous Paleogene to Neogene deformation of the Plato-San Jorge and Cesar-Ranchería basins: Journal of South American Earth Sciences, v. 29, p. 832–848, doi:10.1016/j.jsames.2009.07.010.
  • Montes, C., Rodriguez-Corcho, A.F., Bayona, G., Hoyos, N., Zapata, S., and Cardona, A., 2019, Continental margin response to multiple arc-continent collisions: The northern Andes-Caribbean margin: Earth-Science Reviews, v. 198, p. 102903, doi:10.1016/j.earscirev.2019.102903.
  • Mora-Bohórquez, J.A., Ibánez-Mejia, M., Oncken, O., de Freitas, M., Vélez, V., Mesa, A., and Serna, L., 2017, Structure and age of the lower Magdalena valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central Andes against the Caribbean basin: Journal of South American Earth Sciences, v. 74, p. 1–26, doi:10.1016/j.jsames.2017.01.001.
  • Murali, A.V., Parthasarathy, R., Mahadevan, T.M., and Das, M.S., 1983, Trace element characteristics, REE patterns and partition coefficients of zircons from different geological environments—A case study on Indian zircons: Geochimica et Cosmochimica Acta, v. 47, p. 2047–2052, doi:10.1016/0016-7037(83)90220-X.
  • Nova, G., et al., 2019, Jurassic break-up of the Peri-Gondwanan margin in northern Colombia: Basin formation and implications for terrane transfer: Journal of South American Earth Sciences, v. 89, p. 92–117, doi:10.1016/j.jsames.2018.11.014.
  • Ordóñez, O., Pimentel, M., and Moraes, R., 2002, GRANULITAS DE LOS MANGOS, UN FRAGMENTO GRENVILLIANO EN LA PARTE ORIENTAL DE LA SIERRA NEVADA DE SANTA MARTA: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 0370-3908, v. 26, p. 169–179, http://www.researchgate.net/publication/260871306_GRANULITAS_DE_LOS_MANGOS_UN_FRAGMENTO_GRENVILLIANO_EN_LA_PARTE_ORIENTAL_DE_LA_SIERRA_NEVADA_DE_SANTA_MARTA
  • Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., and Macías-Romo, C., 2014, Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana: International Journal of Earth Sciences, v. 103, p. 1287–1300, doi:10.1007/s00531-013-0933-1.
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic Spectrometry, v. 26, p. 2508–2518, doi:10.1039/c1ja10172b.
  • Petrus, J.A., and Kamber, B.S., 2012, VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction: Geostandards and Geoanalytical Research, v. 36, p. 247–270, doi:10.1111/j.1751-908X.2012.00158.x.
  • Peucat, J.J., Tisserant, D., Caby, R., and Clauer, N., 1985, Resistance of zircons to U–Pb resetting in a prograde metamorphic sequence of Caledonian age in East Greenland: Canadian Journal of Earth Sciences, v. 22, p. 330–338, doi:10.1139/e85-033.
  • Pidgeon, R.T., 1992, Recrystallisation of oscillatory zoned zircon: Some geochronological and petrological implications: Contributions to Mineralogy and Petrology, v. 110, p. 463–472, doi:10.1007/BF00344081.
  • Pidgeon, R.T., Nemchin, A.A., and Hitchen, G.J., 1998, Internal structures of zircons from Archaean granites from the darling range batholith: Implications for zircon stability and the interpretation of zircon U-Pb ages: Contributions to Mineralogy and Petrology, v. 132, p. 288–299, doi:10.1007/s004100050422.
  • Pindell, J.L., 1985, Alleghenian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean: Tectonics, v. 4, p. 1–39, doi:10.1029/TC004i001p00001.
  • Pindell, J.L., and Kennan, L., 2009, Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update: Geological Society, London, Special Publications, v. 328, p. 1–55, doi:10.1144/SP328.1.
  • Piraquive, A., Kammer, A., Gómez, C., Bernet, M., Muñoz-Rocha, J.A., Quintero, C.A., Laurent, O., von Quadt, A., and Peña-Urueña, M.L., 2021, Middle-late Triassic metamorphism of the Guajira Arch-basement: Insights from zircon U–Pb and Lu–Hf systematics: Journal of South American Earth Sciences, v. 110, p. 103397, doi:10.1016/j.jsames.2021.103397.
  • Piraquive, A., Pinzón, E., Kammer, A., Bernet, M., and von Quadt, A., 2018, Early Neogene unroofing of the Sierra Nevada de Santa Marta, as determined from detrital geothermochronology and the petrology of clastic basin sediments: Bulletin of the Geological Society of America, v. 130, p. 355–380, doi:10.1130/B31676.1.
  • Putnis, A., 2002, Mineral replacement reactions: From macroscopic observations to microscopic mechanisms: Mineralogical Magazine, v. 66, p. 689–708, doi:10.1180/0026461026650056.
  • Quandt, D., et al., 2018, The geochemistry and geochronology of early Jurassic igneous rocks from the Sierra Nevada de Santa Marta, NW Colombia, and tectono-magmatic implications: Journal of South American Earth Sciences, v. 86, p. 216–230, doi:10.1016/j.jsames.2018.06.019.
  • Ramírez, D.A., Correa-Martínez, A.M., Zapata-Villada, J.P., and Rodríguez, G., 2020, Tectono-magmatic implications of the Jurassic volcanic and volcaniclastic record of the Santa Marta Massif (Colombia): Journal of South American Earth Sciences, v. 104, p. 102866, doi:10.1016/j.jsames.2020.102866
  • Ramos, V., 2015, La orogenia famatiniana (Ordovícico medio a tardío) en el margen continental protoandino de América del Sur: Nuevas evidencias y sus implicancias tectónicas, in Conference: 14a Congreso Geológico Chileno, Volume: ST1 Tectónica y Deformación Cortical Andina. La Serena, región de Coquimbo. https://www.researchgate.net/publication/318661947_La_orogenia_famatiniana_Ordovicico_medio_a_tardio_en_el_margen_continental_protoandino_de_America_del_Sur_nuevas_evidencias_y_sus_implicancias_tectonicas?_iepl%25255BviewId%25255D=msaX0QRaPtjk2jlOhknUXYnt&_iepl%25255
  • Ramos, V.A., 2018, The famatinian orogen along the protomargin of Western Gondwana: Evidence for a Nearly Continuous Ordovician Magmatic Arc Between Venezuela and Argentina:, p. 133–161, doi:10.1007/978-3-319-67774-3_6.
  • Rapela, C.W., Pankhurst, R.J., Saavedra, J., and Galindo, C., 1998, Early evolution of the proto-andean margin of South America: Geology, v. 26, p. 707–710, doi:10.1130/0091-7613(1998)026<0707:EEOTPA>2.3.CO;2.
  • Restrepo, J.J., and Toussaint, J.F., 1988, Terranes and continental accretion in the Colombian Andes: Episodes, v. 11, p. 189–193, doi:10.18814/epiiugs/1988/v11i3/006.
  • Restrepo, M., Bustamante, C., Cardona, A., Beltrán-Triviño, A., Bustamante, A., Chavarría, L., and Valencia, V.A., 2021, Tectonic implications of the Jurassic magmatism and the metamorphic record at the southern Colombian Andes: Journal of South American Earth Sciences, v. 111, p. 103439, doi:10.1016/J.JSAMES.2021.103439.
  • Riel, N., et al., 2013, Metamorphic and geochronological study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone: Lithos, v. 156–159, p. 41–68, doi:10.1016/j.lithos.2012.10.005.
  • Riel, N., Jaillard, E., Martelat, J.E., Guillot, S., and Braun, J., 2018, Permian-Triassic Tethyan realm reorganization: Implications for the outward Pangea margin: Journal of South American Earth Sciences, v. 81, p. 78–86, doi:10.1016/j.jsames.2017.11.007.
  • Rodríguez, G., Arango, M.I., Zapata, G., and Bermúdez, J.G., 2018, Petrotectonic characteristics, geochemistry, and U-Pb geochronology of Jurassic plutons in the upper Magdalena valley-Colombia: Implications on the evolution of magmatic arcs in the NW Andes: Journal of South American Earth Sciences, v. 81, p. 10–30, doi:10.1016/j.jsames.2017.10.012.
  • Rodríguez–García, G., Correa–Martínez, A.M., Zapata–Villada, J.P. & Obando–Erazo, G. 2019. Fragments of a Permian arc on the western margin of the Neoproterozoic basement of Colombia. In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, V. 35, p. 205–239. Bogotá. https://doi.org/10.32685/pub.esp.35.2019.10
  • Rodríguez–García, G., Correa–Martínez, A.M., Zapata–García, G., Arango–Mejía, M.I., Obando–Erazo, G., Zapata–Villada, J.P. & Bermúdez, J.G. 2020a. Diverse Jurassic magmatic arcs of the Colombian Andes: Constraints from petrography, geochronology, and geochemistry. In: Gómez, J. & Pinilla–Pachon, A.O. (editors), The Geology of Colombia, Volume 2 Mesozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales, V. 36, p. 117–170. Bogotá. https://doi.org/10.32685/pub.esp.36.2019.04.
  • Rodríguez, G., Zapata, J.P., Correa-Martínez, A.M., Ramírez, D.A., and Obando, G., 2020b, Aportes al conocimiento del plutonismo del Arco Mocoa- Santa Marta durante el Jurásico Temprano-Medio, en la margen noroccidental de los Andes, Colombia: Boletín de Geología, v. 42, p. 15–50, doi:10.18273/revbol.v42n3-2020001.
  • Rodríguez, G., Zapata-Villada, J.P., Correa, A.M., Ramirez, Z., Obando, D., Muñoz, G., A., J., and Ureña, C.L., 2019b, Magmatismo jurásico de la sierra nevada de santa marta: http://recordcenter.sgc.gov.co/B23/678_19MagmatismoSNSM/Documento/Pdf/MagmatJurasSMSN.pdf
  • Rodriguez‐Jimenez, J.V., Vinasco, C., and Archanjo, C.J., 2018, Emplacement of the Triassic Pueblito Pluton, NW Colombia: Implications for the evolution of the Western Margin of Pangea: Tectonics, v. 37, p. 4150–4172, doi:10.1029/2018TC005138.
  • Rubatto, D., 2002, Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism: Chemical Geology, v. 184, p. 123–138, doi:10.1016/S0009-2541(01)00355-2.
  • Rubatto, D., 2017, Zircon: The metamorphic mineral: Reviews in Mineralogy and Geochemistry, v. 83, p. 261–295, doi:10.2138/rmg.2017.83.9.
  • Ruiz, J., Tosdal, R.M., Restrepo, P.A., and Murillo-Muñetón, G., 1999, Pb isotope evidence for Colombia-southern México connections in the Proterozoic: Special Paper of the Geological Society of America, v. 336, p. 183–197, doi:10.1130/0-8137-2336-1.183.
  • Salazar, C.A., Bustamante, C., and Archanjo, C.J., 2016, Magnetic fabric (AMS, AAR) of the Santa Marta batholith (northern Colombia) and the shear deformation along the Caribbean plate margin: Journal of South American Earth Sciences, v. 70, p. 55–68, doi:10.1016/j.jsames.2016.04.011.
  • Sanchez, J., and Mann, P., 2015, Integrated structural and basinal analysis of the Cesar–Rancheria Basin, Colombia: Implications for its tectonic history and petroleum systems, in Bartolini, C., and Mann, P., eds., Memoir 108: Petroleum geology and potential of the Colombian Caribbean Margin: AAPG, p. 431–470. doi:10.1306/13531945m1083648.
  • Sawyer, E.W., and Barnes, S.-J., 1988, Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada: Journal of Metamorphic Geology, v. 6, p. 437–450, doi:10.1111/j.1525-1314.1988.tb00432.x.
  • Schaltegger, U., Fanning, C.M., Günther, D., Maurin, J.C., Schulmann, K., and Gebauer, D., 1999, Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: Conventional and in-situ U-Pb isotope, cathodoluminescence and microchemical evidence: Contributions to Mineralogy and Petrology, v. 134, p. 186–201, doi:10.1007/s004100050478.
  • Schoene, B., Condon, D.J., Morgan, L., and McLean, N., 2013, Precision and accuracy in geochronology: Elements, v. 9, p. 19–24, doi:10.2113/gselements.9.1.19.
  • Sempere, T., et al., 2002, Late Permian–middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics: Tectonophysics, v. 345, p. 153–181, doi:10.1016/S0040-1951(01)00211-6.
  • Shaw, R.P., Leal-Mejía, H., and Melgarejo I Draper, J.C., 2019, Phanerozoic metallogeny in the Colombian Andes: A Tectono-magmatic Analysis in Space and Time, p. 411–549, doi:10.1007/978-3-319-76132-9_6.
  • Silva-Arias, A., Páez-Acuña, L.A., Rincón-Martínez, D., Tamara-Guevara, J.A., Gomez-Gutierrez, P.D., López-Ramos, E., Restrepo-Acevedo, S.M., Mantilla-Figueroa, L.C., and Valencia, V., 2016, Basement characteristics in the lower Magdalena valley and the sinú and san jacinto fold belts: Evidence of a late cretaceous magmatic arc at the south of the Colombian Caribbean: CTyF - Ciencia: Tecnologia Y Futuro, v. 6, p. 5–36, doi:10.29047/01225383.01.
  • Sláma, J., et al., 2008, Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1–35, doi:10.1016/j.chemgeo.2007.11.005.
  • Solari, L.A., Gómez-Tuena, A., Ortega-Gutiérrez, F., and Ortega-Obregón, C., 2011, The chuacús metamorphic complex, central Guatemala: Geochronological and geochemical constraints on its Paleozoic-Mesozoic evolution: Geologica Acta, v. 9, p. 329–350, doi:10.1344/105.000001695.
  • Solari, L.A., Ortega-Gutiérrez, F., Elias-Herrera, M., Gómez-Tuena, A., and Schaaf, P., 2010, Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA-ICPMS, and tectonic implications: International Geology Review, v. 52, p. 977–998, doi:10.1080/00206810903216962.
  • Spencer, C.J., Kirkland, C.L., and Taylor, R.J.M., 2016, Strategies towards statistically robust interpretations of in situ U-Pb zircon geochronology: Geoscience Frontiers, v. 7, p. 581–589, doi:10.1016/j.gsf.2015.11.006.
  • Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., and Beate, B., 2015, The geological history of northwestern South America: From Pangaea to the early collision of the Caribbean large igneous province (290–75 Ma): Gondwana Research, v. 27, p. 95–139, doi:10.1016/j.gr.2014.06.004.
  • Spikings, R., Paul, A., Vallejo, C., and Reyes, P., 2021, Constraints on the ages of the crystalline basement and Palaeozoic cover exposed in the Cordillera real, Ecuador: 40Ar/39Ar analyses and detrital zircon U/Pb geochronology: Gondwana Research, v. 90, p. 77–101, doi:10.1016/j.gr.2020.10.009.
  • Spikings, R., and Paul, A.N., 2019, The permian – triassic history of magmatic rocks of the Northern Andes (Colombia and Ecuador): Supercontinent assembly and disassembly, in The geology of Colombia, volume 2 Mesozoic: Mesozoic, V. 2, p. 42. doi:10.32685/pub.esp.36.2019.01
  • Spikings, R., Reitsma, M.J., Boekhout, F., Mišković, A., Ulianov, A., Chiaradia, M., Gerdes, A., and Schaltegger, U., 2016, Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea: Gondwana Research, v. 35, p. 124–143, doi:10.1016/j.gr.2016.02.008.
  • Surpless, K.D.G., Clemens-Knott, D., Barth, A.P., and Gevedon, M., 2019, A survey of Sierra Nevada magmatism using great valley detrital zircon trace-element geochemistry: View from the forearc: Lithosphere, v. 11, p. 603–619, doi:10.1130/L1059.1.
  • Talavera-Mendoza, O., Ruiz, J., Gehrels, G.E., Meza-Figueroa, D.M., Vega-Granillo, R., and Campa-Uranga, M.F., 2005, U-Pb geochronology of the Acatlán complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico: Earth and Planetary Science Letters, v. 235, p. 682–699, doi:10.1016/j.epsl.2005.04.013.
  • Tazzo-Rangel, M.D., Weber, B., González-Guzmán, R., Valencia, V.A., Frei, D., Schaaf, P., and Solari, L.A., 2019, Multiple metamorphic events in the Palaeozoic Mérida Andes basement, Venezuela: Insights from U–Pb geochronology and Hf–Nd isotope systematics: International Geology Review, v. 61, p. 1557–1593, doi:10.1080/00206814.2018.1522520.
  • Tazzo-Rangel, M.D., Weber, B., Schmitt, A.K., González-Guzmán, R., Cisneros de León, A., and Hecht, L., 2020, Permo–Triassic metamorphism in the Mérida Andes, Venezuela: New insights from geochronology, O-isotopes, and geothermobarometry: International Journal of Earth Sciences, doi:10.1007/s00531-020-01926-5.
  • Tomaschek, F., Kennedy, A.K., Villa, I.M., Lagos, M., and Ballhaus, C., 2003, Zircons from Syros, Cyclades, Greece - Recrystallization and mobilization of zircon during high-pressure metamorphism: Journal of Petrology, v. 44, p. 1977–2002, doi:10.1093/petrology/egg067.
  • Trümpy, D., 1943, Pre-Cretaceous of Colombia: Geological Society of America Bulletin, v. 54, p. 1281–1304, doi:10.1130/GSAB-54-1281.
  • Tschanz, C., Jimeno, A., and Cruz, J., 1969, Geology of the Sierra Nevada de Santa Marta area, Colombia. Informe interno 1829: INGEOMINAS. Bogotá. Preliminary report, 288p. [Links].
  • Tschanz, C., Marvin, R.F., B, J.C., Mehnert, H.H., and Cebula, G.T., 1974, Geologic evolution of the Sierra Nevada de Santa Marta, Northeastern Colombia: Geological Society of America Bulletin, v. 85, p. 273–284, doi:10.1130/0016-7606(1974)85<273:GEOTSN>2.0.CO;2.
  • Vallejo, C., Spikings, R.A., Horton, B.K., Luzieux, L., Romero, C., Winkler, W., and Thomsen, T.B., 2019, Late cretaceous to miocene stratigraphy and provenance of the coastal forearc and Western Cordillera of Ecuador: Evidence for accretion of a single oceanic plateau fragment, In Horton, B.K., Folguera, A. (editors). Andean tectonics: Elsevier, p. 209–236, doi:10.1016/b978-0-12-816009-1.00010-1.
  • van der Lelij, R., Spikings, R., Gerdes, A., Chiaradia, M., Vennemann, T., and Mora, A., 2019, Multi-proxy isotopic tracing of magmatic sources and crustal recycling in the Palaeozoic to Early Jurassic active margin of North-Western Gondwana: Gondwana Research, v. 66, p. 227–245, doi:10.1016/j.gr.2018.09.007.
  • van der Lelij, R., Spikings, R., Ulianov, A., Chiaradia, M., and Mora, A., 2016, Palaeozoic to early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans: Gondwana Research, v. 31, p. 271–294, doi:10.1016/j.gr.2015.01.011.
  • Vanderhaeghe, O., 2009, Migmatites, granites and orogeny: Flow modes of partially-molten rocks and magmas associated with melt/solid segregation in orogenic belts: Tectonophysics, v. 477, p. 119–134, doi:10.1016/j.tecto.2009.06.021.
  • Vavra, G., Gebauer, D., Schmid, R., and Compston, W., 1996, Multiple zircon growth and recrystallization during polyphase late carboniferous to triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SHRIMP) study: Contributions to Mineralogy and Petrology, v. 122, p. 337–358, doi:10.1007/s004100050132.
  • Vavra, G., Schmid, R., and Gebauer, D., 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: Geochronology of the Ivrea Zone (Southern Alps): Contributions to Mineralogy and Petrology, v. 134, p. 380–404, doi:10.1007/s004100050492.
  • Veloza, G., Styron, R., Taylor, M., and Mora, A., 2012, Open-source archive of active faults for northwest South America: GSA Today: A Publication of the Geological Society of America, v. 22, p. 4–10, doi:10.1130/GSAT-G156A.1.
  • Vermeesch, P., 2018, IsoplotR: A free and open toolbox for geochronology: Geoscience Frontiers, v. 9, p. 1479–1493, doi:10.1016/j.gsf.2018.04.001.
  • Vigneresse, J.L., 1995, Crustal regime of deformation and ascent of granitic magma: Tectonophysics, v. 249, p. 187–202, doi:10.1016/0040-1951(95)00005-8.
  • Villagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., and Beltrán, A., 2011, Geochronology, geochemistry and tectonic evolution of the Western and central cordilleras of Colombia: Lithos, v. 125, p. 875–896, doi:10.1016/j.lithos.2011.05.003.
  • Vinasco, C.J.J., Cordani, U.G.G., González, H., Weber, M., and Pelaez, C., 2006, Geochronological, isotopic, and geochemical data from permo-triassic granitic gneisses and granitoids of the Colombian central Andes: Journal of South American Earth Sciences, v. 21, p. 355–371, doi:10.1016/j.jsames.2006.07.007.
  • Viscarret, P., Wright, J., and Urbani, F., 2009, Nuevas edades U-Pb en circones para el macizo El Baúl, estado Cojedes, Venezuela: Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, Maracaibo; Vol. 32, 210–221 p., http://www.scielo.org.ve/scielo.php?script=sci_abstract&pid=S0254-07702009000300004&lng=es&nrm=iso&tlng=en
  • Von Quadt, A., Wotzlaw, J.F., Buret, Y., Large, S.J.E., Peytcheva, I., and Trinquier, A., 2016, High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors: Journal of Analytical Atomic Spectrometry, v. 31, p. 658–665, doi:10.1039/c5ja00457h.
  • Weber, B., González-Guzmán, R., Manjarrez-Juárez, R., Cisneros de León, A., Martens, U., Solari, L., Hecht, L., and Valencia, V., 2018, Late Mesoproterozoic to early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif complex, Mexico, and implications for the evolution of NW Gondwana: Lithos, v. 300–301, p. 177–199, doi:10.1016/j.lithos.2017.12.009.
  • Weber, B., Iriondo, A., Premo, W.R., Hecht, L., and Schaaf, P., 2007, New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif: International Journal of Earth Sciences, v. 96, p. 253–269, doi:10.1007/s00531-006-0093-7.
  • Weber, B., Scherer, E.E., Martens, U.K., and Mezger, K., 2012, Where did the lower Paleozoic rocks of Yucatan come from? A U–Pb, Lu–Hf, and Sm–Nd isotope study: Chemical Geology, v. 312–313, p. 1–17, doi:10.1016/j.chemgeo.2012.04.010.
  • Weber, M., Cardona, A., Valencia, V., García-Casco, A., Tobón, M., and Zapata, S., 2010, U/Pb detrital zircon provenance from late cretaceous metamorphic units of the Guajira Peninsula, Colombia: Tectonic implications on the collision between the Caribbean arc and the South American margin: Journal of South American Earth Sciences, v. 29, p. 805–816, doi:10.1016/j.jsames.2009.10.004.
  • Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V.O.N., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U‐Th‐Pb, Lu‐Hf, Trace Element and Ree analyses: Geostandards and Geoanalytical Research, v. 19, p. 1–23, doi:10.1111/j.1751-908X.1995.tb00147.x.
  • Yakymchuk, C., Clark, C., and White, R.W., 2017, Phase relations, reaction sequences and petrochronology: Reviews in Mineralogy and Geochemistry, v. 83, p. 13–53, doi:10.2138/rmg.2017.83.2.
  • Yakymchuk, C., Kirkland, C.L., and Clark, C., 2018, Th/U ratios in metamorphic zircon: Journal of Metamorphic Geology, v. 36, p. 715–737, doi:10.1111/jmg.12307.
  • Yanez, P., Ruiz, J., Patchett, P.J., Ortega-Gutierrez, F., and Gehrels, G.E., 1991, Isotopic studies of the Acatlan complex, southern Mexico: Implications for Paleozoic North American tectonics: Geological Society of America Bulletin, v. 103, p. 817–828, doi:10.1130/0016-7606(1991)103<0817:ISOTAC>2.3.CO;2.
  • Zuluaga, C., and Stowell, H., 2012, Late Cretaceous–Paleocene metamorphic evolution of the Sierra Nevada de Santa Marta: Implications for Caribbean geodynamic evolution: Journal of South American Earth Sciences, v. 34, p. 1–9, doi:10.1016/j.jsames.2011.10.001.
  • Zuluaga, C.A., Amaya, S., Urueña, C., and Bernet, M., 2017, Migmatization and low-pressure overprinting metamorphism as record of two pre-Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America): Lithos, v. 274–275, p. 123–146, doi:10.1016/j.lithos.2016.12.036.
  • Zuluaga, C.A., and Lopez, J.A., 2019, Ordovician orogeny and Jurassic low-lying Orogen in the Santander Massif, Northern Andes (Colombia), In: Cediel F., Shaw R.P. (eds) Geology and Tectonics of Northwestern South America. Frontiers in Earth Sciences. Springer, Cham. p. 195–250, doi:10.1007/978-3-319-76132-9_4.
  • Zuluaga, C.A., Pinilla, A., and Mann, P., 2015, Jurassic silicic volcanism and associated continental-arc basin in Northwestern Colombia (Southern Boundary of the Caribbean Plate): Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, p. 137–160, doi:10.1306/13531934M1083640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.