320
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Petrology and geochemistry of ultramafic and mafic rocks in the late Silurian-early Devonian Darbut ophiolitic mélange of west Junggar (NORTHWESTERN CHINA): implications for petrogenesis and tectonic evolution

&
Pages 2601-2625 | Received 20 Jul 2021, Accepted 16 Oct 2021, Published online: 02 Nov 2021

References

  • Abdullah, S., Misra, S., and Ghosh, B., 2018, Melt-rock interaction and fractional crystallization in the moho transition zone: evidence from the cretaceous naga hills ophiolite, North-East India Lithos, v. 322, p. 197–211. 10.1016/j.lithos.2018.10.012
  • Aldanmaz, E., Meisel, T., Celik, O.F., and Henjes-Kunst, F., 2012, Osmium isotope systematics and highly siderophile element fractionation in spinel-peridotites from the Tethyan ophiolites in SW Turkey: Implications for multi-stage evolution of oceanic upper mantle Chemical Geology, v. 294–295, p. 152–164. 10.1016/j.chemgeo.2011.11.027
  • Aldanmaz, E., Schmidt, M.W., Gourgaud, A., and Meisel, T., 2009, Mid-ocean ridge and supra-subduction geochemical signatures in spinelperidotites from the Neotethyan ophiolites in SW Turkey: Implications for upper mantle melting processes Lithos, v. 113, p. 691–708. 10.1016/j.lithos.2009.03.010
  • An, F., and Zhu, Y.F., 2009, SHRIMP U–Pb zircon ages of tuff in baogutu formation and their geological significances: Acta Petrologica Sinica, v. 25, p. 1437–1445. [ (in Chinese with English abstract).]
  • An, F., Zhu, Y.F., Wei, S.N., Zhang, H., and Zhao, L., 2021, Variation of crustal thinkness in centra west junggar orogenic belt: insight into its late paleozoic tectonic evolution International Geology Review, 1–18. 1 0.1 080/00206814.2021.1961103
  • Arai, S., Abe, N., and Ishimaru, S., 2007, Mantle peridotites from the Western Pacific: Gondwana Research, v. 11, p. 180–199. 10.1016/j.gr.2006.04.004
  • Arai, S., and Ishimaru, S., 2008, Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: A review Journal of Petrology, v. 49, p. 665–695. 10.1093/petrology/egm069
  • Arai, S., Kadoshima, K., and Morishita, T., 2006, Widespread arc-related melting in the mantle section of the northern oman ophiolite as inferred from detrital chromian spinels: Journal of Geological Society, London, v. 163, p. 869–879. 10.1144/0016-76492005-057
  • Barth, M.G., Mason, P.R.D., Davies, G.R., and Drury, M.R., 2008, The Othris ophiolite (Greece): A snapshot of subduction initiation at a mid-ocean ridge Lithos, v. 100, p. 234–254. 10.1016/j.lithos.2007.06.018
  • Bedard, E., Hebert, R., Guilmette, C., Lesage, G., Wang, C.S., and Dostal, J., 2009, Petrology and geochemistry of the saga and sangsang ophiolitic massifs, yarlung zangbo suture zone, southern tibet: Evidence for an arc-back-arc origin Lithos, v. 113, p. 48–67. 10.1016/j.lithos.2009.01.011
  • Berly, T.J., Hermann, T., Arculus, R.J., and Lapierre, H., 2006, Supra-subduction zone pyroxenites from san jorge and santa isabel (Solomon Islands): Journal of Petrology, v. 47, p. 1531–1555. 10.1093/petrology/egl019
  • Birner, S.K., Warren, J.M., Cottrell, E., Davis, F.A., Kelley, K.A., and Falloon, T.J., 2017, Forearc peridotites from tonga record heterogeneous oxidation of the mantle following subduction initiation: Journal of Petrology, v. 58, p. 1755–1780. 10.1093/petrology/egx072
  • Bizimis, M., Salters, V.J.M., and Bonatti, E., 2000, Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs: Chemical Geology, v. 165, p. 67–85. 10.1016/S0009-2541(99)00164-3
  • Cerpa, N.G., Wada, I., and Wilson, C.R., 2018, Effects of fluid influx, fluid viscosity, and fluid density on fluid migration in the mantle wedge and their implications for hydrous melting: Geosphere, v. 15, p. 1–23. 10.1130/GES01660.1
  • Chen, B., and Zhu, Y.F., 2008, Petrology of ultramafic rock in darbut ophiolite (Xinjiang), evidence from Cr-spinel: Earth Science Frontiers, v. 15, p. 312–322. [ (in Chinese with English abstract).]
  • Chen, B., and Zhu, Y.F., 2011, Petrology, geochemistry and zircon U-Pb chronology of gabbro in darbut ophiolitic mélange, Xinjiang: Acta Petrologica Sinica, v. 27, p. 1746–1758. [ (in Chinese with English abstract).]
  • Chen, S., and Guo, Z.J., 2010, Time constraints, tectonic setting of darabut ophiolitic complex and its significance for late paleozoic tectonic evolution in West Junggar: Acta Petrologica Sinica, v. 26, p. 2336–2344. [ (in Chinese with English abstract).]
  • Chen, S., Guo, Z.J., Pe-Piper, G., and Zhu, B., 2013, Late paleozoic peperites in West Junggar, China, and how they constrain regional tectonic and palaeoenvironmental setting: Gondwana Research, v. 23, p. 666–681. 10.1016/j.gr.2012.04.012
  • Chen, S., Pe-Piper, G., Piper, D.J.W., and Guo, Z.J., 2014, Ophiolitic mélanges in crustal-scale fault zones: Implications for the late palaeozoic tectonic evolution in West Junggar, China: Tectonics, v. 33, p. 2419–2443. 10.1002/2013TC003488
  • Chen, Y.C., Xiao, W.J., Windley, B.F., Zhang, J.E., Sang, M., Li, R., Song, S.H., and Zhou, K.F., 2017, Late devonian-early permian subduction-accretion of the zharma-saur oceanic arc, west junggar (NW China): Insights from field geology, geochemistry and geochronology Journal of Asian Earth Sciences, v. 145, p. 424–445. 10.1016/j.jseaes.2017.06.010
  • Choi, S.H., Shervais, J.V., and Mukasa, S.B., 2008, Supra–subduction and abyssal mantle peridotites of the coast range ophiolite: Contributions to Mineralogy and Petrology, v. 156, p. 551–576. 10.1007/s00410-008-0300-6
  • Dai, J.G., Wang, C.S., Hébert, R., Santosh, M., Li, Y.L., and Xu, J.Y., 2011, Petrology and geochemistry of peridotites in the zhongba ophiolite, yarlung zangbo suture zone: implications for the early cretaceous intra-oceanic subduction zone within the neo-tethys Chemical Geology,v. 288, p. 133–148.
  • Dai, J.G., Wang, C.S., Polat, A., Santosh, M., Li, Y.L., and Ge, Y.K., 2013, Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the xigaze ophiolite, southern Tibet Lithos, v. 172–173, p. 1–16. 10.1016/j.lithos.2013.03.011
  • Dai, J.G., Wang, C.S., Stern, R.J., Yang, K., and Shen, J., 2021, Forearc magmatic evolution during subduction initiation: insights from an early cretaceous tibetan ophiolite and comparison with the izu-bonin-mariana forearc GSA Bulletin, v. 133, p. 753–776. 10.1130/B35644.1
  • Dick, H.J.B., and Bullen, T., 1984, Chromian spinel as a petrogenetic indicator in abyssal and Alpine-type peridotites and spatially associated lavas: Contributions to Mineralogy and Petrology, v. 86, p. 54–76. 10.1007/BF00373711
  • Dilek, Y., and Furnes, H., 2011, Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere Geological Society of America Bulletin,v. 123, p. 387–411.
  • Dilek, Y., and Furnes, H., 2014, Ophiolites and their origins: Elements, v. 10, p. 93–100. 10.2113/gselements.10.2.93
  • Dilek, Y., and Thy, P., 2009, Island arc tholeiite to boninitic melt evolution of the cretaceous kizildag (turkey) ophiolite: model for multi-stage early arc–forearc magmatism in tethyan subduction factories Lithos, v. 113, p. 68–87. 10.1016/j.lithos.2009.05.044
  • Escuder-Viruete, J., Castillo-Carrión, M., and Pérez-Estaún, A., 2014, Magmatic relationships between depleted mantle harzburgites, boninitic cumulate gabbros and subduction-related tholeiitic basalts in the puerto plata ophiolitic complex, dominican republic: implications for the birth of the caribbean island-arc Lithos, v. 196–197, p. 261–280. 10.1016/j.lithos.2014.03.013
  • Feng, W.Y., and Zhu, Y.F., 2018, Petrology and geochemistry of mafic and ultramafic rocks in the north tianshan ophiolite: Implications for petrogenesis and tectonic Lithos, v. 318-319, p. 124–142. 10.1016/j.lithos.2018.08.012
  • Feng, Y.M., 1986, Genetic environments and original types of ophiolites in west Junggar: Bulletin of the Xi’an Institute of Geology and Mineral Resources, the Chinese Academy of Geological Sciences, v. 13, p. 37–44. [ (in Chinese with English abstract).]
  • Gao, C.G., Dick, H.J.B., Liu, Y., and Zhou, H.Y., 2016, Melt extraction and mantle source at a Southwest Indian ridge dragon bone amagmatic segment on the marion rise: Lithos, v. 246-247, p. 48–60. 10.1016/j.lithos.2015.12.007
  • Golowin, R., Portnyagin, M., Hoernle, K., Sobolev, A., Kuzmin, D., and Werner, R., 2017, The role and conditions of second-stage mantle melting in the generation of low-Ti tholeiites and boninites: The case of the manihiki plateau and the troodos ophiolite Contributions to Mineralogy and Petrology,v. 104, p. 1–18.
  • He, G.Q., Liu, J.B., Zhang, Y.Q., and Xu, X., 2007, Karamay ophioliic mélange formed during early paleozoic in western junggar basin: Acta Petrologica Sinica, v. 23, p. 1573–1576. [in Chinese with English abstract.]
  • Hickey-Vargas, R., Yogodzinski, G.M., Ishizuka, O., McCarthy, A., Bizimis, M., Kusano, Y., Savov, I.P., and Arculus, R., 2018, Origin of depleted basalts during subduction initiation and early development of the izu-bonin-mariana island arc: evidence from IODP expedition 351 site U1438, amami-sankaku basin Geochimica et Cosmochimica Acta, v. 229, p. 85–111. 10.1016/j.gca.2018.03.007
  • Ishizuka, O., Tani, K., and Reagan, M.K., 2014, Izu–Bonin–Mariana forearc crust as a modern ophiolite analogue: Elements, v. 10, p. 115–120. 10.2113/gselements.10.2.115
  • Ishizuka, O., Tani, K., Reagan, M.K., Kanayama, K., Umino, S., Harigane, Y., Sakamoto, I., Miyajima, Y., Yuasa, M., and Dunkley, D.J., 2011, The timescales of subduction initiation and subsequent evolution of an oceanic island arc: Earth and Planetary Science Letters, v. 306, p. 229–240. 10.1016/j.epsl.2011.04.006
  • Jaques, A.L., and Green, D.H., 1980, Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts: Contributions to Mineralogy and Petrology, v. 73, p. 287–310. 10.1007/BF00381447
  • Jean, M.M., Shervais, J.W., Choi, S.H., and Mukasa, S.B., 2010, Melt extraction and melt refertilization in mantle peridotite of the coast range ophiolite: An LA-ICP-MS study: Contributions to Mineralogy and Petrology, v. 159, p. 113–136. 10.1007/s00410-009-0419-0
  • Jiang, J.Y., and Zhu, Y.F., 2018, Characterization of anhydrous to hydrous paragenetic sequence from pyroxene-bearing and pyroxene-absent variants of the late Carboniferous Baobei pluton in west junggar of China: Gondwana Research, v. 63, p. 129–151. 10.1016/j.gr.2018.05.010
  • Jiang, J.Y., and Zhu, Y.F., 2019, Harzburgite found in the hegenshan ophiolite, southeastern central Asian orogenic belt: Petrogenesis and geological implications: Gondwana Research, v. 63, p. 28–46. 10.1016/j.gr.2019.03.021
  • Jiang, J.Y., and Zhu, Y.F., 2020, Petrogenesis of the early carboniferous xilinhot gabbro–diorite pluton in central inner mongolia: Magma evolution and tectonic significance Lithos, v. 354–355, p. 105339. 10.1016/j.lithos.2019.105339
  • Johnson, K.T.M., and Dick, H.J.B., 1992, Open system melting and temporal and spatial variation of peridotite and basalt at the atlantis II fracture zone: Journal of Geophysical Research, v. 97, p. 9219–9241. 10.1029/92JB00701
  • Johnson, K.T.M., Dick, H.J.B., and Shimizu, N., 1990, Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites: Journal of Geophysical Research, v. 95, p. 2661–2678. 10.1029/JB095iB03p02661
  • Kamenetsky, V.S., 2001, Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks: Journal of Petrology, v. 42, p. 655–671. 10.1093/petrology/42.4.655
  • Khedr, M.Z., and Arai, S., 2017, Peridotite-chromitite complexes in the eastern desert of egypt: insight into neoproterozoic sub-arc mantle processes: Gondwana Research, v. 52, p. 59–79. 10.1016/j.gr.2017.09.001
  • Khedr, M.Z., Arai, S., Python, M., and Tamura, A., 2014, Chemical variations of abyssal peridotites in the central oman ophiolite: Evidence of oceanic mantle heterogeneity: Gondwana Research, v. 25, p. 1242–1262. 10.1016/j.gr.2013.05.010
  • Kimura, J.I., and Ariskin, A.A., 2014, Calculation of water-bearing primary basalt and estimation of source mantle conditions beneath arcs: PRIMACALC2 model for WINDOWS: Geochemistry, Geophysics Geosystems, v. 15, p. 1494–1514. 10.1002/2014GC005329
  • Kinzler, R.J., 1997, Melting of mantle peridotite at pressures approaching the spinel to garnet transition: Application to mid-ocean ridge basalt petrogenesis: Journal of Geophysical Research, v. 102, p. 853–874. 10.1029/96JB00988
  • Lei, M., Zhao, Z.D., and Hou, Q.Y., 2008, Geochemical and Sr-Nd-Pb isotopic characteristics of the dalabute ophiolite, xinjiang: comparison between the paleo-Asian ocean and the tethyan mantle domains: Acta Petrologica Sinica, v. 24, p. 661–672. [ (in Chinese with English abstract).]
  • Liu, B., Chen, J.F., Ma, X., Liu, J.L., Gong, E.P., Shi, W.G., and Han, B.F., 2018, Timing of the final closure of the irtysh–zaysan ocean: New insights from the earliest stitching pluton in the northern west junggar, NW China Geological Journal, v. 53, p. 2810–2823. 10.1002/gj.3121
  • Liu, B., Han, B.F., Xu, Z., Ren, R., and Chen, J.F., 2019, The ediacaran to early palaeozoic evolution of the junggar–balkhash ocean: A synthesis of the ophiolitic mélanges in the southern West Junggar terrane, NW China: Geological Journal,v. 53, p. 1–19.
  • Marchesi, C., Garrido, C.J., Proenza, J.A., Hidas, K., Varas-Reus, M.I., Butjosa, L., and Lewis, J.F., 2016, Geochemical record of subduction initiation in the sub-arc mantle.insights from the loma caribe peridotite (Dominican Republic) Lithos, v. 252, p. 1–15. 10.1016/j.lithos.2016.02.009
  • Moghadam, H.S., Khedr, M.Z., Arai, S., Sternd, R.J., Ghorbani, G., Tamura, A., and Ottley, C.J., 2015, Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites Gondwana Research, v. 27, p. 575–593. 10.1016/j.gr.2013.09.007
  • Niu, Y.L., 1997, Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites: Journal of Petrology, v. 38, p. 1047–1074. 10.1093/petroj/38.8.1047
  • Palme, H., and O’Neill, H.S.C., 2004. Cosmochemical estimates of mantle composition. in Holland, H.D., and Turrekian, K.K. (Eds.), Treatise on geochem. Elsevier, Amsterdam, 1–38.
  • Parkinson, I.J., and Pearce, J.A., 1998, Peridotites from the Izu–Bonin–Mariana Forearc (ODP Leg 125), evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting: Journal of Petrology, v. 39, p. 1577–1618. 10.1093/petroj/39.9.1577
  • Pearce, J.A., 2014, Immobile element fingerprinting of ophiolites: Elements, v. 10, p. 101–108. 10.2113/gselements.10.2.101
  • Pearce, J.A., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., 2000, Geochemistry and tectonic significance of peridotites from the South Sandwich Arc-basin systems, south atlantic: Contributions to Mineralogy and Petrology, v. 139, p. 36–53. 10.1007/s004100050572
  • Pearce, J.A., and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, p. 251–285. 10.1146/annurev.ea.23.050195.001343
  • Pearce, J.A., and Robinson, P.T., 2010, The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting: Gondwana Research, v. 18, p. 60–81. 10.1016/j.gr.2009.12.003
  • Pirard, C., and Hermann, J., 2015, Focused fluid transfer through the mantle above subduction zones: Geology, v. 43, p. 915–918. 10.1130/G37026.1
  • Qiu, T., and Zhu, Y.F., 2018a, Chromian spinels in highly altered ultramafic rocks from the sartohay ophiolitic mélange, xinjiang, NW China: Journal of Asian Earth Sciences, v. 159, p. 155–184. 10.1016/j.jseaes.2017.08.011
  • Qiu, T., and Zhu, Y.F., 2018b, Listwaenite in the sartohay ophiolitic mélange xinjiang, China: A genetic model based on petrology, U-Pb chronology and trace element geochemistry: Lithos, v. 302-303, p. 427–446. 10.1016/j.lithos.2018.01.029
  • Reagan, M.K., Ishizuka, O., Stern, R.J., Kelley, K.A., Ohara, Y., Blichert-Toft, J., Bloomer, S.H., Cash, J., Fryer, B.B., Hickey-Vargas, R., Ishii, T., Kimura, J.I., Peate, D.W., Rowe, M.C., and Woods, M., 2010, Fore-arc basalts and subduction initiation in the Izu–Bonin– Mariana system: Geochemistry, Geophysics, Geosystems, v. 11, p. 1–17. 10.1029/2009GC002871
  • Reagan, M.K., Pearce, J.A., Petronotis, K., Almeev, R.R., Avery, A.J., Carvallo, C., Chapman, T., Christeson, G.L., Ferré, E.C., and Godard, M., 2017, Subduction initiation and ophiolite crust: New insights from IODP drilling: International Geology Review, v. 59, p. 1439–1450. 10.1080/00206814.2016.1276482
  • Ren, R., Han, B.F., Xu, Z., Zhou, Y.Z., Liu, B., Zhang, L., Chen, J.F., Su, L., Li, J., Li, X.H., and Li, Q.L., 2014, When did the subduction first initiate in the southern Paleo-Asian ocean: New constraints from a cambrian intra-oceanic arc system in West Junggar, NW China: Earth and Planetary Science Letters, v. 388, p. 222–236. 10.1016/j.epsl.2013.11.055
  • Ren, Z.Y., Wu, Y.D., Zhang, L., Nichols, A.R., Hong, L.B., Zhang, Y.H., Zhang, Y., Liu, J.Q., and Xu, Y.G., 2017, Primary magmas and mantle sources of emeishan basalts constrained from major element, trace element and Pb isotope compositions of olivine-hosted melt inclusions: Geochimica et Cosmochimica Acta, v. 208, p. 63–85. 10.1016/j.gca.2017.01.054
  • Rogkala, A., Petrounias, P., Tsikouras, B., Giannakopoulou, P.P., and Hatzipanagiotou, K., 2019, Mineralogical evidence for partial melting and melt-rock interaction processes in the mantle peridotites of edessa ophiolite (North Greece): Minerals, v. 9, p. 1–24. 10.3390/min9020120
  • Rospabé, M., Benoit, M., Ceuleneer, G., Hodel, F., and Kaczmarek, M.A., 2018, Extreme geochemical variability through the dunitic transition zone of the Oman ophiolite: Implications for melt/fluid reactions at moho level beneath oceanic spreading centres: Geochimica et Cosmochimica Acta, v. 234, p. 1–23. 10.1016/j.gca.2018.05.012
  • Saccani, E., Delavari, M., Dolati, A., Marroni, M., Pandolfi, L., Chiari, M., and Barbero, E., 2018, New insights into the geodynamics of neo-tethys in the makran area: evidence from age and petrology of ophiolites from the coloured mélange complex (SE Iran): Gondwana Research, v. 62, p. 306–327. 10.1016/j.gr.2017.07.013
  • Saccani, E., Dilek, Y., and Photiades, A., 2017, Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the albanide-hellenide ophiolites: Lithosphere,v. 1, p. 35–53.
  • Saka, S., Uysal, I., Akmaz, R.M., Kaliwoda, M., Hochleitner, R., 2014, The effects of partial melting, melt–mantle interaction and fractionation on ophiolite generation: Constraints from the late Cretaceous Pozantı-Karsantı ophiolite, southern Turkey: Lithos, v. 202, p. 300-316. 1 0.1 016/j.lithos.2014.05.027
  • Saka, S., Uysal, I., Kapsiotis, A., Bağcı, U., Yalç ın Ersoy, E., Su, B.X., Seitz, H.-M., and Hegner, E., 2019, Petrological characteristics and geochemical composition of the neotethyan mersin ophiolite (southern Turkey): Processes of melt depletion, refertilization, chromitite formation and oceanic crust generation: Journal of Asian Earth Sciences, v. 176, p. 281–299. 10.1016/j.jseaes.2019.01.003
  • Santosh, M., Hu, C.N., He, X.F., Li, S.S., Tsunogae, T., Shaji, E., and Indu, G., 2017, Neoproterozoic arc magmatism in the southern madurai block, India: Subduction, relamination, continental outbuilding, and the growth of gondwana: Gondwana Research, v. 45, p. 1–42. 10.1016/j.gr.2016.12.009
  • Santosh, M., Shaji, E., Tsunogae, T., Ram Mohan, M., Satyanarayanan, M., and Horie, K., 2013, Suprasubduction zone ophiolite from AGALI hill: Petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for neoarchean plate tectonics in southern India: Precambrian Research, v. 231, p. 301–324. 10.1016/j.precamres.2013.04.003
  • Seyler, M., and Brunelli, D., 2018, Sodium chromium covariation in residual clinopyroxenes from abyssal peridotites sampled in the 43°-46°E region of the Southern Indian Ridge: Lithos, v. 302-303, p. 142–157. 10.1016/j.lithos.2017.12.018
  • Seyler, M., Lorand, J.P., Dick, H.J.B., and Drouin, M., 2007, Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15–20 N: ODP hole 1274A: Contributions to Mineralogy and Petrology, v. 153, p. 303–319. 10.1007/s00410-006-0148-6
  • Shervais, J.W., 1982, Ti-V plots and the petrogenesis of modern and ophiolitic lavas: Earth and Planetary Science Letters, v. 59, p. 101–118. 10.1016/0012-821X(82)90120-0
  • Shervais, J.W., and Choi, S.H., 2012, Subduction initiation along transform faults: The protoFranciscan subduction zone: Lithosphere, v. 4, p. 484–496. 10.1130/L153.1
  • Sobolev, A.V., and Danyushevsky, L.V., 1994, Petrology and geochemistry of boninites from the north termination of the tonga trench: Constraints on the generation conditions of primary high-Ca boninite magmas: Journal of Petrology, v. 35, p. 1183–1211. 10.1093/petrology/35.5.1183
  • Stern, R.J., 2004, Subduction initiation: Spontaneous and induced: Earth and Planetary Science Letters, v. 226, p. 275–292. 10.1016/S0012-821X(04)00498-4
  • Stern, R.J., and Gerya, T., 2018, Subduction initiation in nature and models: A review: Tectonophysics, v. 746, p. 173–198. 10.1016/j.tecto.2017.10.014
  • Stern, R.J., Reagan, M., Ishizuka, O., Ohara, Y., and Whattam, S., 2012, To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites Lithosphere, v. 4, p. 469–483. 10.1130/L183.1
  • Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes: Geological Society of London: Special Publication, 42, 313–345
  • Tang, G.J., Wyman, D.A., Wang, Q., Li, J., Li, Z.X., Zhao, Z.H., and Sun, W.D., 2012, Asthenosphere–lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr–Nd–Hf–Os isotopic evidence from late carboniferous tholeiites in the western Junggar area (NW China): Earth and Planetary Science Letters, v. 329–330, p. 84–96. 10.1016/j.epsl.2012.02.009
  • Ulrich, M., Picard, C., Guillot, S., Chauvel, C., Cluzel, D., and Meffre, S., 2010, Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite: Lithos, v. 115, p. 223–236. 10.1016/j.lithos.2009.12.011
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Escayola, M., Sarifakioğlu, E., Saka, S., and Hirata, T., 2015, Depletion and refertilization of the tethyan oceanic upper mantle as revealed by the early jurassic refahiye ophiolite, NE Anatolia-Turkey: Gondwana Research, v. 27, p. 594–611. 10.1016/j.gr.2013.09.008
  • Uysal, I., Ersoy, E.Y., Dilek, Y., Kapsiotis, A., and Sarıfakıoğlu, E., 2016, Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the neotethyan eldivan ophiolite, Turkey: Lithos, v. 246–247, p. 228–245. 10.1016/j.lithos.2016.01.004
  • Uysal, I., Ersoy, E.Y., Karsli, O., Dilek, Y., Sadiklar, M.B., Ottley, C.J., Tiepolo, M., and Meisel, T., 2012, Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a Neo-Tethyan ophiolite in SW Turkey: Constraints from mineral composition, wholerock geochemistry (major–trace–REE–PGE), and Re–Os isotope systematics: Lithos, v. 132–133, p. 50–69. 10.1016/j.lithos.2011.11.009
  • Wang, J.X., Zhou, H.Y., Salters, V., Liu, Y., Sachi-Kocher, A., and Dick, H., 2019, Mantle melting variation and refertilization beneath the dragon bone amagmatic segment (53°E SWIR): Major and trace element compositions of peridotites at ridge flanks: Lithos, v. 324-325, p. 325–339. 10.1016/j.lithos.2018.11.014
  • Wang, Z.H., Sun, S., Li, J.L., Hou, Q.L., Qin, K.Z., Xiao, W.J., and Hao, J., 2003, Paleozoic tectonic evolution of the northern xinjiang, China: Geochemical and geochronological constraints from the ophiolites: Tectonics, v. 22, p. 1014–1029. 10.1029/2002TC001396
  • Wei, W., Dong, X., Zeng, H., and Gao, J., 1987, The geological characters and genesis of ultrabasic rock mass and chromite deposit in sartohay of Xinjiang, China: Bulletin of Xi’an Institute of Geology, Chinese Academy of Geological Sciences, v. 16, p. 57–145. [ (in Chinese with English abstract).]
  • Whattam, S.A., and Stern, R.J., 2011, The ‘subduction initiation rule’: A key for linking ophiolites, intra-oceanic forearcs and subduction initiation: Contributions to Mineralogy and Petrology, v. 162, p. 1031–1045. 10.1007/s00410-011-0638-z
  • Woelki, D., Regelous, M., Haase, K.M., Romer, R.H.W., and Beier, C., 2018, Petrogenesis of boninitic lavas from the troodos ophiolite, and comparison with Izu–Bonin–mariana fore-arc crust: Earth and Planetary Science Letters, v. 498, p. 203–214. 10.1016/j.epsl.2018.06.041
  • Wu, W.W., Yang, J.S., Dilek, Y., Milushi, I., and Lian, D.Y., 2017, Multiple episodes of melting, depletion, and enrichment of the Tethyan mantle: Petrogenesis of the peridotites and chromitites in the jurassic skenderbeu massif, mirdita ophiolite, albania: Lithosphere, v. 10, p. 54–78. 10.1130/L606.1
  • Xiong, F.H., Yang, J.S., Robinson, P.T., Gao, J., Chen, Y.H., and Lai, S.M., 2017b, Petrology and geochemistry of peridotites and podiform chromitite in the Xigaze ophiolite: Tibet: Implications for a Suprasubduction Zone Origin: Journal of Asian Earth Sciences, v. 146, p. 56–75. 10.1016/j.jseaes.2017.05.001
  • Xiong, F.H., Yang, J.S., Robinson, P.T., Xu, X.Z., Liu, Z., Zhou, W.D., Feng, G.Y., Xu, J.F., Li, J., and Niu, X.L., 2017a, High-Al and high-Cr podiform chromitites from the western yarlung-zangbo suture zone, tibet: Implications from mineralogy and geochemistry of chromian spinel, and platinum-group elements: Ore Geology Reviews, v. 80, p. 1020–1041. 10.1016/j.oregeorev.2016.09.009
  • Yang, G.X., Li, Y.J., Gu, P.Y., Yang, B.K., Tong, L., and Zhang, H.W., 2012a, Geochronological and geochemical study of the darbut ophiolitic complex in the West Junggar (NW China): Implications for petrogenesis and tectonic evolution Gondwana Research, v. 21, p. 1037–1049. 10.1016/j.gr.2011.07.029
  • Yang, G.X., Li, Y.J., Safonova, I., Yi, S.X., Tong, L.L., and Seltmann, R., 2014, Early carboniferous volcanic rocks of west Junggar in the western Central Asian orogenic belt: Implications for a supra-subduction system International Geology Review, v. 56, p. 823–844. 10.1080/00206814.2014.902757
  • Yang, G.X., Li, Y.J., Santosh, M., Yang, B.K., Yan, J., Zhang, B., and Tong, L.L., 2012b, Geochronology and geochemistry of basaltic rocks from the sartuohai ophiolitic mélange, NW China: implications for a devonian mantle plume within the Junggar Ocean: Journal of Asian Earth Sciences, v. 59, p. 141–155. 10.1016/j.jseaes.2012.07.020
  • Yang, G.X., Li, Y.J., Santosh, M., Yang, B.K., Zhang, B., and Tong, L.L., 2013, Geochronology and geochemistry of basalts from the karamay ophiolitic mélange in West Junggar (NW China): implications for devonian-carboniferous intraoceanic accretionary tectonics of the southern altaids: Geological Society of America Bulletin, v. 125, p. 401–419. 10.1130/B30650.1
  • Yang, G.X., Li, Y.J., Xiao, W.J., and Tong, L.L., 2015, OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts: Earth-Science Reviews, v. 150, p. 477–496. 1 0.1 016/j.earscirev.2015.09.002
  • Zhang, C., and Huang, X., 1992, The age and tectonic setting of ophiolites in west Junggar: Xinjiang: Geological Reviews, v. 38, p. 509–524. [ (in Chinese with English abstract).]
  • Zhang, C., Zhai, M.G., Allen, B., Saunders, A.D., Wang, G.R., and Huang, X., 1993, Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia: Journal of Geological Society, v. 150, p. 551–561. 10.1144/gsjgs.150.3.0551
  • Zhang, H.C., and Zhu, Y.F., 2018, Geochronology and geochemistry of the huilvshan gabbro in west Junggar (NW China): Implications for magma process and tectonic regime: Mineralogy and Petrology, v. 112, p. 297–315. 10.1007/s00710-017-0543-x
  • Zhang, J.E., Xiao, W.J., Luo, J., Chen, Y.C., Windley, B.F., Song, D.F., Han, C.M., and Safonova, I., 2017, Collision of the tacheng block with the mayile-barleik-tangbale accretionary complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic architecture of the western altaids: Journal of Asian Earth Sciences, v. 159, p. 259–278. 10.1016/j.jseaes.2017.03.023
  • Zhang, L.F., Sun, M., and Xu, B., 2001, Phase relations in garnet-bearing metabasites of prehnite- pumpellyite facies from the Darbut-Sartuohai ophiolite, western Junggar of Xinjiang, China: Mineral and Petrology, v. 71, p. 67–85. 10.1007/s007100170046
  • Zhang, P., Wang, G.C., Polat, A., Shen, T.Y., Chen, Y., Zhu, C.Y., and Wu, G.L., 2018, Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwest China: Evidence for a late silurian to devonian backarc basin system: Tectonophysics, v. 745, p. 395–411. 10.1016/j.tecto.2018.08.018
  • Zhang, P., Wang, G.C., Shen, T.Y., and Chen, Y., 2019, Late paleozoic back-arc basin in West Junggar (northwestern China): new geochronological and petrogenetic constraints from basalts and cherts in the western Karamay area: Journal of Geodynamics, v. 126, p. 1–11. 10.1016/j.jog.2019.03.002
  • Zhao, L., and He, G., 2013, Tectonic entities connection between West Junggar (NW China) and East Kazakhstan: Journal of Asian Earth Sciences, v. 72, p. 25–32. 10.1016/j.jseaes.2012.08.004
  • Zhou, M.F., Robinson, P.T., Malpas, J., Edwards, S.J., and Qi, L., 2005, REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, Southern Tibet: Journal of Petrology, v. 46, p. 615–639. 10.1093/petrology/egh091
  • Zhu, Q.M., and Zhu, Y.F., 2019, Platinum-group minerals and Fe–Ni minerals in the Sartohay podiform chromitite (west Junggar, China): Implications for T–pH–fO2–fS2 conditions during hydrothermal alteration: Ore Geology Reviews, v. 112, p. 1–17. 10.1016/j.oregeorev.2019.103020
  • Zhu, Q.M., and Zhu, Y.F., 2020, Chromitite genesis based on chrome-spinels and their inclusions in the Sartohay podiform chromitites in west Junggar of northwest China: Ore Geology Reviews, v. 119, p. 1–21. 10.1016/j.oregeorev.2020.103401
  • Zhu, Y.F., 2008, K- and Si-rich glasses in harzburgite from damaping, north China: Island Arc, v. 17, p. 560–576. 10.1111/j.1440-1738.2008.00639.x
  • Zhu, Y.F., An, F., Feng, W.Y., and Zhang, H.C., 2016, Geological evolution and huge ore-forming belts in the core part of the central Asian metallogenic region: Journal of Earth Science, v. 27, p. 491–506. 10.1007/s12583-016-0673-7
  • Zhu, Y.F., Chen, B., and Qiu, T., 2015, Geology and geochemistry of the baijiantan–baikouquan ophiolitic mélanges: Implications for geological evolution of west junggar, xinjiang, NW China: Geological Magazine, v. 152, p. 41–69. 10.1017/S0016756814000168
  • Zhu, Y.F., Chen, B., Xu, X., Qiu, T., and An, F., 2013, A new geological map of the western JUNGGAR, NORTH Xinjiang (NW China): Implications for paleoenvironmental reconstruction: Episodes, v. 36, p. 205–220. 10.18814/epiiugs/2013/v36i3/003
  • Zhu, Y.F., and Xu, X., 2006, The discovery of Early Ordovician ophiolite melange in taerbahatai Mts., xinjiang, NW China: Acta Petrologica Sinica, v. 22, p. 2833–2842. [ (in Chinese with English abstract).]
  • Zhu, Y.F., Xu, X., Luo, Z.H., Shen, P., Ma, H.D., Chen, X.H., An, F., and Wei, S.N., 2014, Geological evolution and ore-formation in the core part of central asian metallogenic region: Geological Publishing House, Beijing, v. 23, p. 1–202. [ (in Chinese with English abstract).]
  • Zhu, Y.F., Xu, X., Wei, S.N., Song, B., and Guo, X., 2007, Geochemistry and tectonic significance of IOB-type pillow basalts in western Mts. of Karamay city (western Junggar), NW China: Acta Petrologica Sinica, v. 23, p. 1739–1748. [ (in Chinese with English abstract).]
  • Zhu, Y.F., Yan, Q.M., Ma, H.D., and Lehmann, B., 2011, Recent advances in geology and exploration in the balkash-western Junggar region (Kazakhstan and Xinjiang, China): report on the “International workshop on the large balkash-western junggar copper-gold province”, Karamay, Xinjiang, China, 22-27 August, 2011 Episodes,v. 34, p. 208–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.