357
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Geochronology and Sr-Nd-Pb-Hf isotopic geochemistry of middle-late Permian granitic and volcanic rocks within the eastern margin of the Khanka Massif: petrogenesis and implications for the tectonic nature

, , , , , ORCID Icon & show all
Pages 200-218 | Received 09 Sep 2021, Accepted 12 Feb 2022, Published online: 26 Feb 2022

References

  • Baker, J., Peate, D., Waight, T., and Meyzen, C., 2004, Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS: Chemical Geology, v. 211, p. 275–303. doi: 10.1016/j.chemgeo.2004.06.030.
  • Ballouard, C., Poujol, M., Boulvais, P., Branquet, Y., Tartèse, R., and Vigneresse, J.L., 2016, Nb-ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition: Geology, v. 44, p. 231–234. doi: 10.1130/G37475.1.
  • Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect: Contributions to Mineralogy and Petrology. Beitrage Zur Mineralogie Und Petrologie, v. 123, p. 323–333. doi: 10.1007/s004100050159.
  • Boynton, W.V., 1984, Geochemistry of the rare earth elements: Meteorite studies, Henderson, P., ed.,Rare earth element geochemistry, Elsevier, Amsterdamp. 63–114.
  • Breiter, K., Lamarão, C.N., Borges, R.M.K., and Dall’Agnol, R., 2014, Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites: Lithos, v. 192-195, p. 208–225. doi: 10.1016/j.lithos.2014.02.004.
  • Brown, M., 2013, Granite: From genesis to emplacement: GSA Bulletin, v. 125, p. 1079–1113. doi: 10.1130/b30877.1.
  • Cao, H.H., Xu, W.L., Pei, F.P., and Zhang, X.Z., 2011, Permian tectonic evolution in Southwestern Khanka Massif: Evidence from zircon U-Pb Chronology, Hf isotope and geochemistry of gabbro and diorite: Acta Geologica Sinica-English Edition, v. 85, p. 1390–1402. doi: 10.1111/j.1755-6724.2011.00594.x.
  • Chen, C., Ren, Y.S., Zhao, H.L., Yang, Q., and Shang, Q.Q., 2017, Age, tectonic setting, and metallogenic implication of phanerozoic granitic magmatism at the eastern margin of the Xing’an-Mongolian orogenic belt: NE China: Journal of Asian Earth Sciences, v. 144, p. 368–383. doi: 10.1016/j.jseaes.2017.02.012.
  • Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K., and Bea, F., 2006, Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada: Mineral Mag, Vol. 70, p. 517–543. doi: 10.1180/0026461067050348.
  • Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., 2003, Atlas of zircon textures: Reviews in Mineralogy and Geochemistry, Vol. 53, p. 468–500. doi:10.2113/0530469.
  • Doe, B.R., and Zartman, R.E., 1979, Plumbotectonics I, the phanerozoic:Geochemistry of hydrothermal ore deposites, p. 22–70.
  • Dong, Y., Ge, W.C., Yang, H., Bi, J.H., Wang, Z.H., and Xu, W.L., 2017a, Permian tectonic evolution of the mudanjiang ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a N-S trending granitoid belt in the Jiamusi Massif: NE China: Gondwana Res, v. 49, p. 147–163. doi: 10.1016/j.gr.2017.05.017.
  • Dong, Y., Ge, W.C., Yang, H., Xu, W.L., Bi, J.H., and Wang, Z.H., 2017b, Geochemistry and geochronology of the late Permian mafic intrusions along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions: Northeastern China: Petrogenesis and Implications for the Tectonic Evolution of the Mudanjiang Ocean: Tectonophysics, v. 694, p. 356–367. doi: 10.1016/j.tecto.2016.11.017.
  • Dostal, J., Kontak, D.J., Gerel, O., Gregory Shellnutt, J., and Fayek, M., 2015, Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction: Lithos, v. 236-237, p. 173–189. doi: 10.1016/j.lithos.2015.08.003.
  • Gelman, S.E., Deering, C.D., Bachmann, O., Huber, C., and Gutiérrez, F.J., 2014, Identifying the crystal graveyards remaining after large silicic eruptions: Earth Planetary Science Letters, v. 403, p. 299–306. doi: 10.1016/j.epsl.2014.07.005.
  • Halliday, A.N., Davidson, J.P., Hildreth, W., and Holden, P., 1991, Modelling the petrogenesis of high Rb/Sr silicic magmas: Chemical Geology, v. 92, p. 107–114. no. 1–3, doi:10.1016/0009-2541(91)90051-R.
  • Hofmann, A.W., 1997, Mantle geochemistry: The message from oceanic volcanism: Nature, v. 385, p. 219–229. no. 6613, doi:10.1038/385219a0.
  • Hu, Z.C., Liu, Y.S., Gao, S., Liu, W., Zhang, W., Tong, X., Lin, L., Zong, K., Li, M., Chen, H., Zhou, L., and Yang, L., 2012, Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS: Journal of Analytical Atomic Spectrometry, v. 27, p. 1391–1399. no. 9, doi:10.1039/c2ja30078h.
  • Hu, Z.C., Zhang, W., Liu, Y.S., Gao, S., Li, M., Zong, K.Q., Chen, H.H., and Hu, S.H., 2015, Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: Application to lead isotope analysis: Analytical Chemistry, v. 87, p. 1152–1157. doi: 10.1021/ac503749k.
  • Huangfu, P.P., Wang, Y.J., Cawood, P.A., Li, Z.H., Fan, W.M., and Gerya, T.V., 2016, Thermo-mechanical controls of flat subduction: Insights from numerical modelling: Gondwana Research, v. 40, p. 170–183. doi: 10.1016/j.gr.2016.08.012.
  • Irvine, T.H., and Baragar, W.R.A., 1971, A guide to the chemical classification of the common volcanic rocks: Canadian Journal of Earth Sciences, v. 8, p. 523–548. doi: 10.1139/e71-055.
  • Jahn, B.M., Valui, G., Kruk, N., Gonevchuk, V., Usuki, M., and Wu, J.T.J., 2015, Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution: Journal of Asian Earth Sciences, v. 111, p. 872–918. doi: 10.1016/j.jseaes.2015.08.012.
  • Jia, D.C., Hu, R.Z., Yan, L., and Qiu, X.L., 2004, Collision belt between the Khanka block and the North China block in the Yanbian region: Northeast China: Journal of Asian Earth Sciences, v. 23, p. 211–219. doi: 10.1016/S1367-9120(03)00123-8.
  • Khanchuk, A.I., 2006, Geodynamics, Magmatism and Metallogeny of the Eastern Russia. Dal’nauka, Vladivostok, p. 1–572.
  • Khanchuk, A.I., Sakhno, V.G., and Alenicheva, A.A., 2010, First SHRIMP U-Pb zircon dating of magmatic complexes in the southwestern primor’e region: Doklady Earth Sciences, v. 431, p. 424–428. no. 2, doi:10.1134/S1028334X10040033.
  • Kong, X.Y., Zhang, C., Liu, D.D., Jiang, S., Luo, Q., Zeng, J.H., Liu, L.F., Luo, L., Shao, H.B., Liu, D., Liu, X.Y., and Wang, X.P., 2018, Disequilibrium partial melting of metasediments in subduction zones: Evidence from O-Nd-Hf isotopes and trace elements in S-type granites of the Chinese Altai: Lithosphere, v. 11, p. 149–168. doi: 10.1130/L1039.1.
  • Kovalenko, S.V., 2006, State geological map of Russian federation, scale 1:1 000000 (3rd Generation): Far East Ser. Sheet L-52 (Boundary), L-53 (Khanka), K-53 (Nakhodka) (in Russian).
  • Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., and Rytsk, E., 2014, Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt: Gondwana Research, v. 25, p. 103–125. doi: 10.1016/j.gr.2012.12.023.
  • Kruk, N.N., Golozubov, V.V., Kasatkin, S.A., Rudnev, S.N., Vrzhosek, A.A., Kuibida, M.L., and Vovna, G.M., 2015, Granitoids of the Gamov intrusion (southern Primorye), its peculiarities and indicative and geodynamic role: Russian Geology and Geophysics, v. 56, p. 1685–1700. no. 12, doi:10.1016/j.rgg.2015.11.003.
  • Li, J.Y., 2006, Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate: Journal of Asian Earth Sciences, v. 26, p. 207–224. doi: 10.1016/j.jseaes.2005.09.001.
  • Li, X.H., Liu, Y., Li, Q.L., and Guo, C.H., 2009, Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization: Geochemistry, Geophysics, Geosystems, v. 10, p. 1–21. doi:10.1029/2009GC002400.
  • Lin, J., Liu, Y.S., Yang, Y.H., and Hu, Z.C., 2016, Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios: Solid Earth Sciences, v. 1, p. 5–27. doi: 10.1016/j.sesci.2016.04.002.
  • Liu, Y., Gao, S., Hu, Z., Gao, C., Zong, K., and Wang, D., 2010, Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb Dating, Hf isotopes and trace elements in zircons from mantle xenoliths: Journal of Petrology, v. 51, p. 537–571. doi: 10.1093/petrology/egp082.
  • Liu, Y., Hu, Z., Gao, S., Günther, D., Xu, J., Gao, C., and Chen, H., 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard: Chemical Geology, v. 257, p. 34–43. no. 1–2, doi:10.1016/j.chemgeo.2008.08.004.
  • Liu, J., Liu, Z.H., Zhao, C., Wang, C.J., Guan, Q.B., Dou, S.Y., and Song, S., 2017, Geochemistry and U-Pb detrital zircon ages of late Permian to early Triassic metamorphic rocks from northern Liaoning, North China: Evidence for the timing of final closure of the Paleo-Asian Ocean: Journal of Asian Earth Sciences, v. 145, p. 460–474. doi: 10.1016/j.jseaes.2017.06.026.
  • Ludwig, K.R., 2003, ISOPLOT 3.00: A geochronological toolkit for Microsoft excel, Berkeley Geochronology Center, California, Berkeley 39 p.
  • Ma, X.H., Chen, C.J., Zhao, J.X., Qiao, S.L., and Zhou, Z.H., 2019, Late Permian intermediate and felsic intrusions in the eastern Central Asian Orogenic Belt: Final-stage magmatic record of Paleo-Asian Oceanic subduction: Lithos, v. 326-327, p. 265–278. doi: 10.1016/j.lithos.2018.12.022.
  • Maniar, P.D., and Piccoli, P.M., 1989, Tectonic discrimination of granitoids: Geological Society of America Bulletin, v. 101, p. 635–643. no. 5, doi:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2.
  • Meng, E., Xu, W.L., Yang, D.B., Pei, F.P., Yu, Y., and Zhang, X.Z., 2008, Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China: Zircon U-Pb chronology, geochemistry and its tectonic implications: Chinese Science Bulletin, v. 53, p. 1231–1245. doi: 10.1007/s11434-008-0164-1.
  • Miller, C.F., McDowell, S.M., and Mapes, R.W., 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance: Geology, v. 31, p. 529–532. no. 6, doi:10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2.
  • Natal’in, B.A., 1993, History and modes of Mesozoic accretion in Southeastern Russia: The Island Arc, v. 2, p. 15–34. no. 1, doi:10.1111/j.1440-1738.1993.tb00072.x.
  • Pearce, J.A., 1996, Source and settings of granitic rocks: Episodes, v. 19, p. 120–125. doi: 10.18814/epiiugs/1996/v19i4/005.
  • Pearce, J.A., Harris, N.B.W., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983. no. 4, doi:10.1093/petrology/25.4.956.
  • Peccerillo, A., and Taylor, A.R., 1976, Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey: Contrib: Mineral. Petrol, v. 58, p. 63–81. doi: 10.1007/BF00384745.
  • Rudnick, R.L., and Gao, S., 2003, The Crust, 3.01—the composition of the Continental Crust, Holland, H.D., and Turekian, K.K., eds.,Treatise on Geochemistry, Elsevier-Pergamon, Oxfordp. 1–64.
  • Russell, W.A., Papanastassiou, D.A., and Tombrello, T.A., 1978, Ca isotope fractionation on the earth and other Solar System materials: Geochim: Cosmochim. Acta, v. 42, p. 1075–1090. doi: 10.1016/0016-7037(78)90105-9.
  • Şengör, A.M.C., Natal’in, B.A., and Burtman, V.S., 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eerasia: Nature, v. 364, p. 299–307. doi: 10.1038/364299a0.
  • Sorokin, A.A., Kotov, A.B., Sal’nikova, E.B., Kudryashov, N.M., Anisimova, I.V., Yakovleva, S.Z., and Fedoseenko, A.M., 2010, Granitoids of the Tyrma-Bureya complex in the northern Bureya-Jiamusi superterrane of the Central Asian fold belt: Age and geodynamic setting: Russian Geology and Geophysics, v. 51, p. 563–571. doi: 10.1016/j.rgg.2010.04.011.
  • Sparks, R.S.J., and Matshall, L.A., 1986, Thermal and mechanical constraints on mixing between mafic and silicic magmas: Journal of Volcanology and Geothermal Research, v. 29, p. 99–124. doi: 10.1016/0377-0273(86)90041-7.
  • Streckeisen, A., 1976, To each plutonic rock its proper name: Earth-Science Reviews, v. 12, p. 1–33. no. 1, doi:10.1016/0012-8252(76)90052-0.
  • Sun, S.S., and McDonough, W.F., 1989 Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345. doi: 10.1144/gsl.Sp.1989.042.01.19.
  • Sun, M.D., Xu, Y.G., Wilde, S.A., Chen, H.L., and Yang, S.F., 2015, The Permian Dongfanghong Island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction: Tectonophysics, v. 659, p. 122–136. doi: 10.1016/j.tecto.2015.07.034.
  • Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T. et al., 2000, Jndi-1: A neodymium isotopic reference in consistency with lajolla neodymium: Chemical Geology, v. 168, no. 3–4, p. 279–281. doi:10.1016/S0009-2541(00)00198-4.
  • Tang, M., Wang, X.L., Shu, X.J., Wang, D., Yang, T., and Gopon, P., 2014, Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anataxis: Earth and Planetary Science Letters, v. 389, p. 188–199. doi: 10.1016/j.epsl.2013.12.036.
  • Tang, G.J., Wyman, D.A., Wang, Q., Li, J., Li, Z.X., Zhao, Z.H., and Sun, W.D., 2012, Asthenosphere-lithosphere interaction triggered by a slab window during ridge subduction: Trace element and Sr-Nd-Hf-Os isotopic evidence from late carboniferous tholeiites in the western Junggar area (NW China): Earth and Planetary Science Letters, v. 329-330, p. 84–96. doi: 10.1016/j.epsl.2012.02.009.
  • Tang, J., Xu, W.L., Niu, Y.L., Wang, F., Ge, W.C., Sorokin, A.A., and Chekryzhov, I.Y., 2016, Geochronology and geochemistry of late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate: Lithos, v. 266-267, p. 202–212. doi: 10.1016/j.lithos.2016.09.034.
  • Tang, J., Xu, W.L., Wang, F., and Ge, W.C., 2018, Subduction history of the Paleo-Pacific slab beneath Eurasian continent: Mesozoic-Paleogene magmatic records in Northeast Asia: Science China Earth Sciences, v. 61, p. 527–559. no. 5, doi:10.1007/s11430-017-9174-1.
  • Thirlwall, M.F., 1991, Long-term reproducibility of multicollector sr and nd isotope ratio analysis: Chemical Geology, v. 94, p. 85–104. no. 2, doi:10.1016/S0009-2541(10)80021-X.
  • Thorkelson, D.J., and Breitsprecher, K., 2005, Partial melting of slab window margins: Genesis of adakitic and non-adakitic magmas: Lithos, v. 79, p. 25–41. no. 1–2, doi:10.1016/j.lithos.2004.04.049.
  • Thornton, C.P., and Tuttle, O.F., 1960, Chemistry of igneous rocks--[Part] 1, Differentiation index: American Journal of Sciences, v. 258 , p. 664–684. doi:10.2475/ajs.258.9.664.
  • Tong, Y., Wang, T., Hong, D.W., and Han, B.F., 2006, Pb isotopic composition of granitoids from the altay orogen (China): Evidence for mantle-derived origin -and continental growth: Acta Geologica Sinica, v.80, p. 517–528. in Chinese with English abstract.
  • Tsutsumi, Y., Yokoyama, K., Kasatkin, S.A., and Golozubov, V.V., 2014, Zircon U-Pb age of granitoids in the Maizuru Belt, southwest Japan and the southernmost Khanka Massif, Far East Russia: Journal of Mineralogical and Petrological Sciences, v. 109, p. 97–102. doi: 10.2465/jmps.131017.
  • Vervoort, J.D., Plank, T., and Prytulak, J., 2011, The Hf-Nd isotopic composition of marine sediments: Geochimica Et Cosmochimica Acta, v. 75, p. 5903–5926. doi: 10.1016/j.gca.2011.07.046.
  • Wang, X.L., 2017, Some new research progresses and main scientific problems of granitic rocks: Acta Petrologica Sinica, v.33, p. 1445–1458. in Chinese with English abstract.
  • Wang, F., Xing, K.C., Xu, W.L., Teng, F.Z., Xu, Y.G., and Yang, D.B., 2021, Permian ridge subduction in the easternmost Central Asian Orogenic Belt: Magmatic record using Sr-Nd-Pb-Hf-Mg isotopes: Lithos, v. 384-385, p. 265–278. doi: 10.1016/j.lithos.2021.105966.
  • Wang, F., Xu, W.L., Ge, W.C., Yang, H., Pei, F.P., and Wu, W., 2016, The offset distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic magmatism within the Songnen-Zhangguangcai Range, Jiamusi, and Khanka massifs: Acta Petrologica Sinica, v.32, p. 1129–1140. in Chinese with English abstract.
  • Wang, F., Xu, W.L., Meng, E., Cao, H.H., and Gao, F.H., 2012, Early Paleozoic amalgamation of the Songnen-Zhangguangcai range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: Geochronological and geochemical evidence from granitoids and rhyolites: Journal of Asian Earth Sciences, v. 49, p. 234–248. doi: 10.1016/j.jseaes.2011.09.022.
  • Wang, F., Xu, W.L., Xing, K.C., Wang, Y.N., Zhang, H.H., Wu, W., Sun, C.Y., and Ge, W.C., 2019, Final closure of the Paleo-Asian ocean and onset of subduction of Paleo-Pacific Ocean: Constraints from early Mesozoic Magmatism in Central Southern Jilin Province: NE China: Journal of Geophysical Research: Solid Earth, v. 124, p. 2601–2622. doi: 10.1029/2018JB016709.
  • Weis, D., Kieffer, B., Hanano, D., Nobre Silva, I., Barling, J., Pretorius, W., Maerschalk, C., and Mattielli, N., 2007, Hf isotope compositions of U.S. Geological survey reference materials: Geochemistry Geophysics Geosystems, v. 8, doi: 10.1029/2006GC001473.
  • Whalen, J.B., Currie, K.L., and Chappell, B.W., 1987, A-type granites: Geochemical characteristics, discrimination and petrogenesis: Contributions to Mineralogy and Petrology, v. 95, p. 407–419. no. 4, doi:10.1007/BF00402202.
  • Wilde, S.A., 2015, Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence: Tectonophysics, v. 662, p. 345–362. doi: 10.1016/j.tecto.2015.05.006.
  • Wilde, S.A., and Zhou, J.B., 2015, The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China: Journal of Asian Earth Sciences, v. 113, p. 909–921. doi: 10.1016/j.jseaes.2015.05.005.
  • Winchester, J.A., and Floyd, P.A., 1977, Geochemical discrimination of different magma series and their differentiation products using immobile elements: Chemical Geology, v. 20, p. 325–343. doi: 10.1016/0009-2541(77)90057-2.
  • Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., and Badarch, G., 2007, Tectonic models for accretion of the Central Asian Orogenic Belt: Journal of the Geological Society, v. 164, p. 31–47. no. 1, doi:10.1144/0016-76492006-022.
  • Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., and Sun, D.Y., 2003, Highly fractionated I-type granites in NE China (II): Isotopic geochemistry and implications for crustal growth in the Phanerozoic: Lithos, v. 67, p. 191–204. doi: 10.1016/S0024-4937(03)00015-X.
  • Wu, F.Y., Jahn, B.M., Wilde, S., and Sun, D.Y., 2000, Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China: Tectonophysics, v. 328, p. 89–113. doi: 10.1016/S0040-1951(00)00179-7.
  • Wu, F.Y., Liu, X.C., Ji, W.Q., Wang, J.M., and Yang, L., 2017, Highly fractionated granites: Recognition and research: Science China Earth Sciences, v. 60, p. 1201–1219. no. 7, doi:10.1007/s11430-016-5139-1.
  • Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., and Jahn, B.M., 2011, Geochronology of the Phanerozoic granitoids in northeastern China: Journal of Asian Earth Sciences, v. 41, p. 1–30. doi: 10.1016/j.jseaes.2010.11.014.
  • Xiao, W.J., and Santosh, M., 2014, The western Central Asian Orogenic Belt: A window to accretionary orogenesis and continental growth: Gondwana Research, v. 25, p. 1429–1444. no. 4, doi:10.1016/j.gr.2014.01.008.
  • Xiao, W.J., Windley, B., Sun, S., Li, J.L., Huang, B.C., Han, C.M., Yuan, C., Sun, M., and Chen, H., 2015, A tale of amalgamation of three permo-triassic collage systems in Central Asia: Oroclines, sutures, and terminal accretion: Annual Review of Earth and Planetary Sciences, v. 43, p. 477–507. no. 1, doi:10.1146/annurev-earth-060614-105254.
  • Xing, K.C., Wang, F., Xu, W.L., and Gao, F.H., 2019, Tectonic affinity of the Khanka Massif in the easternmost Central Asian Orogenic Belt: Evidence from detrital zircon geochronology of Permian sedimentary rocks: International Geology Review, v. 62, p. 428–445. doi: 10.1080/00206814.2019.1619098.
  • Xu, W.L., Ji, W.Q., Pei, F.P., Meng, E., Yu, Y., Yang, D.B., and Zhang, X.Z., 2009, Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, geochemistry, and tectonic implications: Journal of Asian Earth Sciences, v. 34, p. 392–402. doi: 10.1016/j.jseaes.2008.07.001.
  • Xu, W.L., Wang, F., Meng, E., Gao, F.H., Pei, F.P., Yu, J.J., and Tang, J., 2012, Paleozoic-early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital zircon: Journal of Jilin University (Earth Science Edition), v.42, p. 1378–1389. in Chinese with English abstract.
  • Xu, W.L., Wang, F., Pei, F.P., Meng, E., Tang, J., Xu, M.J., and Wang, W., 2013, Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations: Acta Petrologica Sinica, v.29, p. 339–353. in Chinese with English abstract.
  • Xu, T., Xu, W.L., Wang, F., Ge, W.C., and Sorokin, A.A., 2018, Geochronology and geochemistry of early Paleozoic intrusive rocks from the Khanka Massif in the Russian Far East: Petrogenesis and tectonic implications: Lithos, v. 300-301, p. 105–120. doi: 10.1016/j.lithos.2017.12.004.
  • Yang, H., Ge, W.C., Zhao, G.C., Yu, J.J., and Zhang, Y.L., 2015, Early Permian-late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications: Gondwana Research, v. 27, p. 1509–1533. doi: 10.1016/j.gr.2014.01.011.
  • Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W., and Liu, X.M., 2006, Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt North China: Earth Planetary Science Letters, v. 246, p. 336–352. doi: 10.1016/j.epsl.2006.04.029 .
  • Yu, Y., Sun, M., Long, X.P., Li, P.F., Zhao, G.C., Kröner, A., Broussolle, A., and Yang, J.H., 2017, Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: Constraints on the nature of the lower crust and tectonic setting: Gondwana Research, v. 47, p. 131–141. doi: 10.1016/j.gr.2016.07.003.
  • Zartman, R.E., and Haines, S.M., 1988, The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs-A case for bi-directional transport: Geochimica Et Cosmochimica Acta, v. 52, p. 1327–1339. doi: 10.1016/0016-7037(88)90204-9.
  • Zhang, C., Liu, L.F., Santosh, M., Luo, Q., and Zhang, X., 2017, Sediment recycling and crustal growth in the Central Asian Orogenic Belt: Evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the Chinese Altay: Gondwana Research, v. 47, p. 142–160. doi: 10.1016/j.gr.2016.08.009.
  • Zhang, C., Liu, D.D., Zeng, J.H., Jiang, S., Luo, Q., Kong, X.Y., Yang, W., and Liu, L.F., 2019, Nd-O-Hf isotopic decoupling in S-type granites: Implications for ridge subduction: Lithos, v. 332-333, p. 261–273. doi: 10.1016/j.lithos.2019.03.009.
  • Zhang, C., Liu, D., Zhang, X., Spencer, C., Tang, M., Zeng, J., Jiang, S., Jolivet, M., and Kong, X., 2020, Hafnium isotopic disequilibrium during sediment melting and assimilations: Geochemical Perspectives Letters, v. 12, p. 34–39. doi: 10.7185/geochemlet.2001.
  • Zhang, C., Santosh, M., Luo, Q., Jiang, S., Liu, L., and Liu, D., 2018, Impact of residual zircon on Nd-Hf isotope decoupling during sediment recycling in subduction zone: Geoscience Frontiers, v. 10, p. 241–251. doi: 10.1016/j.gsf.2018.03.015.
  • Zhou, J.B., Wilde, S.A., Zhao, G.C., Zhang, X.Z., Wang, H., and Zeng, W.S., 2010, Was the easternmost segment of the Central Asian Orogenic Belt derived from Gondwana or Siberia: An intriguing dilemma: Journal of Geodynamics, v. 50, p. 300–317. doi: 10.1016/j.jog.2010.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.