777
Views
6
CrossRef citations to date
0
Altmetric
Research Article

A Silurian-Devonian active margin in the proto-Andes – new data on an old conundrum

ORCID Icon
Pages 3099-3120 | Received 15 Oct 2021, Accepted 27 Nov 2021, Published online: 22 Dec 2021

References

  • Aceñolaza, F.G., Aceñolaza, G., and García, G., 1999, El Silúrico-Devónico del noroeste argentino: Geología Argentina Anales, v. 29, p. 205–214.
  • Allen, P.A., and Allen, J.R., 2005, Basin Analysis. Principles and Applications (2nd): Oxford: Blackwell Publishing, p. 1–549.
  • Ariza, J.P., Boedo, F.L., Sánchez, M.A., Christiansen, R., Pérez Lujan, S.B., Vujovich, G.I. and Martínez, P. (2018). Structural setting of the Chanic orogen (Upper Devonian) at central-western Argentina from remote sensing and aeromagnetic data. Implications in the evolution of the proto-Pacific margin of Gondwana. Journal of South American Earth Sciences, 88 352–366. 10.1016/j.jsames.2018.08.021
  • Asaah, A., Yokoyama, T., Aka, F., Usui, T., Wirmven, M., Tchamabe, B., Ohba, T., Tanyleke, G., and Hell, J., 2015, A comparative review of petrogenetic processes beneath the Cameroon Volcanic Line: Geochemical constraints: Geoscience Frontiers, v. 6, p. 557–570.
  • Augustsson, C., and Bahlburg, H., 2003, Active or passive continental margin? Geochemical and Nd isotope constraints of metasediments in a Pre-andean accretionary wedge in southernmost Chile (46°30ʹ-48°30’S), in McCann, T., ed., Tracing tectonic deformation using the sedimentary record: Geological Society, Volume 208: London, Special Publication, p. 253–268.
  • Augustsson, C., Rüsing, T., Niemeyer, H., Kooijman, E., Berndt, J., Bahlburg, H., and Zimmermann, U., 2015, 0.3 b.y. of drainage stability along the Palaeozoic palaeo-Pacific Gondwana margin - a detrital zircon study: Journal of the Geological Society, London, v. 172, p. 186–200.
  • Augustsson, C., Willner, A.P., Rüsing, T., Niemeyer, H., Gerdes, A., Adams, C.J., and Miller, H., 2016, The crustal evolution of South America from a zircon Hf-isotope Perspective: Terra Nova, v. 28, p. 128–137.
  • Bahlburg, H., 1987, Sedimentology, petrology and geotectonic significance of the Paleozoic flysch in the Coastal Cordillera of northern Chile: Neues Jahrbuch für Geologie und Paläontologie Monatshefte, v. 1987, p. 527–559.
  • Bahlburg, H., 1990, The Ordovician basin in the Puna of NW Argentina and N Chile: Geodynamic evolution from back-arc to foreland basin: Geotektonische Forschungen, v. 75, p. 1–107.
  • Bahlburg, H., 1991, Die geodynamische Entwicklung mariner Sedimentbecken am paläozoischen Kontinentalrand von Gondwanaland im Bereich der südlichen Zentralanden (NW Argentinien, N Chile): Zeitschrift der Deutschen Geologischen Gesellschaft, v. 142, p. 131–148.
  • Bahlburg, H., 1993, Hypothetical southeast Pacific continent revisited: New evidence from the middle Paleozoic basins of northern Chile: Geology, v. 21, p. 909–912.
  • Bahlburg, H., Berndt, J., and Gerdes, A., 2016, The ages and tectonic setting of the Faja Eruptiva de la Puna Oriental, Ordovician, NW Argentina: Lithos, v. 256–257, p. 41–54.
  • Bahlburg, H., and Breitkreuz, C., 1991, The evolution of marginal basins in the southern Central Andes of Argentina and Chile during the Paleozoic: Journal of South American Earth Sciences, v. 4, p. 171–188.
  • Bahlburg, H., and Breitkreuz, C., 1993, Differential response of a Devonian-Carboniferous platform-deeper basin system to sea-level change and tectonics, N. Chilean Andes: Basin Research, v. 5, p. 21–40.
  • Bahlburg, H., and Hervé, F., 1997, Geodynamic evolution and tectonostratigraphic terranes of NW-Argentina and N-Chile: Geological Society of America Bulletin, v. 109, p. 869–884.
  • Bahlburg, H., Vervoort, J.D., Du Frane, S.A., Bock, B., and Augustsson, C., 2009, Timing of accretion and crustal recycling at accretionary orogens: Insights learned from the western margin of South America: Earth-Science Reviews, v. 97, p. 227–253.
  • Bahlburg, H., Vervoort, J.D., DuFrane, A., Carlotto, V., Reimann, C., and Cárdenas, J., 2011, The U-Pb and Hf isotope evidence of detrital zircons of the Ordovician Ollantaytambo Formation, southern Peru, and the Ordovician provenance and paleogeography of southern Peru and northern Bolivia: Journal of South American Earth Sciences, v. 32, p. 196–209.
  • Bahlburg, H., Zimmermann, U., Matos, R., Berndt, J., Jiménez, N., and Gerdes, A., 2020, The missing link of Rodinia break up in Western South America: A petrographical, geochemical, and zircon Pb-Hf isotope study of the volcano sedimentary Chilla beds (Altiplano, Bolivia):: Geosphere, v. 16, p. 619–645.
  • Barazangi M and Isacks B L. (1976). Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geol, 4(11), 686 10.1130/0091-7613(1976)4<686:SDOEAS>2.0.CO;2
  • Bell C.M. (1987). The origin of the Upper Palaeozoic Chañaral mélange of N Chile. Journal of the Geological Society, 144(4), 599–610. 10.1144/gsjgs.144.4.0599
  • Bell, C.M., 1982, The Lower Paleozoic metasedimentary basement of the Coastal Ranges of Chile between 25°30ʹ and 27°S: Revista Geológica de Chile, v. 17, p. 21–29.
  • Berg, K., and Baumann, A., 1985, Plutonic and metasedimentary rocks from the Coastal Range of northern Chile: Rb-Sr and U-Pb isotopic systematics: Earth and Planetary Science Letters, v. 75, p. 101–115.
  • Boekhout, F., Roberts, N., Gerdes, A., and Schaltegger, U., 2015, A Hf-isotope perspective on continent formation in the south Peruvian Andes, in Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirey, S., and Clift, P.D., eds., Continent Formation Through Time: Geological Society, Volume 389: London, Special Publications, p. 305–321.
  • Breitkreuz, C., and Bahlburg, H., 1985, Palaeozoic flysch series in the Coastal Cordillera of northern Chile: Geologische Rundschau, v. 74, p. 565–572.
  • Breitkreuz, C., Bahlburg, H., Delakowitz, B., and Pichowiak, S., 1989, Volcanic events in the Paleozoic central Andes: Journal of South American Earth Sciences, v. 2, p. 171–189.
  • Büttner, S.H., Glodny, J., Lucassen, F., Wemmer, K., Erdmann, S., Handler, R., and Franz, G., 2005, Ordovician metamorphism and plutonism in the Sierra de Quilmes metamorphic complex: Implications for the tectonic setting of the northern Sierras Pampeanas (NW Argentina: Lithos, v. 83, p. 143–181.
  • Cabanis, P.B., and Thiéblemont, D., 1988, La discrimination des tholéiites continentals et des basalts arrière-arc. Proposition d’un nouveau diagramme, le triangle Th- 3Tb-2Ta: Bulletin de La Societé Géologique de La France, v. IV, no. 6, p. 927–935.
  • Calderón, M., Hervé, F., Munizaga, F., Pankhurst, R.J., Fanning, C.M., and Rapela, C.W., 2020, Geochronological record of plutonic activity on a long-lived active continental margin, with emphasis on the pre-Andean rocks of Chile, in Bartorelli, A., Teixeira, W., and Brito Neves, B.B. (São Paolo), eds., Geocronologia e Evoluçao Tectônica do Continente Sul-Americano: A contribuiçao de Umberto Giuseppe Cordani, Solaris Edições Culturais, p. 392–407, Chapter 18.
  • Cawood, P.A., 2005, Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic: Earth-Science Reviews, v. 69, p. 249–279.
  • Cawood, P.A., Kröner, A., Collins, W.J., Kusky, T.M., Mooney, W.D., and Windley, B.F., 2009, Accretionaty orogens through time, in Cawood, P.A., and Kröner, A., eds., Earth Accretionary Systems in Space and Time: The Geological Society, Volume 318: London, Special Publications, p. 1–36.
  • Cawood, P.A., Martin, E.L., Murphy, J.B., and Pisarevsky, S.A., 2021, Gondwana’s interlinked peripheral orogens: Earth and Planetary Science Letters, v. 568, p. 117057.
  • Cecil, M.R., Gehrels, G.E., Rusmore, M.E., Woodsworth, G.J., Stowell, H.H., Yokelson, I.N., Homan, E., Kitajima, K., and Valley, J.W., 2021, Mantle control on magmatic flare-ups in the southern Coast Mountains batholith, British Columbia: Geosphere, v. 17, p. 1–15. 10.1130/GES02361.1.
  • Chapman, J.B., Shields, J.E., Ducea, M.N., Paterson, S.R., Attia, S., and Ardill, K.E., 2021, The causes of continental arc flare ups and drivers of episodic magmatic activity in Cordilleran orogenic systems: Lithos, v. v, p. 398–399, 106307.
  • Chew, D.M., Schaltegger, U., Košler, J., Whitehouse, M.J., Gutjahr, M., Spikings, R.A., and Miškovíc, A., 2007, U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes: Geological Society of America Bulletin, v. 119, p. 697–711.
  • Cohen, K.M., Finney, S.C., Gibbard, P.L., and Fan, J.-X., 2013, updated, The ICS International Chronostratigraphic Chart: Episodes, v. 36, p. 199–204. https://stratigraphy.org/ICSchart/ChronostratChart2021-07.pdf.
  • Coira, B., Davidson, J., Mpodozis, C., and Ramos, V., 1982, Tectonic and magmatic evolution of the Andes of northern Argentina and Chile: Earth Science Reviews, v. 18, p. 303–332.
  • Collins, W.J., 2002, Hot orogens, tectonic switching, and creation of continental crust: Geology, v. 30, p. 535–538.
  • Dahlquist, J.A., Morales Càmera, M.M., Alasino, P.H., Pankhurst, R.J., Basei, M.A.S., Rapela, C.W., Moreno, J.A., Baldo, E.G. and Galindo, C., 2021, A review of Devonian–Carboniferous magmatism in the central region of Argentina, pre-Andean margin of SW Gondwana: Earth-Science Reviews, v. 221, p. 103781.
  • Dahlquist, J.A., Morales Cámera, M.M., Alasino, P.H., Tickyj, H., Basei, M.A.S., Galindo, C., Moreno, J.A., and Rocher, S., 2020, Geochronology and geochemistry of Devonian magmatism in the Frontal Cordillera (Argentina): Geodynamic implications for the pre-Andean SW Gondwana margin: International Geology Review. 10.1080/00206814.2020.1845994.
  • Dalenz Farjat, A., 2021, Silurian and Devonian Modiomorphidae bivalves from Bolivia: Ameghiniana, v. 58, p. 242–271.
  • Davidson, J., Mpodozis, C., and Rivano, S., 1981, El Paleozoico de Sierra de Almeida, al oeste de Monturaqui, Alta Cordillera de Antofagasta, Volume 12: Chile, Revista Geológica de Chile, p. 3–23.
  • Davis, J., Roeske, S.M., McClelland, W.C., and Kay, S.M., 2000, Mafic and ultramafic crustal fragments of the southwestern Precordillera terrane and their bearing on tectonic models of the early Paleozoic in western Argentina: Geology, v. 28, p. 171–174.
  • DeCelles, P.G., and Graham, S.A., 2015, Cyclical processes in the North American Cordilleran orogenic system: Geology, v. 43, p. 499–502.
  • Díaz-Alvarado, J., Galaz, G., Oliveros, V., Creixell, C., and Calderón, M., 2019, Fragments of the late Paleozoic accretionary complex in central and northern Chile: Similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events, in Horton, B., and Folguera, A. (Amsterdam), eds., Andean Tectonics, p. 509–530.
  • Domeier, M., and Torsvik, T.H., 2014, Plate tectonics in the late Paleozoic: Geoscience Frontiers, v. 5, p. 303–350.
  • Einhorn, J.C., Gehrels, G.E., Vernon, A., and DeCelles, P.G., 2015, U-Pb zircon geochronology of Neoproterozoic–Paleozoic sandstones and Paleozoic plutonic rocks in the Central Andes (21°S–26°S), in DeCelles, P.G., Ducea, M.N., Carrapa, B., and Kapp, P.A., eds., Geodynamics of a Cordilleran orogenic system: The Central Andes of Argentina and Northern Chile, Volume 212: Boulder, CO: Geological Society of America Memoir, p. 115–124.
  • Fitton, J.G., 2007, The OIB paradox, in Foulger, G.R., and Jurdy, D.M., eds., Plates, plumes, and planetary processes: Geological Society of America Special Paper, Boulder, CO. v. 430, p. 387–412.
  • Fitton, J.G., and James, D., 1986, Basic volcanism associated with intraplate linear features: Philosophical Transactions of the Royal Society of London, V. A, v. 317, p. 253–266.
  • Flemings, P.B., and Jordan, T.E., 1989, A synthetic stratigraphic model of foreland basin development: Journal of Geophysical Research, v. 94 B4, p. 3851–3866.
  • Fowler, C.M.R., 2004, The solid Earth. An introduction to global Geophysics: Cambridge, UK: Cambridge University Press, p. 1–704.
  • Franz, G., Lucassen, F., Kramer, W., Trumbull, R.B., Romer, R.L., Wilke, H.-G., Viramonte, J.G., Becchio, R., and Siebel, W., 2006, Crustal evolution at the central Andean continental margin: A geochemical record of crustal growth, recycling and destruction, in In Oncken, O., Chong, G., Franz, G., Giese, P., Götze, H.-J., Ramos, V.A., Strecker, M.R., and Wigger, P., eds., The Andes. Active subduction orogeny: Frontiers in Earth Sciences, Volume 1: Berlin: Springer Publishers, p. 45–64.
  • Fuentes, P., Díaz-Alvarado, J., Rodríguez, N., Fernández, C., Breitkreuz, C., and Contreras, A., 2018, Geochemistry, petrogenesis and tectonic significance of the volcanic rocks of the Las Tortolas Formation, Coastal Cordillera, northern Chile: Journal of South American Earth Sciences, v. 87, p. 1–21.
  • García, A.D., 2021, Proveniência sedimentar do interval Devoniano – Carbonífero da Bacia Subandina de Tarija (Bolívia) e a relação com as bacias do setor SW de Gondwana: Dissertação de Mestrado, Universidade de Brasília Instituto de Geociências, p. 1–156.
  • GEOROC (2021) (http://georoc.mpch-mainz.gwdg.de/georoc/)
  • Giambiagi, L., Ramos, V.A., Godoy, E., Alvarez, P.P., and Orts, S., 2003, Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude: Tectonics, v. 22, p. 1041. 10.1029/2001TC001354.
  • Godoy, E., and Lara, L., 1998, Hojas Chañaral y Diego de Almagro, Región de Atacama: Servicio Nacional de Geología y Minería, in Mapas Gelógicos (Santiago de Chile: Servicio Nacional de Geología y Minería), p. 5–6. 1 mapa escala 1:100000, Santiago de Chile.
  • Godoy, E., and Lara, L., 1999, Hoja Puerto Flamenco, Región de Atacama: Servicio Nacional de Geología y Minería: Mapas Gelógicos, No. 15, 1 mapa escala 1:100000, Santiago de Chile, :, .
  • Gohrbrandt, K.H.A., 1992, Paleozoic paleogeographic and depositional developments on the proto-Pacific margin of Gondwana: Their importance to hydrocarbon accumulation: Journal of South American Earth Sciences, v. 6, p. 267–287.
  • Haq, B.U., and Schutter, S.R., 2008, A Chronology of Paleozoic Sea-Level Changes: Science, v. 322, p. 64–68.
  • Harrington, H., 1961, Geology of parts of Antofagasta and Atacama provinces, northern Chile: American Association of Petroleum Geologists Bulletin, v. 45, p. 169–197.
  • Hervé, F., Calderón, M., Fanning, C.M., Pankhurst, R.J., Fuentes, F., Rapela, C.W., and Marambio, C., 2016, Devonian magmatism in the accretionary complex of southern Chile: Journal of the Geological Society, v. 173, p. 587–602.
  • Hervé, F., Faundez, V., Calderón, M., Massone, H.-J., and Willner, A., 2007, Metamorphic and plutonic basement complexes, in Moreno, T., and Gibbons, W., eds., The Geology of Chile.: London: The Geological Society, p. 6–19.
  • Hervé, F., Godoy, E., Parada, M.A., Ramos, V., Rapela, C., Mpodozis, C., and Davidson, J., 1987, A general view on the Chilean-Argentine Andes, with emphasis on their early history: American Geophysical Union Geodynamic Series, v. 18, p. 97–113.
  • Hervé, F., Kawashita, K., Munizaga, F., and Bassei, M., 1984, Rb-Sr isotopic ages from late Palaeozoic metamorphic rocks of central Chile: Journal of the Geological Society of London, v. 141, p. 877–884.
  • Horton, B.K., 2018, Tectonic regimes of the central and southern Andes: Responses to variations in plate coupling during subduction: Tectonics, v. 37, p. 402–429.
  • Insel, N., Grove, M., Haschke, M., Barnes, J.B., Schmitt, A.K., and Strecker, M.R., 2012, Paleozoic to early Cenozoic cooling and exhumation of the basement underlying the eastern Puna plateau margin prior to plateau growth: Tectonics, v. 31, p. TC6006.
  • Irvine, T.N., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 532–548.
  • Isaacson, P.E., 1975, Evidence for a western extracontinental land source during the Devonian Period in the central Andes: Geological Society of America Bulletin, v. 86, p. 39–46.
  • Jaillard, E., Hérail, G., Montfret, T., Diáz-Martinez, E., Baby, P., Lavenu, A., and Dumon, J.F., 2000, Tectonic evolution of the Andes of Ecuador, Peru, Bolivia and northernmost Chile, in Cordani, U.G., Milani, E.J., Thomaz Filho, A.M., and Campos, D.A. (Rio de Janeiro), eds., Tectonic evolution of South America: 31st International Geological Congress, Rio de Janeiro, p. 481–559.
  • Jordan T.E., Isacks B.L., Allmendinger R.W., Brewer J.A., Ramos V.A. and Ando C.J. (1983). Andean tectonics related to geometry of subducted Nazca plate. Geol Soc America Bull, 94(3), 341 10.1130/0016-7606(1983)94<341:ATRTGO>2.0.CO;2
  • Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., and Kinny, P.D., 2006, Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, v. 439, p. 580–583.
  • Kirsch, M., Paterson, S.R., Wobbe, F., Ardila, A.M.M., Clausen, B.L., and Alasino, P.H., 2016, Temporal histories of Cordilleran continental arcs: Testing models for magmatic episodicity: American Mineralogist, v. 101, p. 2133–2154.
  • Liu, H., Xia, X., Lai, C.-K., Gan, C., Zhou, Y., and Huangfu, P., 2018, Break-away of South China from Gondwana: Insights from the Silurian high-Nb basalts and associated magmatic rocks in the Diancangshan-Ailaoshan fold belt (SW China: Lithos, v. 318–319, p. 194–208.
  • Loewy, S.L., Connelly, J.N., and Dalziel, I.W.D., 2004, An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America: Geological Society of America Bulletin, v. 117, p. 171–187.
  • López-Gamundi, O.R., Espejo, I.S., Conaghan, P.J., and Powell, C.M., 1994, Southern South America, in Veevers, J.J., and Powell, C.M., eds., Permian-Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland, Volume 184: Boulder, Colorado, Geological Society of America Memoir, p. 281–329.
  • Lopez, V.L., and Gregori, D.A., 2004, Provenance and evolution of the Guarguaraz Complex, Cordillera Frontal, Argentina: Gondwana Research, v. 7, p. 1197–1208.
  • Lucassen, F., and Becchio, R., 2003, Timing of high-grade metamorphism: Early Paleozoic U-Pb formation ages of titanite indicate long-standing high-T conditions at the western margin of Gondwana (Argentina, 26–29°S: Journal of Metamorphic Geology, v. 21, p. 649–662.
  • Lucassen, F., Becchio, R., Wilke, H.G., Franz, G., Thirlwall, M.F., Viramonte, J., and Wemmer, K., 2000, Proterozoic-Paleozoic development of the basement of the Central Andes (18-26°S) – A mobile belt of the South American craton: Journal of South American Earth Sciences, v. 13, p. 697–715.
  • McDonough, W.F., and Sun, -S.-S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253.
  • McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems (G3), v. 2, Paper number 2000GC000109.
  • Miller, H., 1970, Vergleichende Studien an prämesozoischen Gesteinen Chiles unter besonderer Berücksichtigung ihrer Kleintektonik: Geotektonische Forschungen, v. 36, p. 1–64.
  • Mišković, A., and Schaltegger, U., 2009, Crustal growth along a non-collisional cratonic margin: A Lu–Hf isotopic survey of the Eastern Cordilleran granitoids of Peru: Earth and Planetary Science Letters, v. 279, p. 303–315.
  • Mukasa, S.B., and Henry, D.J., 1990, The San Nicolás batholith of coastal Peru: Early Palaeozoic continental arc or continental rift magmatism?: Geological Society of London Journal, v. 147, p. 27–39.
  • Niemeyer, H., Götze, J., Sanhueza, M., and Portilla, C., 2018, The Ordovician magmatic arc in the northern Chile-Argentina Andes between 21° and 26° south latitude: Journal of South American Earth Sciences, v. 81, p. 204–214.
  • Niemeyer, H., Urzúa, F., and Rubinstein, C., 1997, Nuevos antecedentes estratigráficos y sedimentológicos de la Formación Zorritas, Devónico-Carbonífero de Sierra Almeida, Región de Antofagasta: Chile: Revista Geológica de Chile, v. 24, p. 25–43.
  • Oliveros, V., Vásquez, P., Creixell, C., Lucassen, F., Ducea, M.N., Ciocca, I., González, J., Espinoza, M., Salazar, E., Coloma, F., and Kasemann, S.A., 2020, Lithospheric evolution of the Pre- and Early Andean convergent margin, Chile: Gondwana Research, v. 80, p. 202–227.
  • Ortíz, A., Suzaño, N., Hauser, N., Becchio, R., and Nieves, A., 2019, New hints on the evolution of the Eastern Magmatic Belt, Puna Argentina. SW Gondwana margin: Zircon U-Pb ages and Hf isotopes in the Pachamama Igneous-Metamorphic Complex: Journal of South American Earth Sciences, v. 94, p. 102246.
  • Pankhurst, R.J., Hervé, F., Fanning, M.C., Calderón, M., Niemeyer, H., Griem-Klee, S., and Soto, F., 2016, The pre-Mesozoic rocks of northern Chile: U–Pb ages, and Hf and O isotopes: Earth-Science Reviews, v. 152, p. 88–105.
  • Pankhurst, R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I., and Fanning, C.M., 1998, The Famatinian magmatic arc in the central Sierras Pampeanas: An Early to Mid-Ordovician continental arc on the Gondwana margin: Geological Society, London, Special Publication, v. 142, p. 343–367.
  • Pearce, J.A., 1996, A user’s guide to basalt discrimination diagrams. In: Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration: Geological Association of Canada, Short Course Notes, p. 79–113.
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48.
  • Pepper, M., Gehrels, G., Pullen, A., Ibanez-Mejia, M., Ward, K.M., and Kapp, P., 2016, Magmatic history and crustal genesis of Western South America: Constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers: Geosphere, v. 12, p. 1–24.
  • Pérez Luján, S.B., Boedo, F.L., Ariza, J.P., Vujovich, G.I., Alvarado, P., and Kay, S.M., 2021, The Cuyano proto-ocean between the Chilenia and Cuyania terranes: Rifting and plume interaction during the Neoproterozoic – Early Palaeozoic evolution of the SW Gondwana margin: Geological Magazine, v. 158, p. 1773–1794.
  • Pfiffner, O.A., and Gonzalez, L., 2013, Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes: Geosciences, v. 3, p. 262–310.
  • Pichler, H., and Schmitt-Riegraf, C., 1997, Rock-forming Minerals in Thin Section (2nd): Berlin: Springer, p. 1–220.
  • Pickering, K.T., and Hiscott, R.N., 1985, Contained (reflected) turbidity currents from the Middle Ordovician Cloridorme Formation, Quebec, Canada: An alternative to the antidune hypothesis: Sedimentology, v. 32, p. 373–394.
  • Ramos, V.A., 1988, Late Proterozoic-Early Paleozoic of South America - a collisional history: Episodes, v. 11, p. 168–173.
  • Ramos, V.A., 2004, Cuyania, an exotic block to Gondwana: Review of a historical success and the present problems: Gondwana Research, v. 7, p. 1009–1026.
  • Ramos, V.A., 2018a, The famatinian orogen along the protomargin of western gondwana: evidence for a nearly continuous ordovician magmatic arc between Venezuela and Argentina, in Folguera, A. et al, eds., The evolution of the Chilean-Argentinean Andes: Berlin: Springer Earth System Sciences, p. 133–161.
  • Ramos, V.A., 2018b, Tectonic evolution of the central Andes: From terrane accretion to crustal delamination, in Zamora, G., McClay, K.R., and Ramos, V.A., eds., Petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia, Volume 117: Tulsa, OK: American Association of Petroleum Geologists Memoir, p. 1–34.
  • Rapela, C.W., Hervè, F., Pankhurst, R.J., Calderón, M., Fanning, C.M., Quezada, P., Poblete, F., Palape, C., and Reyes, T., 2021, The Devonian accretionary orogen of the North Patagonian Cordillera: Gondwana Research, v. 96, p. 1–21.
  • Reimann Zumsprekel, C.R., Bahlburg, H., Carlotto, V., Boekhout, F., Berndt, J., and Lopez, S., 2015, Multi-method provenance model for Early Paleozoic sedimentary basins of southern Peru and northern Bolivia (13°-18°S: Journal of South American Earth Sciences, v. 64, p. 94–115.
  • Reimann, C.R., Bahlburg, H., Kooijman, B.J., Gerdes, A., Carlotto, V., and Lopez, S., 2010, Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°-17°S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia: Gondwana Research, v. 18, p. 370–384.
  • Reutter, K.J., Munier, K. (2006) Digital Geological Map of the Central Andes between 20°S and 26°S. In: Oncken O. et al. (eds) The Andes. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48684-8_27
  • Sclater, J.G., and Christie, P.A.F., 1980, Continental stretching: An explanation of the post-Mid Cretaceous subsidence of the central North Sea Basin: Journal of Geophysical Research, v. 85 B4, p. 3711–3739.
  • Sempere, T., 1995, Phanerozoic evolution of Bolivia, in Tankard, A.J., Suarez-Soruco, S., and Welsink, H.J., eds., Petroleum basins of South America, Volume 62: Tulsa, OK: American Association of Petroleum Geologists Memoir, p. 207–230.
  • Starck, D., and Del Papa, C., 2006, The northwestern Argentina Tarija Basin: Stratigraphy, depositional systems, and controlling factors in a glaciated basin: Journal of South American Earth Sciences, v. 22, p. 169–184.
  • Sun, S.-S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J., eds., Magmatism in the Ocean Basins, Volume 42: London: Geological Society Special Publication, p. 313–345.
  • Sundell, K.E., Saylor, J.E., and Pecha, M., 2019, Provenance and recycling of detrital zircons from Cenozoic Altiplano strata and the crustal evolution of Western South America from combined U-Pb and Lu-Hf isotopic analysis, in Horton, B., and Foguera, A., eds., Andean tectonics: Amsterdam: Elsevier, p. 363–397.
  • Thomas, W.A., and Astini, R.A., 1999, Simple-shear conjugate rift margins of the Argentine Precordillera and the Ouachita embayment of Laurentia: Geological Society of America Bulletin, v. 111, p. 1069–1079.
  • Ulriksen, C., 1979, Regional geology, geochronology and metallogeny of the Coastal Cordillera of Chile between 25°30ʹ and 26° south: Master of Science thesis (unpublished), Dalhousie University, 221 pp.
  • Vervoort, J.D., and Patchett, P.J., 1996, Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites: Geochimica et Cosmochimica Acta, v. 60, p. 3717–3733.
  • Weinberg, R.F., Becchio, R., Farias, P., Suzaño, N., and Sola, A., 2018, Early Paleozoic accretionary orogenies in NW Argentina: Growth of West Gondwana: Earth-Science Reviews, v. 187, p. 219–247.
  • Williams, K.E., 1995, Tectonic Subsidence Analysis and Paleozoic Paleogeography of Gondwana, in Tankard, A.J., Suarez-Soruco, S., and Welsink, H.J., eds., Petroleum basins of South America, Volume 62: Tulsa, OK: American Association of Petroleum Geologists Memoir, p. 79–100.
  • Willner, A.P., Gerdes, A., and Masonne, H.J., 2008, History of crustal growth and recycling at the Pacific convergent margin of South America at latitudes 29°–36° S revealed by a U–Pb and Lu–Hf isotope study of detrital zircon from late Paleozoic accretionary systems: Chemical Geology, v. 253, p. 114–129.
  • Willner, A.P., Gerdes, A., Massonne, H.J., Schmidt, A., Sudo, M., Thomson, S.N., and Vujovich, G., 2011, The geodynamics of collision of a microplate (Chilenia) in Devonian times deduced by the pressure temperature-time evolution within part of a collisional belt (Guarguaraz Complex, W-Argentina: Contributions to Mineralogy and Petrology, v. 162, p. 303–327.
  • Wilson, M., 1989, Igneous petrogenesis: London, Unwin Hyman, p. 454.
  • Winchester, J.A., and Floyd, P.A., 1976, Geochemical magma type discrimination. Application to altered and metamorphosed basic igneous rocks: Earth and Planetary Science Letters, v. 28, p. 459–469.
  • Zhang, X., Chung, S.L., Lai, Y.M., Ghani, A.A., Murtadha, S., Lee, H.Y., and Hsu, C.C., 2019, A 6000-km-long Neo-Tethyan arc system with coherent magmatic flare-ups and lulls in South Asia: Geology, v. 47, p. 573–576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.