345
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Direct dating of the Sinongduo thrust system in southern Tibet: immediate response to India-Asia collision

ORCID Icon, , , , , & show all
Pages 2074-2084 | Received 09 Apr 2021, Accepted 05 Sep 2021, Published online: 19 Sep 2021

References

  • Aitchison, J.C., Ali, J.R., and Davis, A.M., 2007, When and where did India and Asia collide? Journal of Geophysical Research, v. 112, p. B05423, no. B5, 10.1029/2006JB004706
  • An, K., Lin, X., Wu, L., Yang, R., Chen, H., Cheng, X. et al., 2020, An immediate response to the Indian-Eurasian collision along the northeastern Tibetan Plateau: Evidence from apatite fission track analysis in the Kuantan Shan-Hei Shan, Tectonophysics, v. 774, p. 228278, 10.1016/j.tecto.2019.228278
  • Beck, R.A., Burbank, D.W., Sercombe, W.J., Riley, G.W., Barndt, J.K., Berry, J.R. et al, 1995, Stratigraphic evidence for an early collision between northwest India and Asia, Nature, v. 373, p. 55–58, 10.1038/373055a0
  • Cande, S.C., and Stegman, D.R., 2011, Indian and African plate motions driven by the push force of the Réunion plume head, Nature, v. 475, p. 47–52, no. 7354, 10.1038/nature10174
  • Chang, C., Chen, N., Coward, M.P., Deng, W., Dewey, J.F., Gansser, A. et al., 1986, Preliminary conclusions of the royal society and academia sinica 1985 geotraverse of Tibet, Nature, v. 323, p. 501–507, 10.1038/323501a0
  • Chen, W., Zhang, Y., Zhang, Y., Jin, G., and Wang, Q., 2006, Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau: evidence from Ar-Ar thermochronology: Acta Petrologica Sinica, v. 22, p. 867–872.
  • Clark, M.K., Farley, K.A., Zheng, D., Wang, Z., and Duvall, A.R., 2010, Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages, Earth and Planetary Science Letters, v. 296, p. 78–88, 10.1016/j.epsl.2010.04.051
  • Clauer, N., Zwingmann, H., Liewig, N., and Wendling, R., 2012, Comparative 40Ar/39Ar and K–Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences, Earth-Science Reviews, v. 115, p. 76–96, no. 1–2, 10.1016/j.earscirev.2012.07.003
  • Copley, A., Avouac, J.P., and Royer, J.Y., 2010, India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions, Journal of Geophysical Research: Solid Earth, v. 115, p. B03410, 10.1029/2009JB006634
  • DeCelles, P.G., Kapp, P., Ding, L., and Gehrels, G.E., 2007, Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain, GSA Bulletin, v. 119, no. 5–6, p. 654–680, 10.1130/B26074.1
  • Ding, H., Zhang, Z., Dong, X., Tian, Z., Xiang, H., Mu, H. et al, 2016, Early Eocene (c. 50Ma) collision of the Indian and Asian continents: Constraints from the North Himalayan metamorphic rocks, southeastern Tibet, Earth and Planetary Science Letters, v. 435, p. 64–73, 10.1016/j.epsl.2015.12.006
  • Ding, L., and Lai, Q., 2003, New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision, Chinese Science Bulletin, v. 48, no. 15, p. 1604–1610, 10.1007/BF03183969
  • Ding, S., Chen, Y.C., Tang, J.X., Xie, F.W., Hu, G.Y., Yang, Z.Y., et al. 2017, Relationship between Linzizong volcanic rocks and mineralization: A case study of Sinongduo epithermal Ag-Pb-Zn deposit, Mineral Deposits, v. 36, p. 1074–1092
  • Dong, H., Hall, C.M., Peacor, D.R., and Halliday, A.N., 1995, Mechanisms of argon retention in clays revealed by laser 40Ar-39Ar dating, Science, v. 267, p. 355–359, no. 5196, 10.1126/science.267.5196.355
  • Duvall, A.R., Clark, M.K., van der Pluijm, B.A., and Li, C., 2011, Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry, Earth and Planetary Science Letters, v. 304, p. 520–526, 10.1016/j.epsl.2011.02.028
  • England, P., and McKenzie, D., 1982, A thin viscous sheet model for continental deformation, Geophysical Journal International, v. 70, p. 295–321, 10.1111/j.1365-246X.1982.tb04969.x
  • Foland, K.A., Hubacher, F.A., and Arehart, G.B., 1992, 40Ar39Ar dating of very fine-grained samples: An encapsulated-vial procedure to overcome the problem of 39Ar recoil loss, Chemical Geology, v. 102, p. 269–276, no. 1–4, 10.1016/0009-2541(92)90161-W
  • Gong, X.J., Yang, Z.S., Zhao, X.Y., Zhang, X., and Guan, W.Q., 2018, Formation mechanism of Late Cretaceous intrusive rocks in Narusongduo Pb-Zn deposit, Tibet, Evidence from Magmatic Zircon: Mineral Deposits, v. 37, p. 91–104
  • Harrison, T.M., Yin, A., Grove, M., Lovera, O.M., Ryerson, F.J., and Zhou, X., 2000, The Zedong Window: A record of superposed Tertiary convergence in southeastern Tibet: Journal of Geophysical Research, Solid Earth, v. 105, p. 19211–19230
  • He, S., Kapp, P., DeCelles, P.G., Gehrels, G.E., and Heizler, M., 2007, Cretaceous–Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet, Tectonophysics, v. 433, no. 1–4, p. 15–37, 10.1016/j.tecto.2007.01.005
  • Hu, X., Garzanti, E., Moore, T., and Raffi, I., 2015, Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma), Geology, v. 43, p. 859–862, no. 10, 10.1130/G36872.1
  • Hu, X., Garzanti, E., Wang, J., Huang, W., An, W., and Webb, A., 2016, The timing of India-Asia collision onset – Facts, theories, controversies, Earth-Science Reviews, v. 160, p. 264–299
  • Jin, C., Liu, Q., Liang, W., Roberts, A.P., Sun, J., Hu, P. et al., 2018, Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India–Eurasia collision and Tibetan Plateau deformation, Earth and Planetary Science Letters, v. 486, p. 41–53, 10.1016/j.epsl.2018.01.010
  • Jourdan, F., Matzel, J.P., and Renne, P.R., 2007, 39Ar and 37Ar recoil loss during neutron irradiation of sanidine and plagioclase, Geochimica Et Cosmochimica Acta, v. 71, p. 2791–2808, no. 11, 10.1016/j.gca.2007.03.017
  • Kapp, P., and DeCelles, P.G., 2019, Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses, American Journal of Science, v. 319, p. 159–254, no. 3, 10.2475/03.2019.01
  • Kapp, P., DeCelles, P.G., Gehrels, G.E., Heizler, M., and Ding, L., 2007b, Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet, Geological Society of America Bulletin, v. 119, p. 917–933, no. 7–8, 10.1130/B26033.1
  • Kapp, P., DeCelles, P.G., Leier, A.L., Fabijanic, J.M., He, S., Pullen, A., et al. 2007a, The Gangdese retroarc thrust belt revealed, GSA Today, v. 17, p. 4–9, no. 7, 10.1130/GSAT01707A.1
  • Kapp, P., Murphy, M.A., Yin, A., Harrison, T.M., Ding, L., and Guo, J., 2003, Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet, Tectonics, v. 22, p. 1029, no. 4, 10.1029/2001TC001332
  • Koppers, A.A.P., Yamazaki, T., Geldmacher, J., Gee, J.S., Pressling, N., Koppers, A.A.P. et al, 2012, Limited latitudinal mantle plume motion for the Louisville hotspot, Nature Geoscience, v. 5, no. 12, p. 911–917, 10.1038/ngeo1638
  • Kralik, M., Klima, K., and Riedmüller, G, 1987, Dating fault gouges: Nature, v. 327, p. 315–317
  • Larson, K.P., and Cottle, J.M., 2015, Initiation of crustal shortening in the Himalaya, Terra Nova, v. 27, p. 169–174, no. 3, 10.1111/ter.12145
  • Leier, A.L., DeCelles, P.G., Kapp, P., and Ding, L., 2007, The takena formation of the lhasa terrane, southern tibet: the record of a late cretaceous retroarc foreland basin, Geological Society of America Bulletin, v. 119, no. 1–2, p. 31–48, 10.1130/B25974.1
  • Li, S., van Hinsbergen, D.J.J., Najman, Y., Liu, Z.J., Deng, C., and Zhu, R., 2020, Does pulsed Tibetan deformation correlate with Indian plate motion changes?, Earth and Planetary Science Letters, v. 536, p. 116144, 10.1016/j.epsl.2020.116144
  • Li, Y., Wang, C., Dai, J., Xu, G., Hou, Y., and Li, X., 2015, Propagation of the deformation and growth of the Tibetan–Himalayan orogen: A review, Earth-Science Reviews, v. 143, p. 36–61
  • McRivette, M.W., Yin, A., Chen, X.H., and Gehrels, G.E., 2019, Cenozoic basin evolution of the central Tibetan plateau as constrained by U-Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology, Tectonophysics, v. 751, p. 150–179
  • Molnar, P., and Stock, J.M., 2009, Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics, Tectonics, v. 28, p. TC3001, no. 3, 10.1029/2008TC002271
  • Molnar, P., and Tapponnier, P., 1975, Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision, Science, v. 189, p. 419–426, no. 4201, 10.1126/science.189.4201.419
  • Mottram, C.M., Kellett, D.A., Barresi, T., Zwingmann, H., Friend, M., Todd, A. et al., 2020, Syncing fault rock clocks: Direct comparison of U-Pb carbonate and K-Ar illite fault dating methods, Geology, v. 48, no. 12, p. 1179–1183, 10.1130/G47778.1
  • Murphy, M.A., Yin, A., Harrison, T.M., Durr, S.B., Z, C., and Ryerson, F.J., 1997, Did the Indo-Asian collision alone create the Tibetan Plateau?, Geology, v. 25, p. 719–722, no. 8, 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
  • Najman, Y., Jenks, D., Godin, L., Boudagher-Fadel, M., Millar, I., Garzanti, E. et al, 2017, The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya, Earth and Planetary Science Letters, v. 459, p. 301–310, 10.1016/j.epsl.2016.11.036
  • Nier, A.O., 1950, A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium, Physical Review, v. 77, p. 789–793, no. 6, 10.1103/PhysRev.77.789
  • Onstott, T.C., Miller, M.L., Ewing, R.C., Arnold, G.W., and Walsh, D.S., 1995, Recoil refinements: Implications for the 40Ar/39Ar dating technique, Geochimica Et Cosmochimica Acta, v. 59, p. 1821–1834, no. 9, 10.1016/0016-7037(95)00085-E
  • Patriat, P., and Achache, J., 1984, India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates, Nature, v. 311, p. 615–621, no. 5987, 10.1038/311615a0
  • Pullen, A., Kapp, P., Gehrels, G.E., DeCelles, P.G., Brown, E.H., Fabijanic, J.M. et al., 2008, Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet, Journal of Asian Earth Sciences, v. 33, no. 5–6, p. 323–336, 10.1016/j.jseaes.2008.01.005
  • Ratschbacher, L., Frisch, W., Liu, G., and Chen, C., 1994, Distributed deformation in southern and western Tibet during and after the India-Asia collision: Journal of Geophysical Research, Solid Earth, v. 99, p.19917–19945
  • Rohrmann, A., Kapp, P., Carrapa, B., Reiners, P.W., Guynn, J., Ding, L., et al. 2012, Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, v. 40, p. 187–190, no. 2, 10.1130/G32530.1
  • Schaen, A.J., Jicha, B.R., Hodges, K.V., Vermeesch, P., Stelten, M.E., Mercer, C.M., et al. 2020, Interpreting and reporting 40Ar/39Ar geochronologic data, Geological Society of America Bulletin, v. 133, no. 3–4, p. 461–487
  • Sherlock, S.C., Kelley, S.P., Zalasiewicz, J.A., Schofield, D.I., Evans, J.A., Merriman, R.J., et al. 2003, Precise dating of low-temperature deformation: Strain-fringe analysis by 40Ar-39Ar laser microprobe, Geology, v. 31, p. 219–222, no. 3, 10.1130/0091-7613(2003)031<0219:PDOLTD>2.0.CO;2
  • Smit, M.A., Hacker, B.R., and Lee, J., 2014, Tibetan garnet records early Eocene initiation of thickening in the Himalaya, Geology, v. 42, p. 591–594, no. 7, 10.1130/G35524.1
  • Soucy La Roche, R., Godin, L., Cottle, J.M., and Kellett, D.A., 2016, Direct shear fabric dating constrains early Oligocene onset of the South Tibetan detachment in the western Nepal Himalaya, Geology, v. 44, p. 403–406, no. 6, 10.1130/G37754.1
  • Soucy La Roche, R., Godin, L., Cottle, J.M., and Kellett, D.A., 2018, Preservation of the early evolution of the Himalayan middle crust in foreland klippen: Insights from the Karnali klippe, west Nepal, Tectonics, v. 37, p. 1161–1193, no. 5, 10.1002/2017TC004847
  • Soucy La Roche, R., Godin, L., Cottle, J.M., and Kellett, D.A., 2019, Tectonometamorphic evolution of the tip of the Himalayan metamorphic core in the Jajarkot klippe, west Nepal, Journal of Metamorphic Geology, v. 37, p. 239–269, no. 2, 10.1111/jmg.12459
  • Spurlin, M.S., Yin, A., Horton, B.K., Zhou, J., and Wang, J., 2005, Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet, Geological Society of America Bulletin, v. 117, p. 1293–1317, no. 9, 10.1130/B25572.1
  • Steiger, R.H., and Jager, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology, Earth and Planetary Science Letters, v. 36, p. 359–362, no. 3, 10.1016/0012-821X(77)90060-7
  • Stewart, I.S., and Hancock, P.L., 1990, What is a fault scarp?, Episodes, v. 13, p.256–263
  • Tapponnier, P., et al. 2001, Oblique Stepwise Rise and Growth of the Tibet Plateau, Science, v. 294, p. 1671–1677, no. 5547, 10.1126/science.105978
  • Tillberg, M., Drake, H., Zack, T., Kooijman, E., Whitehouse, M.J., and Åström, M.E., 2020, In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults, Scientific Reports, v. 10, p. 562, no. 1, 10.1038/s41598-019-57262-5
  • Torgersen, E., Viola, G., Zwingmann, H., and Harris, C., 2015, Structural and temporal evolution of a reactivated brittle–ductile fault – Part II: Timing of fault initiation and reactivation by K–Ar dating of synkinematic illite/muscovite, Earth and Planetary Science Letters, v. 410, p. 212–224, 10.1016/j.epsl.2014.09.051
  • van der Pluijm, B.A., Hall, C.M., Vrolijk, P.J., Pevear, D.R., and Covey, M.C., 2001, The dating of shallow faults in the Earth’s crust, Nature, v. 412, p. 172–175, no. 6843, 10.1038/35084053
  • van Hinsbergen, D.J.J., Lippert, P.C., Dupont-Nivet, G., McQuarrie, N., Doubrovine, P.V., Spakman, W. et al., 2012, Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia: Proceedings of the National Academy of Sciences, v. 109, p. 7659–7664.
  • van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., and Gassmöller, R., 2011, Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, Journal of Geophysical Research: Solid Earth, v. 116, p. B06101, no. B6, 10.1029/2010JB008051
  • Volkmer, J.E., Kapp, P., Horton, B.K., Gehrels, G.E., Minervini, J.M., and Ding, L., 2014, in Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous–early Cenozoic shortening within a passive roof thrust system?, Nie, J., Horton, B.K., and Hoke, G.D. eds., Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau, Geological Society of America Special Paper, p.507
  • Volkmer, J.E., Kapp, P., Guynn, J.H., and Lai, Q., 2007, Cretaceous-Tertiary structural evolution of the north central Lhasa terrane, Tibet: Tectonics, v. 26, p. TC6007
  • Wang, C., Liu, Z., Yi, H., Liu, S., and Zhao, X., 2002, Tertiary crustal shortening and peneplanation in the Hoh Xil region: Implications for the tectonic history of the northern Tibetan Plateau, Journal of Asian Earth Sciences, v. 20, p. 211–223, no. 3, 10.1016/S1367-9120(01)00051-7
  • Wang, S.S., 1983, Age determinations of 40Ar–40K, 40Ar–39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of China, Chinese Journal of Geology, v. 4, p. 315–323
  • Wen, C., Yan, Z., Yueqiao, Z., Guishan, J., and Qingli, W., 2006, Late Cenozoic episodic uplifting in southeastern part of the Tibetan plateau: Evidence from Ar-Ar thermochronology, Acta Petrologica Sinica, v. 22, p. 867–872
  • Wijbrans, J.R., and McDougall, I., 1986, 40Ar/39Ar dating of white micas from an Alpine high-pressure metamorphic belt on Naxos (Greece): The resetting of the argon isotopic system, Contributions to Mineralogy and Petrology, v. 93, p. 187–194, no. 2, 10.1007/BF00371320
  • Wu, Z., Ye, P., Barosh, P.J., Hu, D., and Lu, L., 2013, Early Cenozoic multiple thrust in the Tibetan Plateau, Journal of Geological Research, v. 2013, p. 784361, 10.1155/2013/784361
  • Yang, X., Tang, J., Yang, Z., Xie, F., Hao, J., Wu, X., et al. 2021, Late Cretaceous adakite in Sinongduo area, Tibet: Implications for Petrogenesis and Mineralization: Earth Science, v. 46, p. 1597–1612
  • Yang, Z., Zhao, X., Hu, G., Wang, Y., Ran, F., Huang, Y. et al., 2020, Geology, geochronology, and geochemistry of the Sinongduo Ag–Pb–Zn deposit in the Gangdese metallogenic belt: Implications of intermediate sulfidation mineralization in the Linzizong volcanic succession, Ore Geology Reviews, v. 127, p. 103796, 10.1016/j.oregeorev.2020.103796
  • Yin, A., and Harrison, T.M., 2000, Geologic Evolution of the Himalayan-Tibetan Orogen, Annual Review of Earth and Planetary Sciences, v. 28, p. 211–280, no. 1, 10.1146/annurev.earth.28.1.211
  • Yin, A., Harrison, T.M., Ryerson, F.J., Wenji, C., Kidd, W.S.F., and Copeland, P., 1994, Tertiary structural evolution of the Gangdese Thrust System, southeastern Tibet, Southeastern Tibet: Journal of Geophysical Research: Solid Earth, v. 99, p. 18175–18201, no. B9, 10.1029/94JB00504
  • Zhu, D.-C., Wang, Q., Zhao, Z.-D., Chung, S.-L., Cawood, P.A., Niu, Y., et al. 2015, Magmatic record of India-Asia collision, Scientific Reports, v. 5, p. 14289, no. 1, 10.1038/srep14289
  • Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., and Mo, X.X., 2011, Lhasa terrane in southern Tibet came from Australia, Geology, v. 39, p.727–730
  • Zhuang, G., Najman, Y., Guillot, S., Roddaz, M., Antoine, P.O., Métais, G., et al. 2015, Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, Thermochronology, and Geochemistry Studies in the Lower Indus Basin, Pakistan: Earth and Planetary Science Letters, v. 432, p. 363–373
  • Zwingmann, H., Mancktelow, N., Antognini, M., and Lucchini, R., 2010, Dating of shallow faults: New constraints from the AlpTransit tunnel site (Switzerland), Geology, v. 38, p.487–490

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.