328
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Neoarchaean crustal evolution along the eastern flank of Nallamalai Shear Zone, southern India

, , , &
Pages 3053-3073 | Received 24 Mar 2020, Accepted 27 Nov 2021, Published online: 12 Dec 2021

References

  • Anderson, J.R., Payne, J.L., Kelsey, D.E., Hand, M., Collins, A.S., and Santosh, M., 2012, High-pressure granulites at the Dawn of the Proterozoic: Geology, v. 40, pp. 431–434. 5 10.1130/G32854.1
  • Barker, F., 1979, Trondhjemite: Definition, environment and hypothesis of origin. in Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier Amsterdam, pp. 1–12.
  • Belousova, E.A., Griffin, W.L., O’ Reilly, S.Y., and Fisher, N.I., 2002, Igneous zircon; Trace element composition as an indicator of source rock type: Contributions Mineralogy and Petrology, v. 143, pp. 602–622. 5 10.1007/s00410-002-0364-7
  • Bhattacharya, S., Santosh, M., Zhang, Z., Huang, H., Banerjee, A., George, P.M., and Sajeev, K., 2014, Imprints of Archean to Neoproterozoic crustal processes in the Madurai Block, Southern India: Journal of Asian Earth Sciences, v. 88, pp. 1–10. 10.1016/j.jseaes.2014.02.024
  • Blichert-Toft, J., and Albarède, F., 1997, The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system: Earth Planet Science Letters, v. 148, pp. 243–258. 1–2 10.1016/S0012-821X(97)00040-X
  • Bohlen, S.R., and Essene, E.J., 1978, Mineralogy and Igneous Pyroxenes From Metamorphosed Anorthosite Massifs: Contribution to Mineralogy and Petrology, v. 65, pp. 433–442. 4 10.1007/BF00372290
  • Brandt, S., Raith, M.M., Schenk, V., Sengupta, P., Srikantappa, C., and Gerdes, A., 2014, Crustal evolution of the Southern Granulite Terrane, south India: New geochronological and geochemical data for felsic orthogneisses and granites: Precambrian Research, v. 246, pp. 91–122. 10.1016/j.precamres.2014.01.007
  • Brandt, S., Schenk, V., Raith, M.M., Appel, P., Gerdes, A., and Srikantappa, C., 2011, Late Neoproterozoic P–T evolution of HP-UHT granulites from the Palni Hills (South India): New constraints from phase diagram modelling, LA-ICP-MS zircon dating and in-situ EMP monazite dating: Journal of Petrology, v. 52, pp. 1813–1856. 9 10.1093/petrology/egr032
  • Cawood, P.A., Strachan, R.A., Pisarevsky, S.A., Gladkochub, D.P., and Murphy, J.B., 2016, Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles: Earth and Planetary Science Letters, v. 449, pp. 118–126. 10.1016/j.epsl.2016.05.049
  • Chardon, D., Jayananda, M., Chetty, T.R.K., and Peucat, J.J., 2008, Precambrian continental strain and shear zone patterns: South Indian case: Journal of Geophysical Research, v. 113, pp. 1–16. B8 10.1029/2007JB005299
  • Clark, C., Collins, A.S., Timms, N.E., Kinny, P.D., Chetty, T.R.K., and Santosh, M., 2009, SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India: Gondwana Research, v. 16, pp. 27–36.
  • Collins, A.S., Clark, C., and Plavsa, D., 2014, Peninsular India in Gondwana: The tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts: Gondwana Research, v. 25, pp. 190–203. 1 10.1016/j.gr.2013.01.002
  • Collins, A.S., and Pisarevsky, S.A., 2005, Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens: Earth-Science Reviews, v. 71, pp. 229–270.
  • Condie, K.C., and Kröner, A., 2013, The building blocks of continental crust: Evidence fora major change in the tectonic setting of continental growth at the end of the Archean: Gondwana Research, v. 23, pp. 394–402. 2 10.1016/j.gr.2011.09.011
  • Dhuime, B., Hawkesworth, C., and Cawood, P., 2011, When continents formed: Science, v. 331, pp. 154–155. 6014 10.1126/science.1201245
  • Drury, S.A., Harris, N.B.W., Holt, R.W., Reeves-Smith, G.J., and Wightman, R.T., 1984, Precambrian tectonics and crustal evolution in south India: The Journal of Geology, v. 92, pp. 3–20. 1 10.1086/628831
  • Drury, S.A., and Holt, R.W., 1980, The tectonic framework of the south Indian craton: A recon- naissance involving Landsat imagery: Tectonophysics, v. 65, pp. 1–15. 3–4 10.1016/0040-1951(80)90073-6
  • Dwivedi, S.B., and Theunuo, K., 2011, Two-pyroxene mafic granulites from Patharkhang, Shillong-Meghalaya Gneissic Complex: Current Science, v. 100, pp. 100–105.
  • Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., and Frost, C.D., 2001, A Geochemical Classification for Granitic Rocks: Journal of Petrology, v. 42, pp. 2033–2048. 11 10.1093/petrology/42.11.2033
  • Frost, B.R., and Frost, C.D., 2008, On charnockites: Gondwana Research, v. 13, pp. 30–44. 1 10.1016/j.gr.2007.07.006
  • Frost, B.R., Frost, C.D., Hulsebosch, T.P., Swapp, S.M., August, R., Typescript, R., and May, A., 2000, Origin of the Charnockites of the Louis Lake Batholith, Wind River Range, Wyoming: Journal of Petrology, v. 41, pp. 1759–1776.
  • Geological Survey of India, 2005, Geological Map of India, 1: 500000, Hyderabad.
  • Geological Survey of India., 2014, Geological Quadrangle Map of Salem Quadrangle, Tamil Nadu, 1: 250,000, Hyderabad.
  • Ghosh, J.G., de Wit, M.J., and Zartman, R.E., 2004, Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies: Tectonics, v. 23, pp. 1–38. 3 10.1029/2002TC001444
  • Glorie, S., De Grave, J., Singh, T., Payne, J.L., and Collins, A.S., 2014, Crustal root of the Eastern Dharwar Craton: Zircon U-Pb age and Lu-Hf isotopic evolution of the East Salem Block, southeast India: Precambrian Research, v. 249, pp. 229–246. 10.1016/j.precamres.2014.05.017
  • Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X., and Zhou, X., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes: Lithos, v. 61, pp. 237–269. 3–4 10.1016/S0024-4937(02)00082-8
  • Harley, S.L., 1985, Garnet-Orthopyroxene Bearing Granulites from Enderby Land, Antarctica: Metamorphic Pressure-Temperature-Time Evolution of the Archaean Napier Complex: Journal of Petrology, v. 26, pp. 305–326. 10.1093/petrology/26.4.819
  • Harley, S.L., and Motoyoshi, Y., 2000, Al zoning in orthopyroxene in a sapphirine quartzite: Evidence for >1120 °C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine: Contributions Mineralogy and Petrology, v. 138, pp. 293–307. 4 10.1007/s004100050564
  • Harris, N.B.W., Holt, R.W., and Drury, S.A., 1982, Geobarometry, geothermometry, and late archean geotherms from the granulite facies terrain of south India: The Journal of Geology, v. 90, pp. 509–527. 5 10.1086/628709
  • Hawkesworth, C.J., Cawood, P.A., and Dhuime, B., 2019, Rates of generation and growth of the continental crust: Geoscience Frontiers, v. 10, pp. 165–173. 1 10.1016/j.gsf.2018.02.004
  • Hawkesworth, C.J., Dhuime, B., Pietranik, A.B., Cawood, P.A., Kemp, A.I.S., and Storey, C.D., 2010, The generation and evolution of the continental crust: The Journal of Geological Society of London, v. 167, pp. 229–248. 2 10.1144/0016-76492009-072
  • Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the com-mon volcanic rocks: Canadian Journal of Earth Science, v. 8, pp. 523–548. 5 10.1139/e71-055
  • Ishwar-Kumar, C., Sajeev, K., Windley, B.F., Kusky, T.M., Feng, P., Ratheesh-Kumar, R.T., Huang, Y., Zhang, Y., Jiang, X., Razakamanana, T., Yagi, K., and Itaya, T., 2015, Evolution of high-pressure mafic granulites and pelitic gneisses from NE Madagascar: Tectonic implications: Tectonophysics, v. 662, pp. 219–242. 10.1016/j.tecto.2015.07.019
  • Ishwar-Kumar, C., Windley, B.F., Horie, K., Kato, T., Hokada, T., Itaya, T., and Sajeev, K., 2013, A Rodinian suture in western India: New insights on India-Madagascar correlations: Precambrian Research, v. 236, pp. 227–251. 10.1016/j.precamres.2013.07.023
  • Janardhan, A.S., Newton, R.C., and Hansen, E.C., 1982, The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India: Contributions Mineralogy and Petrology, v. 79, pp. 130–149. 2 10.1007/BF01132883
  • Jayananda, M., Aadhiseshan, K.R., Kusaik, M.A., Wilde, S.A., Sekhamo, K., Guitreau, M., Santosh, M., and Gireesh, R.V., 2020, Multi-stage crustal growth and Neoarchean geodynamics in the Eastern Dharwar Craton, southern India: Gondwana Research, v. 78, pp. 228–260.
  • Jayananda, M., Chardon, D., Peucat, -J.-J., and Capdevila, R., 2006, 2.61 Ga potassic granites and crustal reworking in the western Dharwar Craton, southern India: Tectonic, geochronologic and geochemical constraints: Precambrian Research, v. 150, pp. 1–26. 1–2 10.1016/j.precamres.2006.05.004
  • Jayananda, M., Chardon, D., Peucat, -J.-J., Tushipokla, and Fanning, C.M., 2015, Paleo- to Mesoarchean TTG accretion and continental growth in the western Dharwar craton, Southern India: Constraints from SHRIMP U–Pb zircon geochronology, whole-rock geochemistry and Nd–Sr isotopes; Precambrian Research, v. 268, pp. 295–322. 10.1016/j.precamres.2015.07.015
  • Jayananda, M., Peucat, J.J., Chardon, D., Rao, B.K., Fanning, C.M., and Corfu, F., 2013, Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India: Constraints from SIMS U-Pb zircon geochronology and Nd isotopes: Precambrian Research, v. 227, pp. 55–76. 10.1016/j.precamres.2012.05.002
  • Jayananda, M., Santosh, M., and Aadhiseshan, K.R., 2018, Formation of Archean (3600 – 2500 Ma) continental crust in the Dharwar: Earth-Science Reviews, v. 181, pp. 12–42.
  • Joshi, K.B., Bhattacharjee, J., Rai, G., Halla, J., Ahmad, T., Kurhila, M., Heilimo, E., and Choudhary, A.K., 2017, The diversification of granitoids and plate tectonic implications at the Archaean–Proterozoic boundary in the Bundelkhand Craton, Central India: Geological Society, London, Special Publications, v. 449( 1), pp. 123–157.
  • Kaila, K.L., and Bhatia, S.C., 1981, Gravity study along the Kavali-Udipi deep seismic sounding profile in the Indian Peninsular shield: Some inferences about the origin of anorthosites and the Eastern Ghats orogeny: Tectonophysics, v. 79, pp. 129–143. 1–2 10.1016/0040-1951(81)90236-5
  • Kaila, K.L., Chowdhury, K.R., Reddy, P.R., Krishna, V.G., Narain, H., Subbotin, S.I., Sollogub, V.B., Chekunov, A.V., Kharetchko, G.E., Lazarenko, M.A., and Ilchenko, T.V., 1979, Crustal structure along Kavali-Udipi profile in the Indian peninsular shield from deep seismic sounding: Journal of the Geological Society of India, v. 20(7), pp. 307–333.
  • Krogstad, E., Hanson, G., and Rajamani, V., 1991, U-Pb ages of zircon and sphene for two gneiss terranes adjacent to the Kolar Schist Belt, South India: Evidence for separate crustal evolution histories: Journal of Geology, v. 99, pp. 801–815. 6 10.1086/629553
  • Krogstad, K.J., Hanson, G.N., and Rajamani, V., 1988, U–Pb ages and Sr, Pb and Nd-Isotope data for gneisses near the Kolar Schist Belt: Evidences for the juxtaposition of discrete Archaean Terrains: The Journal of Geology Society of India, v. 3, pp. 60–62.
  • Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichec, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W., and Youzhi, G., 1997, Nomenclature in amphiboles: Report of the Subcommittee on amphiboles of the International Mineralogical Association Commission on new mineral and mineral names: European Journal of Mineralogy, v. 9, pp. 623–651. 3 10.1127/ejm/9/3/0623
  • Li, S.S., Santosh, M., Ganguly, S., Thanooja, P.V., Sajeev, K., Pahari, A., and Manikyamba, C., 2018, Neoarchean microblock amalgamation in southern India: Evidence from the Nallamalai Suture Zone: Precambrian Research, v. 314, pp. 1–27. 10.1016/j.precamres.2018.05.017
  • Lindsley, D.H., 1983, Pyroxene thermometry: American Mineralogist, v. 68, pp. 5–6.
  • Martin, H., Moyen, J.F., and Rapp, R., 2010, Sanukitoids and the Archean-Proterozoic boundary: Transactions of the Royal Society of Edinburgh., v.100, pp. 15–33. 1–2 10.1017/S1755691009016120
  • Miyazaki, T., Rajesh, H.M., Mohan, V.R., Rajasekaran, K.C., Kalaiselvan, A., Rao, A.T., and Rao, K.S., 1999, Field study of Alkaline Plutons in Tamilnadu and Andhrapradesh, south India, 1997-1998: Journal of Geosciences, v. 42, pp. 205–214.
  • Mukherjee, S., Ghosh, G., Das, K., Bose, S., and Hayasaka, Y., 2018, Geochronological and geochemical signatures of the granitic rocks emplaced at the north‐eastern fringe of the Eastern Dharwar Craton, South India: Implications for late Archean crustal growth: Geological Journal, v. 53, pp. 1781–1801. 5 10.1002/gj.3007
  • Newton, R.C., 1990, The Late Archaean high grade terrain of South India and the deep structure of the Dharwar craton. in Salisbury, M.H., and Fountain, D.M. (Eds.), Exposed Cross Sections of the Continental Crust: Kluwer Academic Publications, Dordrecht.
  • Noack, N.M., Kleinschrodt, R., Kirchenbaur, M., Fonseca, R.O.C., and Münker, C., 2013, Lu–Hf isotope evidence for Paleoproterozoic metamorphism and deformation of Archean oceanic crust along the Dharwar Craton margin, southern India: Precambrian Research, v. 233, pp. 206–222.
  • Owens, B.E., and Dymek, R.F., 2001, Petrogenesis of the Labrieville Alkalic Anorthosite Massif, Grenville Province, Quebec: Journal of Petrology, v. 42, pp. 1519–1546. 8 10.1093/petrology/42.8.1519
  • Palin, R.M., and Santosh, M., 2021, Plate tectonics: What, where, why, and when?: Gondwana Research, v. 100, pp. 3–24.
  • Percival, J.A., and Mortensen, J.K., 2002, Water-deficient Calc-alkaline Plutonic Rocks of Northeastern Superior Province, Canada : Significance of Charnockitic Magmatism: Journal of Petrology, v. 43, pp. 1617–1650. 9 10.1093/petrology/43.9.1617
  • Peucat, J.J., Jayananda, M., Chardon, D., Capdevila, R., Fanning, C.M., and Paquette, J.L., 2013, The lower crust of the Dharwar Craton, Southern India: Patchwork of Archean granulitic domains: Precambrian Research, v. 227, pp. 4–28. 10.1016/j.precamres.2012.06.009
  • Plavsa, D., Collins, A.S., Foden, J.F., Kropinski, L., Santosh, M., Chetty, T.R.K., and Clark, C., 2012, Delineating crustal domains in Peninsular India: Age and chemistry of orthopyroxene bearing felsic gneisses in the Madurai Block: Precambrian Research, v. pp. 198–199, p. 77–93.
  • Prakash, D., Chandra Singh, P., Tewari, S., Joshi, M., Frimmel, H.E., Hokada, T., and Rakotonandrasana, T., 2017, Petrology, pseudosection modelling and U-Pb geochronology of silica-deficient Mg-Al granulites from the Jagtiyal section of Karimnagar Granulite Terrane, Northeastern Dharwar Craton, India: Precambrian Research, v. 299, pp. 177–194.
  • Prakash, D., Satya-Prakash, and Sachan, H.K., 2010, Petrological Evolution of the High-Pressure and Ultrahigh-Temperature mafic granulites from Karur, Southern India: Evidence for decompressive and cooling retrograde trajectories: Mineralogy and Petrology, v. 100, pp. 35–53. 1–2 10.1007/s00710-010-0123-9
  • Raith, M., Srikantappa, C., Köhler, H., and Buhl, D., 1999, The Nilgiri enderbites: Nature and age constraints on protolith formation, high-grade metamorphism and cooling history: Precambrian Research, v. 98, pp. 129–150. 1–2 10.1016/S0301-9268(99)00045-5
  • Rajesh, H.M., 2012, A geochemical perspective on charnockite magmatism in Peninsular India: Geoscience Frontiers, v. 3, pp. 773–788. 6 10.1016/j.gsf.2012.04.003
  • Rajesh, H.M., Liu, S.J., and Wan, Y., 2020, Mesoarchean TTG magmatism from the northeastern margin of the Kaapvaal Craton, Southern Africa : Arguments for an exotic terrane (remnant of Pilbara Craton ?): Precambrian Research, v. 337, p. 105552. 10.1016/j.precamres.2019.105552
  • Rajesh, H.M., and Santosh, M., 2004, Charnockitic magmatism in southern India: Journal of Earth System Science, v. 113, pp. 565–585. 4 10.1007/BF02704023
  • Rajesh, H.M., and Santosh, M., 2012, Charnockites and charnockites: Geoscience Frontiers, v. 3, pp. 737–744. 6 10.1016/j.gsf.2012.07.001
  • Rajesh, H.M., Santosh, M., and Yoshikura, S., 2011, The Nagercoil charnockite: A magnesian, calcic to calc-alkalic granitoid dehydrated during a granulite-facies metamorphic event: Journal of Petrology, v. 52, pp. 375–400. 2 10.1093/petrology/egq084
  • Rao, V.V., Sain, K., Reddy, P.R., and Mooney, W.D., 2006, Crustal structure and tectonics of the northern part of the Southern Granulite Terrane, India: Earth and Planetary Science Letters, v. 25, pp. 90–103. 1–2 10.1016/j.epsl.2006.08.029
  • Ratheesh-Kumar, R.T., Santosh, M., Yang, Q.Y., Ishwar-Kumar, C., Chen, N.S., and Sajeev, K., 2016, Archean tectonics and crustal evolution of the Biligiri Rangan Block, southern India: Precambrian Research, v. 275, pp. 406–428.
  • Ratheesh-Kumar, R.T., Windley, B.F., Xiao, W.J., Jia, X.-L., Mohantyi, D.P., and Zeba-Nezrin, F.K., 2020, Early growth of the Indian lithosphere: Implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India: Precambrian Research, v. 336, pp. 1–28.
  • Saitoh, Y., Tsunogae, T., Santosh, M., Chetty, T.R.K., and Horie, K., 2011, Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery Suture Zone, southern India: Petrology and zircon SHRIMP geochronology: Journal of Asian Earth Sciences, v. 42, pp. 268–285. 3 10.1016/j.jseaes.2010.11.015
  • Sajeev, K., and Osanai, Y., 2004, Ultrahigh-temperature Metamorphism (1150° C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka: Journal of Petrology, v. 45, pp. 1821–1844.
  • Sajeev, K., Osanai, Y., and Santosh, M., 2004, Ultrahigh-temperature metamorphism followed by two-stage decompression of garnet – Orthopyroxene – Sillimanite granulites from Ganguvarpatti, Madurai block, southern India: Contributions Mineralogy and Petrology, v. 148, pp. 29–46. 1 10.1007/s00410-004-0592-0
  • Samuel, V.O., Kwon, S., Santosh, M., and Sajeev, K., 2018, Garnet pyroxenite from Nilgiri Block, southern India: Vestiges of a Neoarchean volcanic arc: Lithos, v. 310, pp. 120–135. 10.1016/j.lithos.2018.04.009
  • Samuel, V.O., Sajeev, K., Hokada, T., Horie, K., and Itaya, T., 2015, Neoarchean arc magmatism followed by high-temperature, high-pressure metamorphism in the Nilgiri Block, southern India: Tectonophysics, v. 662, pp. 104–109.
  • Samuel, V.O., Santosh, M., Liu, S., Wang, W., and Sajeev, K., 2014, Neoarchean continental growth through arc magmatism in the Nilgiri Block, southern India: Precambrian Research, v. 245, pp. 146–173.
  • Santosh, M., 2020, The southern granulite terrane: A synopsis. Episodes Journal of International Geoscience, v. 43(1), pp. 109–123.
  • Santosh, M., Maruyama, S., and Sato, K., 2009, Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India: Gondwana Research, v. 16, pp. 321–341. 2 10.1016/j.gr.2008.12.012
  • Santosh, M., Tagawa, M., Taguchi, S., and Yoshikura, S., 2003, The Nagercoil Granulite Block, southern India : Petrology, fluid inclusions and exhumation history: Journal of Asian Earth Sciences, v. 22, pp. 131–155. 2 10.1016/S1367-9120(02)00176-1
  • Santosh, M., Tsunogae, T., Yang, C.X., Han, Y.S., Hari, K.R., Prasanth, M.M., and Uthup, S., 2020, The Bastar craton, central India: A window to Archean–Paleoproterozoic crustal evolution: Gondwana Research, v. 79, pp. 157–184. 10.1016/j.gr.2019.09.012
  • Santosh, M., Xiao, W.J., Tsunogae, T., Chetty, T.R.K., and Yellappa, T., 2012, The Neo-proterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly: Precambrian Research, v. 192195, pp. 190–208. 10.1016/j.precamres.2011.10.025
  • Santosh, M., Yang, Q., Shaji, E., Tsunogae, T., Mohan, M.R., and Satyanarayanan, M., 2015, An exotic Mesoarchean microcontinent : The Coorg Block, southern India: Gondwana Research, v. 27, pp. 165–195.
  • Santosh, M., Yokoyama, K., Biju-Sekhar, S., and Rogers, J.J.W., 2003b, Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: Implications on the history of supercontinents: Gondwana Research, v. 6, pp. 29–63. 1 10.1016/S1342-937X(05)70643-2
  • Schleicher, H., Todt, W., Viladkar, S.G., and Schmidt, F., 1997, Pb/Pb age determinations on the Newania and Sevattur carbonatites of India: Evidence for multi-stage histories: Chemical Geology, v. 140, pp. 261–273. 3–4 10.1016/S0009-2541(97)00022-3
  • Singh, P.K., Verma, S.K., Singh, V.K., Moreno, J.A., Oliveira, E.P., Li, X.H., Malviya, V.P., and Prakash, D., 2021, Geochronology and petrogenesis of the TTG gneisses and granitoids from the Central Bundelkhand granite-greenstone terrane, Bundelkhand Craton, India: Implications for Archean crustal evolution and cratonization: Precambrian Research, v. 359, p. 106210. 10.1016/j.precamres.2021.106210
  • Singh, P.K., Verma, S.K., Singh, V.K., Moreno, J.A., Oliveira, E.P., and Mehta, P., 2019, Geochemistry and petrogenesis of sanukitoids and high-K anatectic granites from the Bundelkhand Craton, India: Implications for late-Archean crustal evolution: Journal of Asian Earth Sciences, v. 174, pp. 263–282. 10.1016/j.jseaes.2018.12.013
  • Sun, S.S., and McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: in Saunders, A.D., and Norry, M.J. (eds.) Magmatism in the Ocean Basins, Geological Society of London, Special Publications, v. 42, pp. 313–345.
  • Taylor, S.R., and McLennan, S.M., 2009, Planetary Crusts: Their Composition, Origin, and Evolution: Cambridge University Press, Cambridge.
  • Tewari, S., Prakash, D., Yadav, M.K., and Yadav, R., 2018, Petrology and isotopic evolution of granulites from central Madurai Block (southern India): Reference to Ediacaran crustal evolution: International Geology Review, v. 60, pp. 1792–1815. 15 10.1080/00206814.2017.1387872
  • Thanooja, P.V., Williams, I.S., Satish-Kumar, M., Durgalakshmi, I., Zhai, M.G., Oh, C.W., Windley, B.F., and Sajeev, K., 2021, Were South India, the North China Craton, and the Korean Peninsula contiguous in a Neoarchaean supercontinent? New Geochemical and Isotopic Constraints: Lithos, v. pp. 398–399, p.106294.
  • Trail, D., Watson, E.B., and Tailby, N.D., 2011, The oxidation state of Hadean magmas and implications for early Earth’s atmosphere: Nature, v. 480, pp. 79–82. 7375 10.1038/nature10655
  • Uthup, S., Tsunogae, T., Rajesh, V.J., Santosh, M., Takamura, Y., and Tsutsumi, Y., 2019, Neoarchean arc magmatism and Paleoproterozoic granulite-facies metamorphism in the Bhavani Suture Zone, South India: Geological Journal, pp. 1–26.
  • Wang, J.Y., Santosh, M., Jayananda, M., and Adhiseshan, K.R., 2020, Bimodal magmatism in the Eastern Dharwar Craton, Southern India: Implications for Neoarchean crustal evolution: Lithos, v. pp. 354–355, p. 105336.
  • Warren, P.H., 1985, The magma ocean concept and lunar evolution: Annual Review of Earth and Planetary Sciences, v. 13, pp. 201–240. 1 10.1146/annurev.ea.13.050185.001221
  • Westphal, M., Schumacher, J.C., and Boschert, S., 2003, High-Temperature Metamorphism and the Role of Magmatic Heat Sources at the Rogaland Anorthosite Complex in Southwestern Norway: Journal of Petrology, v. 44., pp. 1145–1162. 6 10.1093/petrology/44.6.1145
  • Wu, F.Y., Li, X.H., Zheng, Y.F., and Gao, S., 2007, Lu-Hf isotopic systematic and their applications in petrology: Acta Petrologica Sinica, v. 23, pp. 185–220 (in Chinese with English abstract).
  • Yang, C.X., Santosh, M., Tsunogae, T., Shaji, E., Gao, P., and Kwon, S., 2021, Global type area charnockites in southern India revisited: Implications for Earth’s oldest supercontinent: Gondwana Research, v. 94, pp. 106–132.
  • Yang, Q.Y., and Santosh, M., 2015, Zircon U-Pb geochronology and Lu-Hf isotopes from the Kolar greenstone belt, Dharwar Craton, India: Implications for crustal evolution in an ocean-trench-continent transect: Journal of Asian Earth Sciences, v. 113, pp. 797–811. 10.1016/j.jseaes.2015.05.023
  • Yang, Q.Y., Santosh, M., Rajesh, H.M., and Tsunogae, T., 2014, Late Paleoproterozoic charnockite suite within post-collisional setting from the North China Craton: Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes: Lithos, v. 208, pp. 34–52. 10.1016/j.lithos.2014.08.020
  • Yu, B., Santosh, M., Amaldev, T., and Palin, R.M., 2021, Mesoarchean (ultra)-high temperature and high-pressure metamorphism along a microblock suture: Evidence from Earth’s oldest khondalites in southern India: Gondwana Research, v. 91, pp. 129–151. 10.1016/j.gr.2020.12.015
  • Zhao, Zhou, X., Zhai, M., M., Santosh, M., Ma, Shan, H., H., and Cui, X., 2014, Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U–Pb geochronology and Nd–Hf isotopes of a granite–charnockite suite in southwestern Zhejiang: Lithos, v. 184, pp. 259–280. 184-187 10.1016/j.lithos.2013.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.