545
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using groundwater in the hyper-arid Atacama Desert to discover buried hydrothermal mineral deposits

, ORCID Icon &
Pages 133-153 | Received 07 Jun 2021, Accepted 29 Jan 2022, Published online: 18 Feb 2022

References

  • Alpers, C.N., and Whittemore, D.O., 1989, Hydrogeochemistry and stable isotopes of groundwaters and surface waters from two adjacent closed basins, Atacama Desert, northern Chile: Applied Geochemistry, v. 5, p. 719–734. 10.1016/0883-2927(90)90067-F
  • Appelo, C.A.J., and Postma, D., 2005, Geochemistry, groundwater and pollution: A.A. Balkema Publishers, Leiden, Netherlands.
  • Appleyard, S., 1984, Uranium in groundwater near Uaroo, Western Australia: Distribution and relevance to mineralization: Journal of Geochemical Exploration, v. 22, p. 357–358. 10.1016/0375-6742(84)90023-2
  • Aravena, R., Suzuki, O., Pena, H., Pollastri, A., Fuenzalida, H., and Grilli, A., 1999, Isotopic composition and origin of the precipitation in Northern Chile: Applied Geochemistry, v. 14, p. 411–422. 10.1016/S0883-2927(98)00067-5
  • Balistrieri, L.S., Borrok, D.M., Wanty, R.B., and Ridley, W.I., 2008, Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe (III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water: Geochimica et Cosmochimica Acta, v. 72, p. 311–328. 10.1016/j.gca.2007.11.013
  • Ball, J.W., and Nordstrom, D.K., 1991. User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters, Open-File Report 91-183, ( Revised and reprinted August 1992.). U.S. Geological Survey, 189.
  • Bethke, C.M., 2008, Geochemical and biogeochemical reaction modeling, Second Edition: Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo.
  • Brookins, D.G., 1987, Platinoid element Eh-pH diagrams (25°C, 1 bar) in the systems M-O-H-S with geochemical applications: Chemical Geology, v. 64, p. 17–24. 10.1016/0009-2541(87)90148-3
  • Brownlow, A.H., 1979, Geochemistry: Prentice-Hall, Inc., U.S.A.
  • Buskard, J., Reid, N., and Gray, D., 2020, Parts per trillion (ppt) gold in groundwater: Can we believe it, what is anomalous and how do we use it? Geochemistry: Exploration, Environment: Analysis, v. 20, p. 189–198.
  • Cameron, E.M., and Ballantyne, S., 1975, Experimental hydrogeochemical surveys of the High Lake and Hackett river areas: Northwest Territories: Energy, Mines and Resources Canada.
  • Cameron, E.M., Hamilton, S.M., Leybourne, M.I., Hall, G.E.M., and McClenaghan, M.B., 2004, Finding deeply buried deposits using geochemistry: Geochemistry: Exploration, Environment, Analysis, v. 4, p. 7–32.
  • Cameron, E.M., and Leybourne, M.I., 2005, Relationship between groundwater chemistry and soil geochemical anomalies at the Spence copper porphyry deposit, Chile: Geochemistry: Exploration, Environment, Analysis, v. 5, p. 135–145.
  • Cameron, E.M., Leybourne, M.I., and Kelley, D.L., 2002, Exploring for deeply covered mineral deposits: Formation of geochemical anomalies in nothern Chile by earthquake-induced surface flooding of mineralized groundwater: Geological Society of America, v. 30, p. 1007–1010.
  • Cameron, E.M., Leybourne, M.I., and Palacios, C., 2007, Atacamite in the oxide zone of copper deposits in northern Chile: Involvement of deep formation waters?: Mineralium Deposita, v. 42, p. 205–218. 10.1007/s00126-006-0108-0
  • Cameron, E.M., Leybourne, M.I., Reich, M., and Palacios, C., 2009, Surface geochemical anomalies in northern Chile: Product of the extended metallogenesis of buried copper deposits: International Applied Geochemistry Symposium, v. 15, 15–18 .
  • Camus, F., and Skewes, M.A., 1991, The Faride epithermal silver-gold deposit, Antofagasta region, Chile: Economic Geology, v. 86, p. 1222–1237. 10.2113/gsecongeo.86.6.1222
  • Capaccioni, B., Aguilera, F., Tassi, F., Darrah, T., Poreda, R., and Vaselli, O., 2011, Geochemical and isotopic evidences of magmatic inputs in the hydrothermal reservoir feeding the fumarolic discharges of Tacora volcano (northern Chile): Journal of Volcanology and Geothermal Research, v. 208, p. 77–85. 10.1016/j.jvolgeores.2011.09.015
  • Carey, M., McPhail, D., and Taufen, P., 2003, Groundwater flow in playa lake environments: Impact on gold and pathfinder element distributions in groundwaters surrounding mesothermal gold deposits, St. Ives area, Eastern Goldfields, Western Australia: Geochemistry: Exploration, Environment, Analysis, v. 3, p. 57–71.
  • Cass, D., 2007. The vaquillas property, eocene-oligocene porphyry copper belt, Antofagasta Region, Northern Chile: (NI 43-101 Technical Report). Iron Creek Capital Corp.
  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation: Chemical Geology, v. 28, p. 199–260. 10.1016/0009-2541(80)90047-9
  • Corbett, G., 2002, Epithermal gold for explorationists: AIG News, v. 67, p. 1–8.
  • Cornejo, P., and Mpodozis, C., 1996, Geología de la Región de Sierra Exploradora (25°- 26°S): Santiago: Sernageomin-Codelco.
  • Cowart, J.B., and Osmond, J.K., 1977 Uranium isotopes in groundwater: Their use in prospecting for sandstone-type uranium deposits, , Developments in Economic Geology 9 : Elsevier, 365–379 p.
  • de Caritat, P., Kirste, D., Carr, G., and McCulloch, M., 2005, Groundwater in the Broken Hill region, Australia: Recognising interaction with bedrock and mineralisation using S, Sr and Pb isotopes: Applied Geochemistry, v. 20, p. 767–787. 10.1016/j.apgeochem.2004.11.003
  • Deyell, C., Leonardson, R., Rye, R., Thompson, J., Bissig, T., and Cooke, D., 2005, Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry: Economic Geology, v. 100, p. 131–148. 10.2113/100.1.0131
  • Drees, K.P., Neilson, J.W., Betancourt, J.L., Quade, J., Henderson, D.A., Pryor, B.M., and Maier, R.M., 2006, Bacterial community structure in the hyperarid core of the Atacama Desert, Chile: Applied and Environmental Microbiology, v. 72, p. 7902–7908. 10.1128/AEM.01305-06
  • Drever, J., 1997, The Geochemistry of Natural Waters: Surface and Groundwater Environments: Prentice Hall. Eaglewood Cliffs, New Jersy, USA.
  • Dyck, W., and Hood, P., 1979. Application of hydrogeochemistry to the search for uranium. Special volume of papers given at Exploration 77. Exploration 77 Ottawa, Canada 77 (Geological Survey of Canada), 489–510.
  • Eppinger, R.G., Briggs, P.H., Dusel-Bacon, C., Giles, S.A., Gough, L.P., Hammarstrom, J.M., and Hubbard, B.E., 2007, Environmental geochemistry at Red Mountain, an unmined volcanogenic massive sulphide deposit in the Bonnifield district, Alaska Range, east-central Alaska: Geochemistry: Exploration, Environment, Analysis, v. 7, p. 207–223.
  • Fetter, C.W., 2000, Applied hydrogeology: Long Grove, Illinois: Waveland Press, Inc.
  • Fritz, S.J., 1994, A survey of charge‐balance errors on published analyses of potable ground and surface waters: Groundwater, v. 32, p. 539–546. 10.1111/j.1745-6584.1994.tb00888.x
  • Gaillardet, J., Dupre, B., Louvat, P., and Allegre, C.J., 1999, Global silicate weathering and CO₂ consumption rates deduced from the chemistry of large rivers: Chemical Geology, v. 159, p. 1–4. 10.1016/S0009-2541(99)00031-5
  • Gamboa, C., Godfrey, L., Herrera, C., Custodio, E., and Soler, A., 2019, The origin of solutes in groundwater in a hyper-arid environment: A chemical and multi-isotope approach in the Atacama Desert, Chile: Science of the Total Environment, v. 690, p. 329–351. 10.1016/j.scitotenv.2019.06.356
  • Garofalo, P.S., 2009, Physical-chemical properties of the hydrothermal ore fluid in the Faride epithermal deposit (Antofagasta Region, Chile) from a preliminary set of high-resolution fluid inclusion data: GeoActa Special Publication, v. 2, p. 87–95.
  • Gigawiz-Science-Team, 2016. Aabel NG software package, v5.00 ed. Gigawiz Ltd. Co, www.gigawiz.com.
  • Gray, D., Yeats, C., Noble, R., and Reid, N., 2018, Hydrogeochemical exploration for volcanic-hosted massive sulfide deposits in semi-arid Australia: Australian Journal of Earth Sciences 65 2 , 249–274 doi:10.1080/08120099.2018.1423110.
  • Gregor Markl, Y.L., and Schwinn, G., 2006, Copper isotopes as monitors of redox processes in hydrothermal mineralization: Geochimica et Cosmochimica Acta, v. 70, p. 4215–4228. 10.1016/j.gca.2006.06.1369
  • Hall, G.E., Vaive, J.E., and McConnell, J.W., 1995, Development and application of a sensitive and rapid analytical method to determine the rare-earth elements in surface waters: Chemical Geology, v. 120, p. 91–109. 10.1016/0009-2541(94)00110-T
  • Hartley, A.J., and Chong, G., 2002, Late Pliocene age for the Atacama Desert: Implications for the desertification of Western South America: Geology, v. 30, p. 43–46. 10.1130/0091-7613(2002)030<0043:LPAFTA>2.0.CO;2
  • Heinrich, C.A., 2005, The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study: Mineralium Deposita, v. 39, p. 864–889. 10.1007/s00126-004-0461-9
  • Herrera, C., 1995 Geologia e Hidrogeologia del area de Sierra de Varas - Sierra Vaquillas Atlas (24°30’- 25°30’ De Latitud 69°00’- 69°30’ de longitud oeste) , , : Departmento de Cencias Geologicas. Universidad Catolica del Norte, Antofagasta.
  • Hope, M., F, A., Ireland, T., and Jones, S., 2017. Multiscale integrated interpretation leading to exploration success under cover; a case study from Northern Chile, in: Thomas, V.T.A.M.D. (Ed.), Exploration 17: Sixth Decennial International Conference on Mineral Exploration, Toronto, Canada.
  • Jordan, T.E., Herrera, C., Godfrey, L.V., Colucci, S.J., Gamboa, C., Urrutia, J., González, G., and Paul, J.F., 2018, Isotopic characteristics and paleoclimate implications of the extreme precipitation event of March 2015 in northern Chile: Andean Geology, v. 46, p. 1–31. 10.5027/andgeoV46n1-3087
  • Jorquera, C.O., Oates, C.J., Plant, J.A., Kyser, K., Ihlenfeld, C., and Voulvoulis, N., 2014, Regional hydrogeochemical mapping in Central Chile: Natural and anthropogenic sources of elements and compounds: Geochemistry: Exploration, Environment, Analysis, v. 15, p. 72–96.
  • Kehew, A., 2001, Applied chemical hydrogeology: Prentice Hall, New Jersey.
  • Kendall, B., Dahl, T.W., and Anbar, A.D., 2017, The stable isotope geochemistry of molybdenum: Reviews in Mineralogy and Geochemistry, v. 82, p. 683–732. 10.2138/rmg.2017.82.16
  • Kidder, J.A., Voinot, A., Leybourne, M.I., Layton-Matthews, D., and Bowell, R.J., 2021, Using stable isotopes of Cu, Mo, S, and 87Sr/86Sr in hydrogeochemical mineral exploration as tracers of porphyry and exotic copper deposits: Applied Geochemistry, v. 128, p. 104935. 10.1016/j.apgeochem.2021.104935
  • Kosmulski, M., 2011, The pH-dependent surface charging and points of zero charge V. Update: Journal of Colloid and Interface Science, v. 353, p. 1–15. 10.1016/j.jcis.2010.08.023
  • Koyanagi, V.M., and Panteleyev, A., 1993, Natural acid-drainage in the Mount Macintosh/Pemberton Hills area, northern Vancouver Island (92L/12), in Grant, B., ed., Geological fieldwork 1992—a summary of field activities and current research: British Columbia: Ministry of Energy, Mines, and Petroleum Resources, p. 445–450.
  • Lasaga, A.C., 1984, Chemical kinetics of water-rock interactions: Journal of Geophysical Research, v. 89, p. 4009–4025. 10.1029/JB089iB06p04009
  • Leybourne, M.I., 1998, Hydrogeochemistry of ground and surface waters associated with massive sulphide deposits, Bathurst Mining Camp: Halfmile Lake and Restigouche deposits. University of Ottawa (Canada), New Brunswick.
  • Leybourne, M.I., 2007, Aqueous geochemistry in mineral exploration. Mineral deposits of Canada: A synthesis of major deposit- types, District Metallogeny, the evolution of geological provinces, and exploration methods: Geological association of Canada: Mineral Deposits Division, v. 5, p. 1007–1033.
  • Leybourne, M.I., Boyle, D.R., Goodfellow, W.D., and Dunn, C.E., 1999 Stream watre, stream sediment and vegitation geochemistry of the Restigouche-Murray Brook area, Bathurst Mining Camp, New Brunswick (parts of NTS 2107, 2108, 2109 and 2110 , : Ottawa: Geological Survey of Canada, p. Open File 3763
  • Leybourne, M.I., and Cameron, E.M., 2006a, Composition of groundwaters associated with porphyry-Cu deposits, Atacama Desert, Chile: Elemental and isotopic constraints on water sources and water–rock reactions: Geochimica et Cosmochimica Acta, v. 70, p. 1616–1635. 10.1016/j.gca.2005.12.003
  • Leybourne, M.I., and Cameron, E.M., 2006b, Composition of soils and ground waters at the Pampa del Tamarugal, Chile: Anatomy of a fossil geochemical anomaly derived from a distant porphyry copper deposit: Economic Geology, v. 101, p. 1569–1581. 10.2113/gsecongeo.101.8.1569
  • Leybourne, M.I., and Cameron, E.M., 2008, Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry–Cu deposits, Atacama Desert, Chile: Chemical Geology, v. 247, p. 208–228. 10.1016/j.chemgeo.2007.10.017
  • Leybourne, M.I., and Cameron, E.M., 2009, Groundwaters in mineral exploration: International Applied Geochemistry Symposium, 63.
  • Leybourne, M.I., Cameron, E.M., Rissmann, C.F.W., and Miller, N.R., 2008, Understanding water sources, age and flow paths in hydrochemical exploration: Constraints from stable and radiogenic isotopes in the hyper-arid Atacama Desert, Chile: Geochimica Et Cosmochimica Acta Supplement, v. 72, p. A539.
  • Leybourne, M.I., Clark, I.D., and Goodfellow, W.D., 2006, Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water–rock reactions: Chemical Geology, v. 231, p. 300–325. 10.1016/j.chemgeo.2006.02.004
  • Li, S.N., Ni, P., Bao, T., Xiang, H.L., Chi, Z., Wang, G.G., Huang, B., Ding, J.Y., and Dai, B.Z., 2018, Genesis of the Ancun epithermal gold deposit, southeast China: Evidence from fluid inclusion and stable isotope data: Journal of Geochemical Exploration, v. 195, p. 157–177. 10.1016/j.gexplo.2018.01.016
  • Lopez-Valdivieso, A., Robledo-Cabrera, A., and Uribe-Salas, A., 2000, Flotation of celestite with the anionic collector sodium dodecyl sulfate: Effect of carbonate ions. International Journal of Mineral Processing, v. 60, p. 79–90. 10.1016/S0301-7516(00)00004-1
  • Magaritz, M., Aravena, R., Peña, H., Suzuki, O., and Grilli, A., 1989, Water chemistry and isotope study of streams and springs in northern Chile: Journal of Hydrology, v. 108, p. 323–341. 10.1016/0022-1694(89)90292-8
  • Magaritz, M., Aravena, R., Peña, H., Suzuki, O., and Grilli, A., 1990, Source of ground water in the deserts of northern Chile: Evidence of deep circulation of ground water from the Andes: Groundwater, v. 28, p. 513–517. 10.1111/j.1745-6584.1990.tb01706.x
  • Mapinfo, 2016, MapInfo Pro™-Desktop GIS: One Global View, Troy, New York 12180-8399: Bowes, Pitney.
  • Mathur, R., Munk, L., Nguyen, M., Gregory, M., Annell, H., and Lang, J., 2013, Modern and paleofluid pathways revealed by Cu Isotope compositions in surface waters and ores of the pebble porphyry Cu-Au-Mo deposit, Alaska: Economic Geology, v. 108, p. 529–541. 10.2113/econgeo.108.3.529
  • Miller, A., 1976, The climate of Chile: World Survey of Climatology, v. 12, p. 113–145.
  • Miller, W.R., Ficklin, W.H., and Learned, R.E., 1982, Hydrogeochemical prospecting for porphyry copper deposits in the tropical-marine climate of Puerto Rico: Journal of Geochemical Exploration, v. 16, p. 217–233. 10.1016/0375-6742(82)90011-5
  • Moynier, F., Vance, D., Fujii, T., and Savage, P., 2017, The isotope geochemistry of zinc and copper: Reviews in Mineralogy and Geochemistry, v. 82, p. 543–600. 10.2138/rmg.2017.82.13
  • Mulja, T., 1986, Hydrothermal Alteration, gold distribution and geochronology of epithermal gold mineralization in the Copiapo volcanic complex, Chile: Dalhousie University, Halifax, Nova Scotia, Canada.
  • Nelson Eby, G., 2004, Principles of Environmental Geochemistry: Long Grove, Illinois: Waveland Press, Inc.
  • Noble, R., Anand, R., Gray, D., and Cleverley, J., 2017, Metal migration at the DeGrussa Cu-Au sulphide deposit, Western Australia: Soil, vegetation and groundwater studies: Geochemistry: Exploration, Environment, Analysis, v. 17, p. 124–142.
  • Nordstrom, D.K., Majzlan, J., and Königsberger, E., 2014, Thermodynamic properties for arsenic minerals and aqueous species: Reviews in Mineralogy & Geochemistry, v. 79, p. 217–255. 10.2138/rmg.2014.79.4
  • Nordstrom, D.K., and Wilde, F.D., 2005 Reduction-oxidation potential (electrode method) TWRI Book 9 (US Geological Survey) , , p. .
  • Ohmoto, H., Rye, R., and , 1979 Isotopes of sulfur and carbon Geochemistry of hydrothermal ore deposits Second edition Barnes, H. (New York: John Wiley and Sons, Inc), 509–567 .
  • Panteleyev, A., 1996, Epithermal Au-Ag: Low sulphidation, in selected British Columbia mineral deposit profiles, in Lefebure, D.V.A.H.T. (British Columbia), ed., Mineral deposits. British Columbia Ministry of employment and investment: 41–44.
  • Parker, V.B., and Khodakovskii, I.L., 2009, Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron: Journal of Physical and Chemical Reference Data, v. 24, p. 1699. 10.1063/1.555964
  • Parkhurst, D.L., and Appelo, C.A., 1999. User’s guide to PHREEQC (version 2) -A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report 99-4259. U.S. Geological Survey 312.
  • Phipps, G.C., Boyle, D., and Clark, I., 2004, , Geochemistry: Exploration, Environment, Analysis 4, 329–340 p.
  • Plumlee, G.S., Smith, K.S., Montour, M.R., Ficklin, W.H., and Mosier, E.L., 1999, Geological controls on the composition of natural waters and mine waters draining diverse mineral-deposit types: Reviews in Economic 6 373–432 . Geology 6A and 6B.
  • Plumlee, G.S., Smith, K.S., Mosier, E.L., Ficklin, W.H., Montour, M., Briggs, P.H., and Meier, A.L., 1995. Geochemical processes controlling acid-drainage generation and cyanide degradation at Summitville, in: Posey, H.H., Pendleton, J.A., and Van Zyl, D. (Eds.), Summitville Forum Proceedings. Colorado Geological Survey Fort Collins, CO, 23–34.
  • Rice, C.M., McCoyd, R.J., Boyce, A.J., and Marchev, P., 2007, Stable isotope study of the mineralization and alteration in the Madjarovo Pb–Zn district, south-east Bulgaria: Mineralium Deposita, v. 42, p. 691–713. 10.1007/s00126-007-0130-x
  • Risacher, F., Alonso, H., and Salazar, C., 2003, The origin of brines and salts in Chilean salars: A hydrochemical review: Earth-Science Reviews, v. 63, p. 249–293. 10.1016/S0012-8252(03)00037-0
  • Risacher, F., and Fritz, B., 2009, Origin of salts and brine evolution of Bolivian and Chilean salars: Aquatic Geochemistry, v. 15, p. 123–157. 10.1007/s10498-008-9056-x
  • Risacher, F., Fritz, B., and Hauser, A., 2011, Origin of components in Chilean thermal waters: Journal of South American Earth Sciences, v. 31, p. 153–170. 10.1016/j.jsames.2010.07.002
  • Rissmann, C.F.W., Leybourne, M.I., Benn, C., and Christenson, B., 2015, The origin of solutes within the groundwaters of a high Andean aquifer: Chemical Geology, v. 396, p. 164–181. 10.1016/j.chemgeo.2014.11.029
  • Runnells, D., 1984, Workshop 3: Hydrochemistry in mineral exploration: Journal of Geochemical Exploration, v. 21, p. 129–131. 10.1016/0375-6742(84)90040-2
  • Seal, R.R., 2006, Sulfur isotope geochemistry of sulfide minerals: Reviews in Mineralogy and Geochemistry, v. 61, p. 633–677. 10.2138/rmg.2006.61.12
  • Siddeley, G., 2013, The Victoria property (vaquillas) minera Hochschild Chile SCM. A summary of mineral exploration 2008 – 2013.
  • Sillitoe, R.H., 2010, Porphyry copper systems: Economic Geology, v. 105, p. 3–41. 10.2113/gsecongeo.105.1.3
  • Sillitoe, R.H., 2011, Comments on geology and potential of the Victoria project, Northern Chile: Hochschild Mining plc, Unpublished.
  • Sillitoe, R.H., 2015, Epithermal paleosurfaces: Mineralium Deposita, v. 50, p. 767–793. 10.1007/s00126-015-0614-z
  • Sillitoe, R.H., and Hedenquist, J.W., 2003, Linkages between volcanotectonic settings, ore-fluid compositions, and epithermal precious metal deposits: Society of Economic Geologists Special Publication, v. 10.
  • Skierszkan, E.K., Mayer, K., Weis, D., Roberston, J., and Beckie, R., 2019a, Molybdenum stable isotope fractionation during the precipitation of powellite (CaMoO4) and wulfenite (PbMoO4): Geochimica et Cosmochimica Acta, v. 244, p. 383–402. 10.1016/j.gca.2018.09.030
  • Skierszkan, E.K., Robertson, J.M., Lindsay, M.B., Stockwell, J.S., Dockrey, J.W., and Das, S., 2019b, Tracing molybdenum attenuation in mining environments using molybdenum stable isotopes: Environmental Science & Technology, v. 53, p. 5678–5686. 10.1021/acs.est.9b00766
  • Smedley, P.L., and Kinniburgh, D.G., 2017, Molybdenum in natural waters: A review of occurrence, distributions and controls: Applied Geochemistry, v. 84, p. 387–432.
  • Soto Cabrera, M.C., 2010, Hidrogeología e hidrogeoquímica de aguas subterráneas en el Distrito Inca de Oro, Región de Atacama: Procesos de interacción agua-roca y dispersión geoquímica.
  • Stetzenbach, K.J., Amano, M., Kreamer, D.K., and Hodge, V.F., 1994, Testing the limits of ICP‐MS: Determination of trace elements in ground water at the part‐per‐trillion level: Groundwater, v. 32, p. 976–985. 10.1111/j.1745-6584.1994.tb00937.x
  • Venegas, C., Cervetto, M., Astudillo, N., Espinoza, F., Cornejo, P., Mpodozis, C., and Rivera, O., 2013, Carta Sierra Vaquillas Atlas, Regiones de Antofagasta y Atacama. Servicio Nacional de Geologia y Mineria, Carta Geologica de Chile, Seires Geologia Basica 159, in Z, R.W., ed., Seires Geologia Basica 159. Servicio Nacional de Geologia y Mineria: Santiago, Chile: Sernageomin.
  • Vinograda, V.L., Kulikb, D.A., Brandta, F., Klinkenberga, M., Weberc, J., Winklerd, B., and Bosbacha, D., 2018, Thermodynamics of the solid solution - Aqueous solution system (Ba,Sr,Ra)SO4 + H2O: I. The effect of strontium content on radium uptake by barite: Applied Geochemistry, v. 89, p. 59–74. 10.1016/j.apgeochem.2017.11.009
  • Wassermann, M.D., Rye, R.O., Bethke, P.M., and Arribas, A., Jr, 1992, Methods for separation and total stable isotope analysis of alunite: U.S. department of the interior geological survey.
  • Wilcox, A.C., Escauriaza, C., Agredano, R., Mignot, E., Zuazo, V., Otárola, S., Castro, L., Gironás, J., Cienfuegos, R., and Mao, L., 2016, An integrated analysis of the March 2015 Atacama floods: Geophysical Research Letters, v. 43, p. 8035–8043. 10.1002/2016GL069751
  • Wood, B., 2014, Adobe Illustrator CC, 2014 Release: San Jose, California: Pearson Education.
  • Yao, W., Paytan, A., Griffith, E.M., Martínez-Ruiz, F., Markovic, S., and Wortmann, U.G., 2020, A revised seawater sulfate S-isotope curve for the Eocene: Chemical Geology, v. 532, p. 119382. 10.1016/j.chemgeo.2019.119382

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.