431
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Origin of the volcanic rocks in Dianzhong Formation, central Lhasa Terrane, Tibet: implication for the genesis of syn-collisional magmatism and Neo-Tethyan slab roll-back

, ORCID Icon, , , , , , , , , & show all
Pages 21-39 | Received 03 Jul 2021, Accepted 16 Jan 2022, Published online: 16 Feb 2022

References

  • An, W., Hu, X.M., Garzanti, E., Wang, J.G., and Liu, Q., 2021, New precise dating of the India‐Asia Collision in the Tibetan Himalaya at 61 Ma:Geophysical Research Letters, 48(3), 1–10. 10.1029/2020gl090641.
  • Beck, R.A., Burbank, D.W., Sercombet, W.J., Rileyt, G.W., Barndtt, J.K., Berryt, J.R., Afzalt, J.I., Khant, A.M., Jurgent, H., Metjet, J., Cheemat, A., Shafiquet, N.A., Lawrence, R.D., and Khanll, M.A., 1995, Stratigraphic evidence for an early collision between northwest India and Asia:Nature, 373(6509),55–58. 10.1038/373055a0.
  • Beier, C., Haase, K.M., Brandl, P.A., and Krumm, S.H., 2017, Primitive andesites from the Taupo Volcanic Zone formed by magma mixing:Contributions to Mineralogy and Petrology, 172(5), 33. 10.1007/s00410-017-1354-0.
  • Bian, W.W., Yang, T.S., Peng, W.X., Wang, S., Gao, F., Zhang, S.H., Wu, H.C., Li, H.Y., Cao, L.W., Jiang, T., and Wang, H.P., 2021, Paleomagnetic Constraints on the India–Asia collision and the size of greater India:Journal of Geophysical Research: Solid Earth, 126(6), 10.1029/2021jb021965.
  • Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., and Schmitt, A.K., 2013, Zircon saturation re-revisited:Chemical Geology, 351, 324–334. 10.1016/j.chemgeo.2013.05.028.
  • Bouilhol, P., Jagoutz, O., Hanchar, J.M., and Dudas, F.O., 2013, Dating the India–Eurasia collision through arc magmatic records:Earth and Planetary Science Letters, 366, 163–175. 10.1016/j.epsl.2013.01.023.
  • Cai, F.L., Ding, L., and Yue, Y.H., 2011, Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision:Earth and Planetary Science Letters, 305(1–2), 195–206. 10.1016/j.epsl.2011.02.055.
  • Cao, Y., Kang, Z., Xu, J., Li, Q., Yang, F., Wei, T., Wei, N., and Wang, R., 2020, Geochronology, geochemistry and geological significance of volcanic rocks of the Dianzhong Formation, Shiquanhe Area, Western Lhasa Block:Earth Science, 45(5),1573–1592. 10.3799/dqkx.2019.161. in Chinese and English abstract.
  • Carlson, R.W., and Irving, A.J., 1994, Depletion and enrichment history of subcontinental lithospheric mantle: An Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton:Earth and Planetary Science Letters, 126(4),457–472. 10.1016/0012-821X(94)90124-4.
  • Chauvel, C., Lewin, E., Carpentier, M., Arndt, N.T., and Marini, J.C., 2008, Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array:Nature Geoscience, 1(1), 64–67. 10.1038/ngeo.2007.51.
  • Chu, Z.Y., Chen, F.K., Yang, Y.H., and Guo, J.H., 2009, Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry:Journal of Analytical Atomic Spectrometry, 24(11), 1534–1544. 10.1039/b904047a.
  • Chu, M.F., Chung, S.L., Suzanne, Y., Norman, O.R., J, P., Wu, F.Y., Li, X.H., Liu, D.Y., Ji, J., Chu, C.H., and Lee, H.Y., 2011, India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks:Earth and Planetary Science Letters, 307(3–4),479–486. 10.1016/j.epsl.2011.05.020.
  • Chung, S.-L., Chu, M.-F., Zhang, Y.Q., Xie, Y.W., Lo, C.-H., Lee, T.-Y., Lan, C.-Y., Li, X.H., Zhang, Q., and Wang, Y.Z., 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism:Earth-Science Reviews, 68(3–4), 173–196. 10.1016/j.earscirev.2004.05.001.
  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., 2003, Atlas of Zircon Textures:Reviews in Mineralogy & Geochemistry, 53(1),1529–6466. 10.2113/0530469.
  • Decelles, P.G., Kapp, P., Gehrels, G.E., and Ding, L., 2014, Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision:Tectonics, 33(5), 824–849. 10.1002/2014tc003522.
  • Ding, L., Kapp, P., and Wan, X., 2005, Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet:Tectonics, 24(3), 10.1029/2004TC001729.
  • Ding, L., Maksatbek, S., Cai, F.L., Wang, H.Q., Song, P.P., Ji, W.Q., Xu, Q., Zhang, L.Y., Muhammad, Q., and Upendra, B., 2017, Processes of initial collision and suturing between India and Asia:Science China Earth Sciences, 60(4), 635–651. 10.1007/s11430-016-5244-x.
  • Dong, G.C., 2002. Linzizong Volcanic Rocks and implications for probing India-Eurasia collision process in Linzhou Volcanic Basin, Tibet. China University of Geosciences ( PhD Thesis, in Chinese, 150 pp.)
  • Gao, S., Liu, X.M., Yuan, H., Hattendorf, B., Günther, D., Chen, L., and Hu, S.H., 2002, Determination of forty two major and trace elements in USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry:Geostandards Newsletter, 26(2),181–196. 10.1111/j.1751-908X.2002.tb00886.x.
  • Hanchar, J.M., Watson, E.B., 2003, Zircon Saturation Thermometry:Reviews in Mineralogy & Geochemistry, 53(1),89–112. 10.2113/0530089.
  • Hastie, A.R., Kerr, A.C., Pearce, J.A., and Mitchell, S., 2007, Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th–Co discrimination diagram:Journal of Petrology, 48(12), 2341–2357. 10.1093/petrology/egm062.
  • He, S.D., Kapp, P., Decelles, P.G., Gehrels, G.E., and Heizler, M., 2007, Cretaceous–Tertiary geology of the Gangdese Arc in the Linzhou area, southern Tibet:Tectonophysics, 433(1–4),15–37. 10.1016/j.tecto.2007.01.005.
  • Hu, X.M., Garzanti, E., Wang, J.G., Huang, W.T., An, W., and Webb, A., 2016, The timing of India-Asia collision onset – Facts, theories, controversies:Earth-Science Reviews, 160, 264–299. 10.1016/j.earscirev.2016.07.014.
  • Hu, X.M., Wang, J.G., An, W., Garzanti, E., and Li, J., 2017, Constraining the timing of the India-Asia continental collision by the sedimentary record:Science China Earth Sciences, 60(4), 603–625. 10.1007/s11430-016-9003-6.
  • Hu, P., Wu, Y., Bauer, A.M., Zhang, W., and He, Y., 2021, Zircon U–Pb geochronology and geochemistry of plagiogranites within a Paleozoic oceanic arc, the Erlangping unit of the Qinling accretionary orogenic belt: Petrogenesis and geological implications:Lithos, 394-395, 106196. 10.1016/j.lithos.2021.106196.
  • Huang, F., Rooney, T.O., Xu, J.F., and Zeng, Y.C., 2021a, Magmatic record of continuous Neo-Tethyan subduction after initial India-Asia collision in the central part of southern Tibet:GSA Bulletin, 133(7–8), 1600–1612. 10.1130/B35444.1.
  • Huang, F., Xu, J.F., Chen, J.L., Kang, Z.Q., and Dong, Y.H., 2015, Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: Products of continental marginal arc and intra-oceanic arc during the subduction of Neo-Tethys Ocean:Acta Petrologica Sinica, 31(7),2089–2100. in Chinese and English abstract.
  • Huang, F., Xu, J., Wang, B., Zeng, Y., Liu, X., Liu, H., and Yu, H., 2020, Destiny of Neo-Tethyan Lithosphere during India-Asia Collision:Earth Science, 45(8),2785–2804. 10.3799/dqkx.2020.180. in Chinese and English abstract.
  • Huang, F., Xu, J.F., Zeng, Y.C., Chen, J.L., Wang, B.D., Yu, H.X., Chen, L., Huang, W.L., and Tan, R.Y., 2017, Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from contemporaneous melting of the mantle and crust: Geochemistry:Geophysics, Geosystems, 18(11), 4074–4095. 10.1002/2017GC007039.
  • Huang, Y., Zhao, Z.D., Jiao, J.G., Qiu, B., Ma, Z., and Zhu, D.C., 2021b, Petrogenesis of ca. 113 Ma volcanic rocks in the central Lhasa subterrane, southern Tibet: Implications for the tectonic setting and continental crustal reworking:Geological Journal, 56(4), 1987–2007. 10.1002/gj.4037.
  • Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology:Chemical Geology, 211(1–2), 47–69. 10.1016/j.chemgeo.2004.06.017.
  • Jadoon, U.F., Huang, B.C., Shah, S.A., Rahim, Y., Khan, A.A., and Bibi, A., 2021, Multi-stage India-Asia collision: Paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya:GSA Bulletin, 10.1130/b36116.1.
  • Ji, W.Q., Wu, F.Y., Chung, S.L., Li, J.X., and Liu, C.Z., 2009, Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet:Chemical Geology, 262(3–4),229–245. 10.1016/j.chemgeo.2009.01.020.
  • Ji, W.Q., Wu, F.Y., Chung, S.L., and Liu, C.Z., 2014, The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet:Lithos, 210-211, 168–180. 10.1016/j.lithos.2014.10.001.
  • Jiang, Z.Q., Wang, Q., Wyman, D.A., Li, Z.X., Yang, J.H., Shi, X.B., Ma, L., Tang, G.J., Gou, G.N., Jia, X.H., and Guo, H.F., 2014, Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese:Lithos, 196-197, 213–231. 10.1016/j.lithos.2014.03.001.
  • Kang, Z.Q., Xu, J.F., Wilde, S.A., Feng, Z.H., Chen, J.L., Wang, B.D., Fu, W.C., and Pan, H.B., 2014, Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc:Lithos, 200-201, 157–168. 10.1016/j.lithos.2014.04.019.
  • Kapp, P., and Decelles, P.G., 2019, Mesozoic–Cenozoic geological evolution of the Himalayan-Tibetan orogen and working tectonic hypotheses:American Journal of Science, 319(3), 159–254. 10.2475/03.2019.01.
  • Kapp, P., Yin, A., Harrison, T.M., and Ding, L., 2005, Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet:Geological Society of America Bulletin, 117(7), 865–878. 10.1130/b25595.1.
  • Kelemen, P.B., Hanghøj, K., and Greene, A.R., 2014, One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust:Treatise on Geochemistry (Second Edition), 4, 749–806.
  • Kelemen, P.B., Rilling, J.L., Parmentier, E., Mehl, L., and Hacker, B.R., 2003, Thermal structure due to solid-state flow in the mantle wedge beneath arcs:Geophysical Monograph Series, 138, 293–311. 10.1029/138GM13.
  • Kent, A.J.R., Darr, C., Koleszar, A.M., Salisbury, M.J., and Cooper, K.M., 2010, Preferential eruption of andesitic magmas through recharge filtering:Nature Geoscience, 3(9), 631–636. 10.1038/ngeo924.
  • Lee, H.Y., Chung, S.L., Ji, J.Q., Qian, Q., Gallet, S., Lo, C.H., Lee, T.Y., and Zhang, Q., 2012, Geochemical and Sr–Nd isotopic constraints on the genesis of the Cenozoic Linzizong volcanic successions, southern Tibet:Journal of Asian Earth Sciences, 53, 96–114. 10.1016/j.jseaes.2011.08.019.
  • Lee, H.-Y., Chung, S.-L., Lo, C.-H., Ji, J.Q., Lee, T.-Y., Qian, Q., and Zhang, Q., 2009, Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record:Tectonophysics, 477(1–2), 20–35. 10.1016/j.tecto.2009.02.031.
  • Leech, M., Singh, S., Jain, A., Klemperer, S., and Manickavasagam, R., 2005, The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya:Earth and Planetary Science Letters, 234(1–2), 83–97. 10.1016/j.epsl.2005.02.038.
  • Li, X.Y., Li, S.Z., Suo, Y.H., Dai, L.M., Guo, L.L., Ge, F.J., and Lin, P.J., 2018b, Late Cretaceous basalts and rhyolites from Shimaoshan Group in eastern Fujian Province, SE China: Age, petrogenesis, and tectonic implications:International Geology Review, 60(11–14),1721–1743. 10.1080/00206814.2017.1353447.
  • Li, X.Y., Li, S.Z., Yu, S.Y., Santosh, M., Zhao, S.J., Guo, X.Y., Cao, H.H., Wang, Y.M., and Huang, Z.B., 2018a, Early Paleozoic arc–back-arc system in the southeastern margin of the North Qilian Orogen, China: Constraints from geochronology, and whole-rock elemental and Sr-Nd-Pb-Hf isotopic geochemistry of volcanic suites:Gondwana Research, 59, 9–26. 10.1016/j.gr.2018.03.008.
  • Li, X.H., Liu, Y., Li, Q.L., Guo, C.H., and Chamberlain, K.R., 2009, Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization: Geochemistry:Geophysics, Geosystems, 10(4), 10.1029/2009GC002400.
  • Li, X.H., Long, W.G., Li, Q.L., Liu, Y., Zheng, Y.F., Yang, Y.H., Chamberlain, K.R., Wan, D.F., Guo, C.H., and Wang, X.C., 2010, Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf–O isotopes and U–Pb age:Geostandards and Geoanalytical Research, 34(2), 117–134. 10.1111/j.1751-908X.2010.00036.x.
  • Li, X.H., Tang, G.Q., Gong, B., Yang, Y.H., Hou, K.J., Hu, Z.C., Li, Q.L., Liu, Y., and Li, W.X., 2013, Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes:Chinese Science Bulletin, 58(36), 4647–4654. 10.1007/s11434-013-5932-x.
  • Liu, H.Q., Xu, Y.G., and He, B., 2013, Implications from zircon-saturation temperatures and lithological assemblages for Early Permian thermal anomaly in northwest China:Lithos, 182-183, 125–133. 10.1016/j.lithos.2013.09.015.
  • Ma, X., Xu, Z., Liu, F., Zhao, Z., and Li, H., 2021, Continental arc tempos and crustal thickening: A case study in the Gangdese arc, southern Tibet:Acta Geologica Sinica, 95(1),107–123. in Chinese and English abstract.
  • Meng, Y., Xiong, F., Yang, J., Liu, Z., Iles, K.A., Robinson, P.T., and Xu, X., 2019, Tectonic implications and petrogenesis of the various types of magmatic rocks from the Zedang Area in Southern Tibet:Journal of Earth Science, 30(6), 1125–1143. 10.1007/s12583-019-1248-3.
  • Meng, F.Y., Zhao, Z.D., Zhu, D.C., Mo, X.X., Guan, Q., Huang, Y., Dong, G.C., Zhou, S., Depaolo, D.J., Harrison, T.M., Zhang, Z.C., Liu, J.L., Liu, Y.S., Hu, Z.C., and Yuan, H.L., 2014, Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: Products of back-arc extension of Neo-Tethyan Ocean?:Gondwana Research, 26(2), 505–520. 10.1016/j.gr.2013.07.017.
  • Miller, C.F., McDowell, S., and Mapes, 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance:Geology, 31(6), 529–532. 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2.
  • Mo, X.X., 2020, The growth and evolution of the crust of Tibetan plateau from the perspective of magmatic rocks:Earth Science, 45(7),2245–2257. in Chinese and English abstract.
  • Mo, X.X., Hou, Z.Q., Niu, Y.L., Dong, G.C., Qu, X.M., Zhao, Z.D., and Yang, Z.M., 2007, Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet:Lithos, 96(1–2), 225–242. 10.1016/j.lithos.2006.10.005.
  • Mo, X.X., Niu, Y.L., Dong, G.C., Zhao, Z.D., Hou, Z.Q., Zhou, S., and Ke, S., 2008, Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet:Chemical Geology, 250(1–4),49–67. 10.1016/j.chemgeo.2008.02.003.
  • Niu, Y.L., Zhao, Z.D., Zhu, D.C., and Mo, X.X., 2013, Continental collision zones are primary sites for net continental crust growth — A testable hypothesis:Earth-Science Reviews, 127, 96–110. 10.1016/j.earscirev.2013.09.004.
  • Patriat, P., and Achache, J., 1984, India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates:Nature, 311(5987),615–621. 10.1038/311615a0.
  • Price, R.C., Smith, I.E.M., Stewart, R.B., Gamble, J.A., Gruender, K., and Maas, R., 2016, High-K andesite petrogenesis and crustal evolution: Evidence from mafic and ultramafic xenoliths, Egmont Volcano (Mt. Taranaki) and comparisons with Ruapehu Volcano, North Island, New Zealand:Geochimica Et Cosmochimica Acta, 185, 328–357. 10.1016/j.gca.2015.12.009.
  • Qi, Y., Gou, G.N., Wang, Q., Wyman, D.A., Jiang, Z.Q., Li, Q.L., and Zhang, L., 2018, Cenozoic mantle composition evolution of southern Tibet indicated by Paleocene (~ 64 Ma) pseudoleucite phonolitic rocks in central Lhasa terrane:Lithos, 302–303, p. 178–188. 10.1016/j.lithos.2017.12.021.
  • Rapp, R.P., and Watson, E.B., 1995, Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling:Journal of Petrology, 36(4), 891–931. 10.1093/petrology/36.4.891.
  • Reubi, O., and Blundy, J., 2009, A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites:Nature, 461(7268), 1269–1273. 10.1038/nature08510.
  • Rowley, D.B., 1996, Age of initiation of collision between India and Asia: A review of stratigraphic data:Earth and Planetary Science Letters, 145(1–4),1–13. 10.1016/S0012-821X(96)00201-4.
  • Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008, Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis:Chemical Geology, 249(1–2),1–35. 10.1016/j.chemgeo.2007.11.005.
  • Staudigel, H., Plank, T., White, B., and Schmincke, H.U., 1996, Geochemical fluxes during seafloor alteration of the Basaltic Upper Oceanic Crust: DSDP Sites 417 and 418: Subduction: Top to bottom, edited by Bebout, G.E., Scholl D.W., Kirby, S.H., and Platt, J.P. 96, 19–38. 10.1029/GM096p0019.
  • Straub, S.M., Gomez-Tuena, A., Stuart, F.M., Zellmer, G.F., Espinasa-Perena, R., Cai, Y., and Iizuka, Y., 2011, Formation of hybrid arc andesites beneath thick continental crust:Earth and Planetary Science Letters, 303(3–4), 337–347. 10.1016/j.epsl.2011.01.013.
  • Sun, S.S., and Mcdonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes:Geological Society, London, Special Publications, 42(1), 313–345. 10.1144/gsl.Sp.1989.042.01.19.
  • Tatsumi, Y., 2006, High-Mg andesites in the Setouchi volcanic belt, southwestern Japan: Analogy to Archean magmatism and continental crust formation?:Annual Review of Earth and Planetary Sciences, 34(1),467–499. 10.1146/annurev.earth.34.031405.125014.
  • Van Hinsbergen, D.J.J., Steinberger, B., Doubrovine, P.V., and Gassmöller, R., 2011, Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision:Journal of Geophysical Research, 116(6), 1–20. 10.1029/2010jb008051.
  • Wang, L.Y., Zhen, Y.Y., Gao, S.B., Li, W.L., Mao, R.W., and Anf Huang, L.L., 2016, The discovery of the Early Cretaceous Zenong Group volcanic rocks and geological significance in Jiwa area in south of the central Lhasa subterrane:Acta Petrologica Sinica, 32, 1543–1555. in Chinese and English abstract.
  • Watson, E.B., and Harrison, T.M., 1983, Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types:Earth and Planetary Science Letters, 64(2), 295–304. 10.1016/0012-821X(83)90211-X.
  • Wen, D.R., Chung, S.L., Song, B., Iizuka, Y., Yang, H.J., Ji, J.Q., Liu, D.Y., and Gallet, S., 2008, Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications:Lithos, 105(1–2), 1–11. 10.1016/j.lithos.2008.02.005.
  • Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Quadt, A.V., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses:Geostandards Newsletter, 19(1),1–23. 10.1111/j.1751-908X.1995.tb00147.x.
  • Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements:Chemical Geology, 20, 325–343. 10.1016/0009-2541(77)90057-2.
  • Wu, F.Y., Ji, W.Q., Wang, J.G., Liu, C.Z., Chung, S.L., and Clift, P.D., 2014, Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision:American Journal of Science, 314(2), 548–579. 10.2475/02.2014.04.
  • Xing, L.Y., Zhao, Z.D., Qi, N.Y., Tang, Y., Liu, D., Tong, X., Wang, Q., and Zhu, D.C., 2020, Geochemistry and petrogenesis of sandstones and their basaltic interlayers of Shexing Formation from Linzhou basin, South Tibet:Acta Petrologica Sinica, 36(9), 2729–2750. in Chinese and English abstract. 10.18654/1000-0569/2020.09.08.
  • Xu, J.F., and Castillo, P.R., 2004, Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain:Tectonophysics, 393(1–4), 9–27. 10.1016/j.tecto.2004.07.028.
  • Yan, H.Y., Long, X.P., Li, J., Wang, Q., Zhao, B.S., Shu, C.T., Gou, L.L., and Zuo, R., 2019, Arc Andesitic rocks derived from partial melts of Mélange Diapir in Subduction Zones: Evidence from whole‐rock geochemistry and Sr‐Nd‐Mo Isotopes of the Paleogene Linzizong volcanic succession in southern tibet:Journal of Geophysical Research: Solid Earth, 124(1), 456–475. 10.1029/2018jb016545.
  • Yi, Z.Y., Wang, T.Y., Meert, J.G., Zhao, Q., and Liu, Y.S., 2021, An Initial Collision of India and Asia in the equatorial humid belt:Geophysical Research Letters, 48(9), 1–10. 10.1029/2021gl093408.
  • Yuan, J., Yang, Z.Y., Deng, C.L., Krijgsman, W., Hu, X.M., Li, S.H., Shen, Z.S., Qin, H.F., An, W., He, H.Y., Ding, L., Guo, Z.T., and Zhu, R.X., 2020, Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision:National Science Review, 7(1),1–13. 10.1093/nsr/nwaa173.
  • Zeng, Y.C., Chen, J.L., Xu, J.F., Wang, B.D., and Huang, F., 2016, Sediment melting during subduction initiation: Geochronological and geochemical evidence from the Darutso high-Mg andesites within ophiolite melange, central Tibet: Geochemistry:Geophysics, Geosystems, 17(12), 4859–4877. 10.1002/2016gc006456.
  • Zhang, L.L., 2011, Chronology and geochemistry of magmatic rocks in Xainza at central Lhasa Terrane, Tibet: China University of Geosciences, (Masters Thesis, in Chinese, 107 pp.).
  • Zhang, Y.H., Cao, H.W., Hollis, S.P., Tang, L., Xu, M., Jiang, J.S., Gao, S.B., and Wang, Y.S., 2018, Geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of the Early Paleogene gabbro and granite from Central Lhasa, southern Tibet: Petrogenesis and tectonic implications:International Geology Review, 61(7), 868–894. 10.1080/00206814.2018.1476187.
  • Zhang, L.Y., Huang, F., Xu, J.F., Zeng, Y.C., Gong, X.H., and Zhang, Z., 2019, Petrogenesis and Geochemistry of Meso⁃Cenozoic granitic rocks and implication of crustal structure changes in Shannan Area, Southern Tibet:Earth Science, 44(6),1822–1833. 10.3799/dqkx.2018.385. in Chinese and English abstract.
  • Zhang, Z.M., Zhao, G.C., Santosh, M., Wang, J.L., Dong, X., and Shen, K., 2010, Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?:Gondwana Research, 17(4), 615–631. 10.1016/j.gr.2009.10.007.
  • Zhao, J.X., Qin, K.Z., Li, G.M., Li, J.X., Xiao, B., Chen, L., Yang, Y.H., Li, C., and Liu, Y.S., 2014, Collision-related genesis of the Sharang porphyry molybdenum deposit, Tibet: Evidence from zircon U–Pb ages, Re–Os ages and Lu–Hf isotopes:Ore Geology Reviews, 56, 312–326. 10.1016/j.oregeorev.2013.06.005.
  • Zhao, Z.D., Zhu, D.C., Dong, G.C., Mo, X.X., D, D., Jia, L.L., Hu, Z.C., and Yuan, H.L., 2011, The∼54Ma gabbro-granite intrusive in southern Dangxung area,Tibet: Petrogenesis and implications:Acta Petrologica Sinica, 27, 3513–3524. in Chinese and English abstract.
  • Zhou, S., Mo, X.X., Dong, G.C., Zhao, Z.D., Qiu, R.Z., Guo, T.Y., and Wang, L.L., 2004, 40Ar-39Ar geochronology of Cenozoic Linzizong volcanic rocks from Linzhou Basin, Tibet, China, and their geological implications:Chinese Science Bulletin, 49(18), 1970–1979. in Chinese and English abstract. 10.1007/BF03184291.
  • Zhu, D.C., Wang, Q., Zhao, Z.D., Chung, S.L., Cawood, P.A., Niu, Y.L., Liu, S.A., Wu, F.Y., and Mo, X.X., 2015, Magmatic record of India-Asia collision:Scientific Reports, 5(1),1–8. 10.1038/srep17236.
  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., Dilek, Y., Hou, Z.Q., and Mo, X.X., 2013, The origin and pre-Cenozoic evolution of the Tibetan Plateau:Gondwana Research, 23(4), 1429–1454. 10.1016/j.gr.2012.02.002.
  • Zhu, D.C., Zhao, Z.D., Niu, Y.L., Mo, X.X., Chung, S.L., Hou, Z.Q., Wang, L.Q., and Wu, F.Y., 2011, The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth:Earth and Planetary Science Letters, 301(1–2), 241–255. 10.1016/j.epsl.2010.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.