138
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic

, , , ORCID Icon, ORCID Icon &
Pages 1878-1899 | Received 09 Apr 2022, Accepted 13 Aug 2022, Published online: 23 Aug 2022

References

  • Aghanabati, A., 1998, Major sedimentary and structural units of Iran (map): Geosciences, v. 7, p. 29–30.
  • Ahmadi Khalaji, A., Esmaeily, D., Valizadeh, M.V., and Rahimpour-Bonab, H., 2007, Petrology and geochemistry of the granitoid complex of boroujerd, sanandaj-sirjan zone, western Iran: Journal of Asian Earth Sciences, v. 29, p. 859–877. 10.1016/j.jseaes.2006.06.005.
  • Alavi, M., 2004, Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution: American Journal of Science, v. 304, p. 1–20. 10.2475/ajs. 1
  • Aldanmaz, E.R.C.A.N., Pearce, J.A., Thirlwall, M.F., and Mitchell, J.G., 2000, Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey: Journal of Volcanology and Geothermal Research, v. 102, p. 67–95. 10.1016/S0377-0273(00)00182-7. 1–2
  • Aldanmaz, E., Yaliniz, M.K., Guectekin, A.Y.K.U.T., and Göncüoğlu, M.C., 2008, Geochemical characteristics of mafic lavas from the Neotethyan ophiolites in western Turkey: Implications for heterogeneous source contribution during variable stages of ocean crust generation: Geological Magazine, v. 145, p. 37–54. 10.1017/S0016756807003986. 1
  • Amiri, M., Khalaji, A.A., Tahmasbi, Z., Santos, J.F., Sahamieh, R.Z., and Zamanian, H., 2017, Geochemistry, petrogenesis, and tectonic setting of the Almogholagh batholith in the sanandaj–sirjan zone, western Iran: Journal of African Earth Sciences, v. 134, p. 113–133. 10.1016/j.jafrearsci.2017.06.018.
  • Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report 204Pb: Chemical Geology, v. 192, p. 59–79. 10.1016/S0009-2541(02)00195-X. 1–2
  • Annen, C., Blundy, J.D., and Sparks, R.S.J., 2006, The genesis of intermediate and silicic magmas in deep crustal hot zones: Journal of Petrology, v. 47, p. 505–539. 10.1093/petrology/egi084. 3
  • Ashragi, S.A., and Mahmoudi Garaii, M., 2003, Geological report of the tuyserkan sheet Iran geological survey and mineral exploration country: Scale 1:100,000.
  • Azizi, H., and Asahara, Y., 2013, Juvenile granite in the sanandaj–sirjan zone, NW Iran: Late Jurassic–early cretaceous arc–continent collision: International Geology Review, v. 55, p. 1523–1540. 10.1080/00206814.2013.782959. 12
  • Azizi, H., Asahara, Y., Mehrabi, B., and Chung, S.L., 2011, Geochronological and geochemical constraints on the petrogenesis of high-K granite from the suffi abad area, sanandaj-sirjan zone, NW Iran: Geochemistry, v. 71, p. 363–376. 10.1016/j.chemer.2011.06.005. 4
  • Azizi, H., Asahara, Y., Minami, M., and Anma, R., 2020a, Sequential magma injection with a wide range of mixing and mingling in Late Jurassic plutons, southern Ghorveh, western Iran: Journal of Asian Earth Sciences, v. 200, p. 104469. 10.1016/j.jseaes.2020.104469.
  • Azizi, H., Hadad, S., Stern, R.J., and Asahara, Y., 2019, Age, geochemistry, and emplacement of the~ 40-ma baneh granite–appinite complex in a transpressional tectonic regime, Zagros suture zone, northwest Iran: International Geology Review, v. 61, p. 195–223. 10.1080/00206814.2017.1422394. 2
  • Azizi, H., and Jahangiri, A., 2008, Cretaceous subduction-related volcanism in the northern sanandaj-sirjan zone, Iran: Journal of Geodynamics, v. 45, p. 178–190. 10.1016/j.jog.2007.11.001. 4–5
  • Azizi, H., Kazemi, T., and Asahara, Y., 2017, A-type granitoid in Hasansalaran complex, northwestern Iran: Evidence for extensional tectonic regime in northern Gondwana in the Late Paleozoic: Journal of Geodynamics, v. 108, p. 56–72. 10.1016/j.jog.2017.05.003.
  • Azizi, H., Lucci, F., Stern, R.J., Hasannejad, S., and Asahara, Y., 2018, The Late Jurassic Panjeh submarine volcano in the northern sanandaj-sirjan zone, northwest Iran: Mantle plume or active margin?: Lithos, v. 308, p. 364–380. 10.1016/j.lithos.2018.03.019.
  • Azizi, H., Najari, M., Asahara, Y., Catlos, E.J., Shimizu, M., and Yamamoto, K., 2015b, U–Pb zircon ages and geochemistry of kangareh and taghiabad mafic bodies in northern sanandaj–sirjan zone, Iran: Evidence for intra-oceanic arc and back-arc tectonic regime in Late Jurassic. Tectonophysics, v. 660, p. 47–64. 10.1016/j.tecto.2015.08.008.
  • Azizi, H., Nouri, F., Stern, R.J., Azizi, M., Lucci, F., Asahara, Y., Zarinkoub, M.H., and Chung, S.L., 2020b, New evidence for Jurassic continental rifting in the northern sanandaj sirjan zone, western Iran: The Ghalaylan seamount, southwest Ghorveh: International Geology Review, v. 62, p. 1635–1657. 10.1080/00206814.2018.1535913. 2020 13–14
  • Azizi, H., and Stern, R.J., 2019, Jurassic igneous rocks of the central sanandaj–sirjan zone (Iran) mark a propagating continental rift, not a magmatic arc: Terra Nova, v. 31, p. 415–423. 10.1016/j.chemer.2011.06.005. 5
  • Azizi, H., and Wattmam, S.A., 2022, does neoproterozoic-early Paleozoic (570–530 Ma) basement of Iran belong to the cadomian orogeny?: Precambrian Research, v.368, p.106474 10.1016/j.precamres.2021.106474
  • Azizi, H., Zanjefili-Beiranvand, M., and Asahara, Y., 2015a, Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern sanandaj–sirjan zone, northwest Iran: Evidence for Late Jurassic arc–continent collision: Lithos, v. 216, p. 178–195. 10.1016/j.lithos.2014.11.012.
  • Badr, A., Davoudian, A.R., Shabanian, N., Azizi, H., Asahara, Y., Neubauer, F., Dong, Y., and Yamamoto, K., 2018, A-and I-type metagranites from the north shahrekord metamorphic complex, Iran: Evidence for early Paleozoic post-collisional magmatism: Lithos, v. 300, p. 86–104. 10.1016/j.lithos.2017.12.008.
  • Bea, F., Mazhari, A., Montero, P., Amini, S., and Ghalamghash, J., 2011, Zircon dating, Sr and Nd isotopes, and element geochemistry of the khalifan pluton, NW Iran: Evidence for variscan magmatism in a supposedly Cimmerian superterrane: Journal of Asian Earth Sciences, v. 40, p. 172–179. 10.1016/j.jseaes.2010.08.005. 1
  • Berberian, M., and King, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran: Canadian Journal of Earth Sciences, v. 18, p. 210–265. 10.1139/e81-019. 2
  • Boutoux, A., Briaud, A., Faccenna, C., Ballato, P., Rossetti, F., and Blanc, E., 2021, Slab folding and surface deformation of the Iran mobile belt: Tectonics, 40, no. 6. 2020TC006300. 10.1029/2020TC006300.
  • Brophy, J.G., 1991, Composition gaps, critical crystallinity, and fractional crystallization in orogenic (calc-alkaline) magmatic systems: Contributions to Mineralogy and Petrology, v.109, p.173–182. 10.1007/BF00306477. 2
  • Buchs, D.M., Bagheri, S., Martin, L., Hermann, J., and Arculus, R., 2013, Paleozoic to Triassic ocean opening and closure preserved in central Iran: Constraints from the geochemistry of meta-igneous rocks of the Anarak area: Lithos, v. 172-173, p. 267–287. 10.1016/j.lithos.2013.02.009.
  • Burg, J.P., 2018, Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation: Earth-Science Reviews, v.185, p. 1210–1231. 10.1016/j.earscirev.2018.09.011.
  • Burke, K.C., and Wilson, J.T., 1976, Hot spots on the Earth’s surface: Scientific American, v. 235, p. 46–59. 10.3367/UFNr.0123.197712d.0615. 2
  • Cabanis, B., and Lecolle, M., 1989, Le diagramme La/10-Y/15-Nb/8: Un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale: Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de la Terre, v. 309, p. 2023–2029. 10.4236/aim.2021.117026.
  • Cabanis, B., and Thieblemont, D., 1988, La discrimination des tholeiites continentales et des basaltes arriere-arc; proposition d’un nouveau diagramme, le triangle Th-3xTb-2xTa: Bulletin de la Société Géologique de France, v. 4, p. 927–935. 10.2113/gssgfbull.IV.6.927. 6
  • Cande, S.C., and Stegman, D.R., 2011, Indian and African plate motions driven by the push force of the Reunion plume head: Nature, v. 475, p. 47–52. 10.1038/nature10174. 7354
  • Chauvel, C., Marini, J.C., Plank, T., and Ludden, J.N., 2009, Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle: Geochemistry, Geophysics, Geosystems 10, no 1. 10.1029/2008GC002101.
  • Christiansen, E.H., and Keith, J.D., 1996, Trace-element systematics in silicic magmas: A metallogenic perspective, in Wyman, D.A. Eds. Trace Element geochemistry of volcanic rocks: Applications for massive sulfide exploration, geological association of Canada, Short Course NotesWinnipeg, Manitoba Canada, v. 12, p. 115–151.
  • Çolakoğlu, A.R., and Arehart, G.B., 2010, The petrogenesis Society, London, Special Publications,(Çaldıran-Van) quartz monzodiorite: Implication for initiation of magmatism (Late Medial Miocene) in the east Anatolian collision zone, Turkey. Lithos, v. 119, p. 607–620. 10.1016/j.lithos.2010.08.014 3–4
  • Coltice, N., Phillips, B.R., Bertrand, H., Ricard, Y., and Rey, P., 2007, Global warming of the mantle at the origin of flood basalts over supercontinents. Geology, v. 35, p. 391–394. https://doi.org/10.1130/G23240A.1.510.1130/G23240A.1
  • Condie, K.C., 1994, Greenstones through time. In Developments in Precambrian Geology v. 11, p. 85–120.
  • Daneshvar, N., Maanijou, M., Azizi, H., and Asahara, Y., 2019, Petrogenesis and geodynamic implications of an Ediacaran (550 Ma) granite complex (metagranites), southwestern Saqqez, northwest Iran. Journal of Geodynamics, v. 132, p. 101669. 10.1016/j.jog.2019.101669.
  • Deevsalar, R., Shinjo, R., Ghaderi, M., Murata, M., Hoskin, P.W.O., Oshiro, S., Wang, K.L., Lee, H.Y., and Neill, I., 2017, Mesozoic- Cenozoic mafic magmatism in Sanandaj-Sirjan Zone, Zagros Orogen (Western Iran): Geochemical and isotopic inferences from Middle Jurassic and Late Eocene gabbros: Lithos v. 284-285, p. 588–607. 10.1016/j.lithos.2017.05.009.
  • Dilek, Y., Furnes, H., and Shallo, M., 2007, Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana: Gondwana Research, v. 11, p. 453–475. 10.1016/j.gr.2007.01.005. 4
  • Dilek, Y., Furnes, H., and Shallo, M., 2008, Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust: Lithos, v. 100, p. 174–209. 10.1016/j.lithos.2007.06.026. 1–4
  • Dilek, Y., Whitney, D.L., Panayides, I., Xenophontos, C., and Malpas, J., 2000, Cenozoic crustal evolution in central Anatolia: Extension, magmatism and landscape development: In Proceedings of the 3th International Conference on the Geology of the Eastern Mediterranean, Geological Survey Department, Nicosia. Nicosia, Cyprus., v. 183, p. 192. 10.2747/0020-6814.49.5.431.
  • Dokuz, A., 2011, A slab detachment and delamination model for the generation of Carboniferous high-potassium I-type magmatism in the Eastern Pontides, NE Turkey: The Köse composite pluton: Gondwana Research, v. 19, p. 926–944. 10.1016/j.gr.2010.09.006. 4
  • Drummond, M.S., and Defant, M.J., 1990, A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting. Archean to modern comparisons: Journal of Geophysical Research, v. 95, p. 21503–21521. 10.1029/JB095iB13p21503. B13
  • Ernst, R.E., Buchan, K.L., and Campbell, I.H., 2005, Frontiers in large igneous province research: Lithos, v. 79, p. 271–297. 10.1016/j.lithos.2004.09.004. 3–4
  • Esna-Ashari, A., and Tiepolo, M., 2020. Petrogenesis of gabbroic rocks from the Malayer plutonic complex (Sanandaj-Sirjan zone, west Iran): Periodico di Mineralogia, v. 89, p. 91–104. 10.2451/2020PM843.
  • Esna-Ashari, A., Tiepolo, M., Valizadeh, M.V., Hassanzadeh, J., and Sepahi, A.A., 2012, Geochemistry and zircon U–Pb geochronology of Aligoodarz granitoid complex, Sanandaj-Sirjan zone, Iran: Journal of Asian Earth Sciences, v. 43, p. 11–22. https://doi.org/10.1016/j.jseaes.2011.09.001.
  • Feng, G., Dilek, Y., Niu, X., Liu, F., and Yang, J., 2021, Geochemistry and geochronology of OIB-type, Early Jurassic magmatism in the Zhangguangcai range, NE China, as a result of continental back-arc extension: Geological Magazine, v. 158, p. 143–157. 10.1017/S0016756818000705. 1
  • Feng, G., Liu, S., Feng, C., Yang, Y., Yang, C., Tang, L., and Yang, J., 2015 , U–Pb zircon geochronology, geochemistry and geodynamic significance of basaltic trachyandesites and trachyandesites from the Jianchang area, western Liaoning Province, China: Journal of Asian Earth Sciences, v. 110, p. 141–150. 10.1016/j.jseaes.2014.07.025.
  • Feng, G., Liu, S., Zhong, H., Feng, C., Coulson, I.M., Qi, Y.Q., Yang, Y.H., and Yang, C., 2012, U–Pb zircon geochronology, geochemical, and Sr–Nd isotopic constraints on the age and origin of basaltic porphyries from western Liaoning Province, China: International Geology Review, v. 54, p. 1052–1070. 10.1080/00206814.2011.605837. 9
  • Fitton, J.G., Saunders, A.D., Norry, M.J., Hardarson, B.S., and Taylor, R.N., 1997, Thermal and chemical structure of the Iceland plume: Earth and Planetary Science Letters, v. 153, p. 197–208. 10.1016/S0012-821X(97)00170-2 3–4
  • Floyd, P.A., Kelling, G., Gökçen, S.L., and Gökçen, N., 1991, Geochemistry and tectonic environment of basaltic rocks from the Misis ophiolitic mélange, south Turkey: Chemical Geology, v. 89, p. 263–280. 10.1016/S0012-821X(97)00170-2. 3–4
  • Förster, H.J., Tischendorf, G., and Trumbull, R.B., 1997, An evaluation of the Rb vs. (Y+ Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks: Lithos, v. 40, p. 261–293. 10.1016/S0024-4937(97)00032-72-4
  • Gholipour, S., Azizi, H., Masoudi, F., Asahara, Y., and Tsuboi, M., 2021, Zircon U-Pb ages, geochemistry, and Sr-Nd isotope ratios for early cretaceous magmatic rocks, southern Saqqez, northwestern Iran: Geochemistry, 81, 125687. 10.1016/j.chemer.2020.125687. 1
  • Green, T.H., 1995, Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system: Chemical Geology, v. 12, p. 347–359. 10.1016/0009-2541(94)00145-X. 3–4
  • Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X., and Zhou, X., 2002, Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and pingtan igneous complexes: Lithos, v. 61, p. 237–269. 10.1016/S0024-4937(02)00082-8. 3–4
  • Griffiths, R.W., and Campbell, I.H., 1991, On the dynamics of long-lived plume conduits in the convecting mantle: Earth and Planetary Science Letters, v. 103, p. 214–227. 10.1016/0012-821X(91)90162-B 1–4
  • Handley, H.K., MacPherson, C.G., Davidson, J.P., Berlo, K., and Lowry, D., 2007 Constrainingfluid and sediment contributions to subduction-related magmatism in Indonesia: Ijenvolcanic complex: Journal of Petrology, v. 48, p. 1155–1183. 10.1093/petrology/egm013. 6
  • Harris, N.B., Pearce, J.A., and Tindle, A.G., 1986, Geochemical characteristics of collision-zone magmatism: Geological society, London, special publications, v. 19, p. 67–81. 10.1144/GSL.SP.1986.019.01.04. 1
  • Hassanzadeh, J., and Wernicke, B.P., 2016, The neo-tethyan sanandaj-sirjan zone of Iran as an archetype for passive margin-arc transitions: Tectonics, v. 35, p. 586–621. 3 10.1002/2015TC003926
  • Hawkesworth, C.J., Rogers, N.W., Van Calsteren, P.W.C., and Menzies, M.A., 1984, Mantle enrichment processes: Nature, v. 311, p. 331–335. 10.1038/311331a0. 5984
  • Hoskin, P.W., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, v. 53, p. 27–62. 10.2113/0530027. 1
  • Hunziker, D., Burg, J.P., Bouilhol, P., and von Quadt, A., 2015, Jurassic rifting at the Eurasian tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran: Tectonics, v. 34, p. 571–593. 10.1002/2014TC003768. 3
  • Jahn, B.M., Wu, F., Lo, C.H., and Tsai, C.H., 1999, Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China: Chemical Geology, v. 157, p. 119–146. 10.1016/S0009-2541(98)00197-1. 1–2
  • Jamshidibadr, M., Collins, A.S., Salomao, G.N., and Costa, M., 2018, U-Pb zircon ages, geochemistry and tectonic setting of felsic and mafic intrusive rocks of Almogholagh complex, NW Iran: Periodico di Mineralogia, v. 87, p. 21–53. 10.2451/2018PM761.
  • Jourdan, F., Bertrand, H., Schärer, U., Blichert-Toft, J., Féraud, G., and Kampunzu, A.B., 2007, Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana–Zimbabwe: Lithosphere vs mantle plume contribution. Journal of Petrology, v. 48, p. 1043–1077. 10.1093/petrology/egm010. 6
  • Kadioglu, Y.K., Dilek, Y., Foland, K.A., and Pavlides, S., 2006, Slab break-off and syncollisional origin of the Late Cretaceous magmatism in the Central Anatolian crystalline complex, Turkey: Special papers-Geological Society of America, 409(19). 381. 10.1130/2006.2
  • Kay, S.M., and Mpodozis, C., 2001, Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust: Geological Society of America Today, v. 11, p. 4–9. 10.1130/1052-5173(2001)011<0004:CAODLT>2.0.CO;2.
  • Lechmann, A., Burg, J.P., Ulmer, P., Mohammadi, A., Guillong, M., and Faridi, M., 2018, From Jurassic rifting to Cretaceous subduction in NW Iranian Azerbaijan: Geochronological and geochemical signals from granitoids: Contributions to Mineralogy and Petrology, v. 173, p. 1–16. 10.1007/s00410-018-1532-8. 12
  • Li, R.S., Ji, W.H., Zhao, Z.M., Chen, S.J., Yong, M., Yu, P.S., and Pan, X.P., 2007, Progress in the study of the early Paleozoic Kunlun orogenic belt: Geological Bulletin of China, v. 26, p. 373–382.
  • Li, X., Tang, G., Gong, B., Yang, Y., Hou, K., Hu, Z., Li, Q.L., Liu, Y., and Li, W., 2013, Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes: Chinese Science Bulletin, v. 58, p. 4647–4654. 10.1007/s11434-013-5932-x. 36
  • Meen, J.K., and Eggler, D.H., 1987, Petrology and geochemistry of the Cretaceous independence volcanic suite, Absaroka Mountains, Montana: Clues to the composition of the Archean sub-montanan mantle: Geological Society of America Bulletin, v. 98, p. 238–247. 2 10.1130/0016-7606(1987)98<238:PAGOTC>2.0.CO;2
  • Middlemost, E.A., 1994, Naming materials in the magma/igneous rock system: Earth-Science Reviews, v. 37, 215–224. 10.1016/0012-8252(94)90029-9. 3–4
  • Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003, Cretaceous–Tertiary convergence and continental collision, sanandaj–sirjan zone, western Iran: Journal of Asian Earth Sciences, v. 21, p. 397–412. 10.1016/S1367-9120(02)00035-4. 4
  • Mohammadi, A., Moazzen, M., Lechmann, A., and Laurent, O., 2020, Zircon U-Pb geochronology and geochemistry of Late Devonian–carboniferous granitoids in NW Iran: Implications for the opening of paleo-tethys: International Geology Review, v. 62, p. 1931–1948. 10.1080/00206814.2019.1675540. 15
  • Nance, R.D., Worsley, T.R., and Moody, J.B., 1988, The supercontinent cycle: Scientific American, v. 259, p. 72–79. 10.1038/scientificamerican0788-72. 1
  • Neumann, E.R., Svensen, H., Galerne, C.Y., and Planke, S., 2011, multistage evolution of dolerites in the Karoo large igneous province, central South Africa: Journal of Petrology, v. 52, p. 959–984. 10.1093/petrology/egr011. 5
  • Niu, Y., Zhao, Z., Zhu, D.C., and Mo, X., 2013, Continental collision zones are primary sites for net continental crust growth—a testable hypothesis: Earth-Science Reviews, v. 127, p. 96–110. 10.1016/j.earscirev.2013.09.004.
  • Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48. 10.1016/j.lithos.2007.06.016. 1–4
  • Pearce, J.A., Harris, N.B., and Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, v. 25, p. 956–983. 10.1093/petrology/25.4.956. 4
  • Pearce, J.A., and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, p. 251–285. 10.1146/annurev.ea.23.050195.001343. 1
  • Pearce, J.A., and Stern, R.J., 2006, Origin of back-arc basin magmas: Trace element and isotope perspectives: Geophysical Monograph-American Geophysical Union, 166, 63. 10.1029/166GM06.
  • Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components: Geochemistry, Geophysics, Geosystems 6, no. 7. 10.1029/2004GC000895.
  • Pirajno, F., and Santosh, M., 2015, Mantle plumes, supercontinents, intracontinental rifting and mineral systems: Precambrian Research, v. 259, p. 243–261. 10.1016/j.precamres.2014.12.016.
  • Plank, T., and Langmuir, C.H., 1998, The chemical composition of subducting sediment andits consequences for the crust and mantle: Chemical Geology, v. 145, p. 325–394. 10.1016/S0009-2541(97)00150-2. 3–4
  • Rapp, R.P., and Watson, E.B., 1995, Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling: Journal of Petrology, v. 36, p. 891–931. 10.1093/petrology/36.4.891. 4
  • Richards, M.A., Duncan, R.A., and Courtillot, V.E., 1989, Flood basalts and hot-spot tracks: Plume heads and tails: Science, v. 246, p. 103–107. 10.1126/science.246.4926.103. 4926
  • Ross, P.S., and Bédard, J.H., 2009, Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams: Canadian Journal of Earth Sciences, v. 46, p. 823–839. 10.1139/E09-054. 11
  • Rudnick, R.L., and Fountain, D.M., 1995, Nature and composition of the continental crust: A lower crustal perspective: Reviews of Geophysics, v. 33, p. 267–309. 10.1029/95RG01302.
  • Rudnick, R.L., and Gao, S., 2014, Composition of the continental crust, in Holland, H.D., and Turekian, K.K. eds., Treatise on Geochemistry, second ed. Elsevier Ltd., Amsterdam, p. 1–51. 10.1016/B0-08-043751-6/03016-4.
  • Saccani, E., 2015, A new method of discriminating different types of post-Archean ophiolitic basalts and their tectonic significance using Th-Nb and Ce-Dy-Yb systematics: Geoscience Frontiers, v. 6, p. 481–501. 10.1016/j.gsf.2014.03.006. 4
  • Sarjoughian, F., Habibi, I., Lentz, D.R., Azizi, H., and Esna-Ashari, A., 2020, magnetite compositions from the baba ali iron deposit in the sanandaj-sirjan zone, western Iran: Implications for ore genesis: Ore Geology Reviews, v. 126, p. 103728. 10.1016/j.oregeorev.2020.103728.
  • Sarjoughian, F., Kananian, A., Haschke, M., and Ahmadian, J., 2016, Transition from I‐type to A‐type magmatism in the sanandaj–sirjan zone, NW Iran: An extensional intra‐continental arc: Geological Journal, v. 51, p. 387–404. 10.1002/gj.2637. 3
  • Sarjoughian, F., Kananian, A., Lentz, D.R., and Ahmadian, J., 2015, Nature and physicochemical conditions of crystallization in the South Dehgolan intrusion, NW Iran: Mineral-chemical evidence: Turkish Journal of Earth Sciences, v. 24, p. 249–275. 10.3906/yer-1404-18.
  • Schandl, E.S., and Gorton, M.P., 2002, Application of high field strength elements to discriminate tectonic settings in VMS environments: Economic Geology, v. 97, p. 629–642. 10.2113/gsecongeo.97.3.629. 3
  • Şengör, A.M.C., 1985, East Asia tectonic collage: Nature, v. 317, 16–17. 6041 10.1038/318016a0
  • Sepahi, A.A., 2008, Typology and petrogenesis of granitic rocks in the sanandaj-sirjan metamorphic belt, Iran: With emphasis on the Alvand plutonic complex: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, p. 295–312. 10.1127/0077-7749/2008/0247-0295. 247 3
  • Sepahi, A.A., Shahbazi, H., Siebel, W., and Ranin, A., 2014, Geochronology of plutonic rocks from the Sanandaj-Sirjan zone, Iran and new zircon and titanite U-Th-Pb ages for granitoids from the marivan pluton: Geochronometria, v. 41, p. 207–215. 10.2478/s13386-013-0156-z. 3
  • Shafaii Moghadam, H., Griffin, W.L., Li, X.H., Santos, J.F., Karsli, O., Stern, R.J., Ghorbani, G., Gain, S., Murphy, R., and O’Reilly, S.Y., 2017, Crustal evolution of NW Iran: Cadomian arcs, Archean fragments and the Cenozoic magmatic flare-up: Journal of Petrology, v. 58, p. 2143–2190. 10.1093/petrology/egy005. 11
  • Shafaii Moghadam, H.S., Li, Q.L., Griffin, W.L., Chiaradia, M., Hoernle, K., O’Reilly, S.Y., and Esmaeili, R., 2021, The middle-late cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman: GSA Bulletin. 10.1130/B36041.1.
  • Shafaii Moghadam, H., Li, X.H., Ling, X.X., Stern, R.J., Santos, J.F., Meinhold, G., Ghorbani, G., and Shahabi, S., 2015, Petrogenesis and tectonic implications of Late Carboniferous A-type granites and gabbronorites in NW Iran: Geochronological and geochemical constraints: Lithos, v. 212-215, p. 266–279. 10.1016/j.lithos.2014.11.009.
  • Shahbazi, H., Siebel, W., Ghorbani, M., Pourmoafee, M., Sepahi, A.A., Abedini, M.V., and Shang, C.K., 2015, The Almogholagh pluton, Sanandaj-Sirjan zone, Iran: Geochemistry, U-(Th)-Pb titanite geochronology and implications for its tectonic evolution: Neues Jahrbuch Für Mineralogie–Abhandlungen/Journal of Mineralogy and Geochemistry, v. 192, p. 85–99. 10.1016/j.jog.2007.11.001. 1
  • Shahbazi, H., Siebel, W., Pourmoafee, M., Ghorbani, M., Sepahi, A.A., Shang, C.K., and Abedini, M.V., 2010, Geochemistry and U–Pb zircon geochronology of the Alvand plutonic complex in sanandaj–sirjan zone (Iran): New evidence for Jurassic magmatism: Journal of Asian Earth Sciences, v. 39, p. 668–683. 10.1016/j.jseaes.2010.04.014. 6
  • Sheikholeslami, M.R., 2015, Deformations of palaeozoic and Mesozoic rocks in southern sirjan, sanandaj–sirjan zone, Iran: Journal of Asian Earth Sciences, v. 106, p. 130–149. 112.113. 10.1016/j.jseaes.2015.03.007.
  • Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., and Whitehouse, M.J., 2008, Plešovice zircon-a new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1–35. 10.1016/j.chemgeo.2007.11.005. 1–2
  • Stern, R.J., Moghadam, H.S., Pirouz, M., and Mooney, W., 2021, The geodynamic evolution of Iran: Annual Review of Earth and Planetary Sciences, v. 49, p. 9–36. 10.1146/annurev-earth-071620-052109. 1
  • Streckeisen, A., 1974, Classification and nomenclature of plutonic rocks recommendations of the IUGS subcommission on the systematics of igneous rocks: Geologische Rundschau, v. 63, p. 773–786. 10.1007/BF01820841. 2
  • Sun, -S.-S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes: Geological Society, London, Special Publications, v. 42, p. 313–345. 10.1144/GSL.SP.1989.042.01.19. 1
  • Tahmasbi, Z., Castro, A., Khalili, M., Khalaji, A.A., and de la Rosa, J., 2010, Petrologic and geochemical constraints on the origin of astaneh pluton, Zagros orogenic belt, Iran: Journal of Asian Earth Sciences, v. 39, p. 81–96. 10.1016/j.jseaes.2010.03.001. 3
  • Taylor, S.R., and McLennan, S.M., 1985, The continental crust: Its composition and evolution. Blackwell, Oxford Press.
  • Torkian, A., Khalili, M., and Sepahi, A.A., 2008, Petrology and geochemistry of the I-type calc-alkaline qorveh granitoid complex, sanandaj-sirjan zone, western Iran: Neues Jahrbuch Fur Mineralogie-Abhandlungen, v. 185, p. 131–142. 121.122. 10.1127/0077-7757/2008/0114. 2
  • Turner, S., McDermott, F., Hawkesworth, C., and Kepezhinskas, P., 1998, A U-series study of lavas from Kamchatka and the Aleutians: Constraints on the source composition and melting processes: Contributions to Mineralogy and Petrology, v. 133, p. 217–324. 10.1007/s004100050449. 3
  • van Hinsbergen, D.J., Steinberger, B., Doubrovine, P.V., and Gassmöller, R., 2011, Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision: Journal of Geophysical Research: Solid Earth 116. B6. 10.1029/2010JB008051.
  • van Hinsbergen, D.J., Steinberger, B., Guilmette, C., Maffione, M., Gürer, D., Peters, K., Peters, K., Plunder, A., McPhee, P.J., Gaina, C., Advokaat, E.L., Vissers, R.L., and Spakman, W., 2021, A record of plume-induced plate rotation triggering subduction initiation: Nature Geoscience, v. 14, p. 626–630. 10.1038/s41561-021-00780-7.
  • Wang, Y., Fan, W., Zhang, Y., Guo, F., Zhang, H., and Peng, T., 2004, Geochemical, 40Ar/39Ar geochronological and Sr–Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton: Precambrian Research, v. 135, p. 55–77. 10.1016/j.precamres.2004.07.005. 1–2
  • Weaver, B.L., and Tarney, J., 1984, Empirical approach to estimating the composition of the continental crust: Nature, v. 310, p. 575–577. 10.1038/310575a0 5978
  • Willbold, M., and Stracke, A., 2006, Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust: Geochemistry, Geophysics, Geosystems 7. No. 4. 10.1029/2005GC001005.
  • Wilson, M., 1989, Igneous Petrogenesis. London, England: Unwin Hyman, London. 366 p. 10.1017/S0016756800006658.
  • Woodhead, J., Eggins, S., and Gamble, J., 1993, High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge. Earth and Planetary Science Letters, v. 114, p. 491–504. 10.1016/0012-821X(93)90078-N. 4
  • Wu, F.Y., Jahn, B.M., Wilde, S., and Sun, D.Y., 2000, Phanerozoic crustal growth: U–Pb and Sr–Nd isotopic evidence from the granites in northeastern China: Tectonophysics v. 328, p. 89–113. 10.1016/S0040-1951(00)00179-7. 1–2
  • Wu, F.Y., Yang, Y.H., Marks, M.A., Liu, Z.C., Zhou, Q., Ge, W.C., Yang, J.S., Zhao, Z.F., Mitchell, R.H., and Markl, G., 2010, In situ U–Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS: Chemical Geology, v. 273, p. 8–34. 10.1016/j.chemgeo.2010.02.007. 1–2
  • Wu, F.Y., Yang, Y.H., Xie, L.W., Yang, J.H., and Xu, P., 2006, Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology: Chemical Geology, v. 234, p. 105–126. 10.1016/j.chemgeo.2010.02.007. 1–2
  • Xia, L.Q., 2014, The geochemical criteria to distinguish continental basalts from arc related ones: Earth-Science Reviews, v. 139, p. 195–212. 10.1016/j.earscirev.2014.09.006.
  • Xia, L., and Li, X., 2019, Basalt geochemistry as a diagnostic indicator of tectonic setting: Gondwana Research, v. 65, p. 43–67. 10.1016/j.gr.2018.08.006.
  • Xia, L.Q., Xia, Z.C., Xu, X.Y., Li, X.M., and Ma, Z.P., 2008, Relative contributions of crust and mantle to the generation of the Tianshan Carboniferous rift-related basic lavas, northwestern China: Journal of Asian Earth Sciences, v. 31, p. 357–378. 10.1016/j.jseaes.2007.07.002. 4–6
  • Xiao, W., Wan, B., Windley, B.F., Ao, S., Han, C., Feng, J., Zhang, J.E., and Zhang, Z. 2014, Geochronologic and geochemical evidence for persistence of south-dipping subduction to late Permian time, langshan area, inner Mongolia (China): Significance for termination of accretionary orogenesis in the southern Altaids: American Journal of Science, v. 314, p. 679–703. 10.2475/02.2014.08. 2
  • Yang, T.N., Chen, J.L., Liang, M.J., Xin, D., Aghazadeh, M., Hou, Z.Q., and Zhang, H.R., 2018, Two plutonic complexes of the sanandaj-sirjan magmatic-metamorphic belt record Jurassic to early Cretaceous subduction of an old Neotethys beneath the Iran microplate: Gondwana Research, v. 62, p. 246–268. 10.1016/j.gr.2018.03.016.
  • Yeganeh, T.M., Torkian, A., Christiansen, E.H., and Sepahi, A.A., 2018, Petrogenesis of the Darvazeh mafic-intermediate intrusive bodies, qorveh, sanandaj-sirjan zone, Iran: Arabian Journal of Geosciences, v. 11, p. 1–20. 10.1007/s12517-018-3554-y.
  • Zhang, H., Chen, J., Yang, T., Hou, Z., and Aghazadeh, M., 2018a, Jurassic granitoids in the northwestern sanandaj–sirjan zone: Evolving magmatism in response to the development of a neo-tethyan slab window: Gondwana Research, v. 62, p. 269–286. 10.1016/j.gr.2018.01.012.
  • Zhang, B., Guo, F., Zhang, X., Wu, Y., Wang, G., and Zhao, L., 2019, Early Cretaceous subduction of paleo-pacific ocean in the coastal region of SE China: Petrological and geochemical constraints from the mafic intrusions: Lithos, 334-335. 334, p. 8–24. 10.1016/j.lithos.2019.03.010.
  • Zhang, B., Guo, F., Zhang, X., Zhao, L., Wang, G., and Wu, Y., 2020, Origin of the early Cretaceous liucheng OIB-type dolerite sill in Zhejiang province, coastal region of SE China: Implications for recycling of the paleo-pacific slab: Journal of Asian Earth Sciences, 193, 104330. 10.1016/j.jseaes.2020.104330.
  • Zhang, Z., Xiao, W., Ji, W., Majidifard, M.R., Rezaeian, M., Talebian, M., Xiang, D.F., Chen, L., Wan, B., Ao, S.J., and Esmaeili, R., 2018b, Geochemistry, zircon U-Pb and Hf isotope for granitoids, NW sanandaj-sirjan zone, Iran: Implications for Mesozoic-Cenozoic episodic magmatism during neo-tethyan lithospheric subduction: Gondwana Research, v. 62, p. 227–245. 10.1016/j.gr.2018.04.002.
  • Zhang, C.L., Zou, H.B., Yao, C.Y., and Dong, Y.G., 2014, Origin of Permian gabbroic intrusions in the southern margin of the Altai Orogenic belt: A possible link to the Permian tarim mantle plume?: Lithos, v. 204, p. 112–124. 10.1016/j.lithos.2014.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.