412
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Origin and palaeodepositional environment of evaporites in the Bala sub-basin, Central Anatolia, Türkiye

&
Pages 1900-1922 | Received 19 Feb 2019, Accepted 13 Aug 2022, Published online: 02 Sep 2022

References

  • Akgün, F., Kayseri-Özer, M.S., Tekin, E., Varol, B., Şen, Ş., Herece, E., Gündoğan, İ., Sözeri, K., and Us, M.S., 2021,Late Eocene to late Miocene palaeoecological and palaeoenvironmental dynamics of the Ereğli-Ulukışla basin (Southern Central Anatolia)):Geological Journal,56,673–703.2 10.1002/gj.4021
  • Akyürek, B., Duru, M., Sütçü, Y.F., Papak, D., Aroğlu, F., Pehlivan, N., Gönenç, O., Granit, S., and Yaar, T., 1997, 1:100 000 Ölçekli Türkiye Jeoloji Haritaları Ankara F15 Paftası [Geological Maps of Turkey, Ankara: MTA Publications no. 55, scale 1:100.000, 15 sheets].
  • Arıkan, Y., 1975, The geology and petroleum prospects of the Tuz Gölü basin: Bulletin of the Mineral Research and Exploration, 85, 17–38.[in Turkish]
  • Babel, M., 1999, History of sedimentation of the nida gypsum deposits (middle Miocene, Carpathian foredeep, southern Poland: Geology, 43, 429–447.
  • Babel, M., 2004, Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins: Acta Geologica Polonica, 542, 219–249.
  • Bao, H., and Thiemens, M.H., 2000, Generation of O2 from BaSO4 using a CO2-laser fluorination system for simultaneous analysis of δ18O and δ17O: Analytical Chemistry, 7217, 4029–4032.10.1021/ac000086e
  • Boggs, S., 2010, Petrology of sedimentary rocks, II Edıtıon, United Kingdom, Cambridge University Press, 522.
  • Bohaty, S.M., and Zachos, J.C., 2003, Significant Southern Ocean warming event in the late middle Eocene: Geology, 31, 1017–1020.11 10.1130/G19800.1
  • Bohaty, S.M., Zachos, J.C., Florindo, F., and Delaney, M.L., 2009, Coupled greenhouse warming and deep sea acidification in the middle Eocene: Paleoceanography, 242, 1–16. 10.1029/2008PA001676
  • Böttcher, M.E., Brumsack, H.J., and Dürselen, C.D., 2007, The isotopic composition of modern seawater sulfate: I. coastal waters with special regard to the North Sea: Journal of Marine Systems, 671–2, 73–82. 10.1016/j.jmarsys.2006.09.006
  • Callot, J.P., Ribes, C., Kergaravat, C., Bonnel, C., Temiz, H., Poisson, A., Vrielynck, B., Salel, J.P., and Ringebach, J.C., 2014, Salt tectonics in the sivas basin (Turkey): Crossing salt walls and minibasins: Bulletin de la Societe Géologique de France, 1851, 33–42. 10.2113/gssgfbull.185.1.33
  • Cater, J.M.L., Hanna, S.S., Ries, A.C., and Turner, P., 1991, Tertiary evolution of the sivas basin, Central Turkey, Tectonophysics, 195, 29–46.
  • Çemen, İ., and Dirik, K., 1992, Stratigraphy, structural geology and geological history of The Northeastern part of the Tuz Gölü basin: [in Turkish], [unpublished] (Turkish National Petroleum Company)
  • Çemen, İ., Göncüoğlu, M.C., and Dirik, K., 1999, Structural evolution of the Tuzgölü Basin in Central Anatolia, Turkey: The Journal of Geology, 1076, 693–706.10.1086/314379
  • Clark, M., and Robertson, A., 2005, Uppermost cretaceous–lower tertiary Ulukışla Basin, South-Central Turkey: Sedimentary evolution of part of a unified basin complex within an evolving neotethyan suture zone: Sedimentary Geology, 1731–4, 15–51. 10.1016/j.sedgeo.2003.12.010
  • Claypool, G.E., Holser, W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation: Chemical Geology, 28, 199–260. 10.1016/0009-2541(80)90047-9
  • Cody, R.D., and Cody, A.M., 1988, Gypsum nucleation and crystal morphology in analog saline terrestrial environments; Journal of Sedimentary Petrology, 582, 247–255.
  • Cosentino, D., Schildgen, T.F., Cipollari, P., Faranda, C., Gliozzi, E., Hudáčková, N., Stella Lucifora, S., and Strecker, M.R., 2012, Late Miocene surface uplift of the southern margin of the central Anatolian plateau, Central Taurides, Turkey: Geological Society of America Bulletin, 1241–2, 133–145. 10.1130/B30466.1
  • Darin, M.H., and Umhoefer, P.J., 2020, Palaeogene stratigraphy and chronology of the western sivas basin, central Anatolia (Turkey): Tectono-sedimentary evolution of a well-preserved basin along the northern Neotethys suture zone: Basin Research 33-2, 903–932 doi:10.1111/bre.12498.
  • Dirik, K., and Erol, O., 2003, Tectonomorphologic evolution of Tuzgölü and surrounding area, central Anatolia- Turkey: Turkish Association of Petroleum Geologists Special Publication, 5, 27–46.
  • Dirik, K., Göncüoğlu, M.C., and Kozlu, H.,1999, Stratigraphy and pre-Miocene tectonic evolution of the southwestern part of the sivas basin, central Anatolia, Turkey: Geological Journal, 343, 303–319. 10.1002/(SICI)1099-1034(199907/09)34:3<303::AID-GJ829>3.0.CO;2-Z
  • Doğan, U., and Yeşilyurt, S., 2019, Gypsum Karst Landscape in the Sivas Basin : Landscapes and Landforms of Turkey (Switzerland: Sprınger), 197–206.
  • Dönmez, M., Bilgin, Z.R., Akçay, A.E., Kara, H., Yergök, A.F., and Esentürk, K., 2008, 1:100 000 Ölçekli Türkiye Jeoloji Haritaları Kırşehir- İ30 Paftası, [Geological Maps of Turkey, Kırşehir: MTA Publications no. 90, 30 sheets].
  • Edgar, K.M., Wilson, P.A., Sexton, P.F., Gibbs, S.J., Roberts, A.P., and Norris, R.D., 2010, New biostratigraphic, magnetostratigraphic and isotopic insights into the middle Eocene climatic optimum in low latitudes: Palaeogeography, Palaeoclimatology, Palaeoecology, 2973–4, 670–682. 10.1016/j.palaeo.2010.09.016
  • Edinger, S.E., 1973, An investigation of the factors which affect the size and growth rates of the habit faces of gypsum: Journal of Crystal Growth, 183, 217–224. 10.1016/0022-0248(73)90164-4
  • Emelyanov, E.M., and Shimhus, K.M., 1986, Geochemistry and sedimentology of the Mediterranean sea, Paris, Springer, 176.
  • Engin, C., 2013, Structural Architecture and Tectonic Evolution of the Ulukışla Sedimentary Basin in South-Central Turkey: [ M.Sc. thesis], Miami University, 97 p.
  • Ercan, H.Ü., Karakaya, M.Ç., Bozdağ, A., Karakaya, N., and Delikan, A., 2019, Origin and evolution of the halite based on stable isotopes (δ37Cl, δ81Br, δ11B and δ7Li) and trace elements in Tuz Gölü Basin,Turkey: Applied Geochemistry, 105, 17–30.
  • Fernandez-Blanco, D., Bertotti, G., and Çiner, T.A., 2013, Cenozoic tectonics of the Tuz Gölü basin (central Anatolian plateau, Turkey: Turkish Journal of Earth Sciences, 22, 715–738.
  • Finch, A.A., and Allison, N., 2007, Coordination of Sr and Mg in calcite and aragonite: Mineralogical Magazine, 715, 539–552. 10.1180/minmag.2007.071.5.539
  • Gökten, E.Y.,1986, Palaeocene carbonate turbidites of the şarkişla region, Turkey-their significance in an orogenic basin: Sedimentary Geology, 491–2,143–165. 10.1016/0037-0738(86)90019-9
  • Göncüoğlu, M.C., Toprak, V., Kuşçu, İ., Erler, A., and Olgun, E., 1991, Geology of the western part of the central Anatolian massif: Turkish National Petroleum Company, Report no. 2909. [in Turkish]
  • Görür, N., Oktay, F.Y., Seymen, İ., and Şengör, A.M.C., 1984, Paleotectonic evolution of the Tuzgölü basin complex, Central Turkey: Sedimentary record of a Neo-Tethyan closure, Dixon, J.E., and Robertson, A.H.F. (London: Geologıcal Socıety) eds., The geological evolution of the eastern Mediterranean: Journal of the geological society of London special publication,Vol. 17,467–482.
  • Görür, N., Tüysüz, O., and Şengör, A.M.C., 1998, Tectonic evolution of the central Anatolian basins: International Geology Review, 40, 831–850. 10.1080/00206819809465241
  • Guan, B., Yang, L., and Wu, Z., 2010, Effect of Mg 2+ Ions on the nucleation kinetics of calcium sulfate in concentrated calcium chloride solutions: Industrial & Engineering Chemistry Research, 4912, 5569–5574. 10.1021/ie902022b
  • Gündoğan, İ., Önal, M., and Depçi, T., 2005, Sedimentology, petrography and diagenesis of Eocene–Oligocene evaporites: The Tuzhisar Formation, SW Sivas Basin, Turkey: Journal of Asian Earth Sciences, 255, 791–803. 10.1016/j.jseaes.2004.08.002
  • Haldar, S.K., 2020, Introduction to mineralogy and petrology, 2nd, Boston, Elsevier, 436.
  • Hanor, J.S., 2000, Barite-celestine geochemistry and environments of formation, Alpers, C.N., Jambor, J.L., and Nordstrom, D.K. (Washington: Geologıcal Socıety of Amerıca) eds., Sulfate minerals, crystallography, geochemistry and environmental significance. reviews of mineralogy and geochemistry, 40, 193–275.
  • Hashim, M.S., and Kaczmarek, S.E., 2021, The transformation of aragonite to calcite in the presence of magnesium: Implications for marine diagenesis: Earth and Planetary Science Letters, 574, 1–10. 10.1016/j.epsl.2021.117166
  • Hasselov, M., Lyven, D., Haraldsson, C., and Sirnawin, W., 1999, Determination of continuous size and trace element distribution of field-flow fractionation with ICP-MS: Analytical Chemistry, 7116, 3497–3502. 10.1021/ac981455y
  • Holliday, D.W., 1970, The petrology of secondary gypsum rocks: A review: Journal of Sedimentary Petrology, 40, 734–744. 10.1306/74D7202C-2B21-11D7-8648000102C1865D
  • Javor, B.J., 1983, Planktonic standing crop and nutrients in a saltern ecosystem: Limnology and Oceanography, 281, 153–159. 10.4319/lo.1983.28.1.0153
  • Jaworska, J., 2012, Crystallization, alternation and recrystallization of sulphates, Advances in crystallization processes,Mastai, Y., United Kingdom, INTECHOpen, 465–490.
  • Johnston, D.T., Gill, B.C., Masterson, A., Beirne, E., Casciotti, K.L., Knapp, A.N., and Berelson, W., 2014, Placing an upper limit on cryptic marine sulphur cycling: Nature, 5137519, 530–533. 10.1038/nature13698
  • Joseph, C., Campbell, K.A., Torres, M.E., Martin, R.A., Pohlman, J.W., Riedel, M., and Ros, K., 2013, Methane-derived authigenic carbonates from modern and paleoseeps on the Cascadia margin: Mechanisms of formation and diagenetic signals: Palaeogeography, palaeoclimatology: Palaeoecology, 390, 52–67. 10.1016/j.palaeo.2013.01.012
  • Kah, L.C., Lyons, T.W., and Chesley, J.T., 2001, Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: Implications for mesoproterozoic marine evolution: Precambrian Research, 1111–4, 203–234. 10.1016/S0301-9268(01)00161-9
  • Kangal, Ö., Erdem, N., and Varol, B.E., 2017, Depositional stages of the Eğribucak inner basin (terrestrial to marine evaporite and carbonate) from the sivas basin (central Anatolia, Turkey: Turkish Journal of Earth Sciences, 262, 127–146. 10.3906/yer-1606-7
  • Karakaya, M.Ç., Bozdağ, A., Ercan, H.Ü., and Karakaya, N., 2020, The origin of Miocene evaporites in the Tuz Gölü basin (central Anatolia, Turkey): Implications from strontium, sulfur and oxygen isotopic compositions of the Ca-Sulfate minerals: Applied Geochemistry, 120, 1–14. 10.1016/j.apgeochem.2020.104682
  • Karakaya, M.Ç., Bozdağ, A., Ercan, H.Ü., Karakaya, N., and Delikan, A., 2019, Origin of Miocene halite from Tuz Gölü basin in central Anatolia, Turkey: Evidences from the pure halite and fluid inclusion geochemistry: Journal of Geochemical Exploration,202,1–12.10.1016/j.gexplo.2019.03.004
  • Karakaya, M.Ç., Bozdağ, A., and Karakaya, N., 2021, Elemental and C, O and Mg isotope geochemistry of middle-late Miocene carbonates from the Tuz Gölü basin (central Anatolia, turkey): Evidence for Mediterranean incursions: Journal of Asian Earth Sciences, 221, 1–15. 10.1016/j.jseaes.2021.104946
  • Karakaya, M.Ç., Karakaya, N., and Temel, A., 2011, Mineralogical and geochemical characteristics and genesis of the sepiolite deposits at Polatlı basin (Ankara, Turkey: Clays and Clay Minerals, 593, 286–314. 10.1346/CCMN.2011.0590306
  • Karataş, Ö., 2009, Paşadağ Civari Evaporitlerinin Sedimantolojisi (KB Şereflikoçhisar, Ankara) [ M.Sc. thesis]: Ankara Üniversity, Institute of Science, Turkey 68 p. [in Turkish with English abstract]
  • Kergaravat, C., Ribes, C., Callot, J., and Ringenbach, J., 2017, Tectono-stratigraphic evolution of salt-controlled minibasins in a fold and thrust belt, the oligo-Miocene central sivas basin: Journal of Structural Geology, 102, 75–97.10.1016/j.jsg.2017.07.007
  • Keskin, Ş., Şener, M., Şener, M.F., and Öztürk, M.Z., 2017, Depositional environment characteristics of Ulukışla Evaporites, Central Anatolia, Turkey: Carbonates and Evaporites, 322,231–241.10.1007/s13146-016-0292-7
  • Kimmig, S.R., and Holmden, C., 2017, Multi-proxy geochemical evidence for primary aragonite precipitation in a tropical-shelf ‘calcite sea’ during the Hirnantian glaciation: Geochimica et Cosmochimica Acta, 206, 254–272.10.1016/j.gca.2017.03.010
  • Kirkland, D.W., Denison, R.E., and Dean, W.E., 2000, Parent brine of the castile evaporites (upper Permian), Texas and New Mexico: Journal of Sedimentary Research, 70, 749–761. 10.1306/2DC40935-0E47-11D7-8643000102C1865D
  • Klimchouk, A.,2000, Dissolution and conversions of Gypsum and Anhydrite, Klimchouk, A.B., Ford, D.C., Palmer, A.N., and Dreybrodt, W. eds., Speleogenesis: Evolution of karst aquifers, National Speleological Society, Huntsville, 160–168.
  • Koçyiğit, A., 2003, General neotectonic characteristics and seismicity of central Anatolia: Turkish Association of Petroleum Geologists Special Publication, 5, 1–26.
  • Koçyiğit, A., Türkmenoğlu, A., Beyhan, A., Kaymakçı, N., and Akyol, E., 1995, Postcollisional tectonics of eskisehir-ankara-çankiri segment of Izmir-ankara-erzincan suture zone (IAESZ): Ankara orogenic phase: Bulletin of Turkish Association of Petroleum Geologists, 61, 69–86.
  • Krauskopf, K.B.,1979,Introduction to Geochemistry,2nd United States: McGraw-Hill International series in the Earth and Planetary Sciences, 617.
  • Küçükuysal, C., Günal Türkmenoğlu, A., and Kapur, S., 2013, Multiproxy evidence of Mid-Pleistocene dry climates observed in calcretes in Central Turkey: Turkish Journal of Earth Sciences, 22, 469–483.
  • Kürçer, A., 2012, Neotectonic characteristics and paleoseismology of the Tuz Gölü fault zone, Central Anatolia, Turkey: ( PhD Thesis) Ankara University, Institute of Science, Turkey, 318 p. [in Turkish with English abstract]
  • Kurtman, F., 1961, Stratigraphic status of the gypsum series around sivas: Mineral research and exploration institute of Turkey (MTA: Bulletin, 56, 13–16.in Turkish with English abstract
  • Kushnir, J., 1980, The co-precipitation of strontium, magnesium, sodium, potassium and chloride ions with gypsum: An Experimental Study: Geochimica Et Cosmochimica Acta, 44, 1471–1482.
  • Lanson, B., Drits, V.A., Gaillot, A., Silvester, E., Planáon, A., and Manceau, A., 2002, Structure of heavy-metal sorbed birnessite: Part 1. results from X-ray diffraction:American Mineralogist, 8711–12, 1631–1645. 10.2138/am-2002-11-1213
  • Legeay, E., Pichat, A., Kergaravat, C., Ribes, C., Callot, J.P., Ringenbach, J.C., Bonnel, C., Hoareau, G., Poisson, A., Mohn, G., Crumeyrolle, P., Kavak, K.Ş., and Temiz, H., 2018, Geology of the central sivas basin (Turkey): Journal of Maps, 152, 406–417.
  • Lu, F.H., Meyers, W.J.,and Schoonen, M.A., 1997, Trace and minor element analyses on gypsum: an experimental study: Chemical Geology, 142-(1–2) , 1–10.
  • Markovic, S., Paytan, A., Li, H., and Wortmann, U.G., 2016, A revised seawater sulfate oxygen isotope record for the last 4 MYR: Geochimica Cosmochimica Acta, 175, 239–251.10.1016/j.gca.2015.12.005
  • Morse, J.W., Arvidson, R.S., and Lüttge, A., 2007, Calcium carbonate formation and dissolution: Chemical Reviews, 1072, 342–381.
  • Murray, R.C., 1964, Origin and diagenesis of gypsum and anhydrite: Journal of Sedimentary Petrology, 343, 512–523.
  • Nairn, S.P., Robertson, A.H.F., Ünlügenç, U.C., Tasli, K., and İnan, N., 2013, Tectonostratigraphic evolution of the upper cretaceous–Cenozoic central Anatolian basins: An integrated study of diachronous ocean basin closure and continental collision, Geological Society, London, Special PublicationsVol. 372, 343–384.
  • Okay, A.I., and Tüysüz, O., 1999, Tethyan sutures of northern Turkey: In “The Mediterranean basins: Tertiary extension within the Alpine orogeny”, eds.B. Durand, Jolivet, L., Horváth, F., and Séranne, M., Geological Society, London, Special PublicationVol. 156, 475–515.
  • Ortí, F., Pérez-López, A., García-Veigas, J., Rosell, L., Cendón, D.I., and Pérez-Valera, F., 2014, Sulfate isotope compositions (δ34S, δ18O) and strontium isotopic ratios (87 Sr/86Sr) of Triassic evaporites in the Betic Cordillera (SE Spain; Revista de la Sociedad Geológica de España, 271, 79–89.
  • Ortí, F., Pueyo, J.J., Geissler, D., and Dulau, N., 1984, Evaporitic sedimentation in the coastal Salinas of Santa pola (alicante, Spain: Revista del Instituto de Investigaciones Geológicas de la Diputación de Barcelona, 3839, 169–220.
  • Otalora, F., and Garcia–Ruiz, J., 2014, Nucleation and growth of the Naica giant gypsum crystals: Chemical Society Reviews, 437, 2013–2026. 10.1039/C3CS60320B
  • Özsayın, E., Çiner, T.A., Rojay, F.B., Dirik, R.K., Melnick, D., Fernandez-Blanco, D., Bertotti, G., Schildgen, T.F., Garcin, Y., Strecker, M.R., and Sudo, M., 2013, Plio-quaternary extensional tectonics of the central Anatolian plateau: A case study from the Tuz Gölü basin, Turkey: Turkish Journal of Earth Sciences, 22, 691–714.
  • Özsayın, E., and Dirik, K.R., 2011, The role of oroclinal bending in the structural evolution of the central Anatolian plateau: Evidence of a regional changeover from shortening to extension: Geologica Carpathica, 624, 345–359.10.2478/v10096-011-0026-7
  • Öztan, N.S., 2008, Evaporite Mapping in Bala Region (Ankara) by Remote Sensing Techniques, [ M.Sc. thesis]: Middle East Technical University, Turkey (unpublished), 97 p. [in Turkish with English abstract]
  • Palmer, M.R., Helvacı, C., and Fallick, A.E., 2004, Sulphur, sulphate, oxygen and strontium isotope composition of Cenozoic Turkish evaporites: Chemical Geology, 2093–4,341–356. 10.1016/j.chemgeo.2004.06.027
  • Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.H., 1998,Sulfur isotopic composition of Cenozoic seawater sulfate: Science, 2825393, 1459–1462. 10.1126/science.282.5393.1459
  • Paytan, A., Kastner, M., Campbell, D., and Thiemens, M.N., 2004, Seawater sulfur isotope fluctuations in the Cretaceous: Science, 3045677, 1663–1665.10.1126/science.1095258
  • Pichat, A., Hoareau, G., Callot, J.P., Legeay, E., Kavak, K.S., Révillon, S., and Ringenbach, J.C., 2018, Evidence of multiple evaporite recycling processes in a salt-tectonic context, Sivas basin, Turkey: Terra Nova, 30, 40–49.10.1111/ter.12306
  • Playa, E., Orti, F., and Rosell, L., 2000, Marine to non-marine sedimentation in the upper Miocene evaporites of the Eastern Betics, SE Spain: Sedimentological and geochemical evidence: Sedimentary Geology, 1331–2, 135–166. 10.1016/S0037-0738(00)00033-6
  • Poisson, A., Vrielynck, B., Wernli, R., Negri, A., Bassetti, M.A., Büyükmeriç, Y., Özer, S., Guillou, H., Kavak, K.S., Temiz, H., and Orszag Sperber, F., 2016, Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic Palaeogeographical evolution: International Journal of Earth Sciences, 1051, 339–368.10.1007/s00531-015-1248-1
  • Robertson, A.H.F., and Dixon, D.E.,1984,Introduction: Aspects of the geological evolution of the eastern Mediterranean,Dixon, J.E., and Robertson, A.H.F. eds., The Geological Evolution of the Eastern Mediterranean, Geological Society, London, Special Publication,Vol. 17, 1–74.
  • Robertson, A.H.F., Parlak, O., Ustaömer, T., İnan İ, T., Dumitrica, P., and Karaoğlan, F., 2014, Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: New evidence from the Eastern Pontides: Turkey Geodinamica Acta, 263–4, 230–293.10.1080/09853111.2013.877240
  • Rosell, L., Orti, F., Kasprzyk, A., Playa, E., and Peryt, T.M., 1998, Strontium geochemistry of Miocene primary gypsum: Messinian of southeastern Spain and Sicily and badenian of Poland: Journal of Sedimentary Research, 681, 63–79.10.2110/jsr.68.63
  • Schildgen, T.F., Yıldırım, C., Cosentino, D., and Strecker, M.R., 2014, Linking slab break-off, Hellenic trench retreat, and uplift of the central and Eastern Anatolian plateau: Earth Sci. Rev, 128, 147–168.
  • Şengör, A.M.C., and Yılmaz, Y., 1981, Tethyan evolution of Turkey: A plate tectonic approach: Tectonophysics, 753–4, 181–241. 10.1016/0040-1951(81)90275-4
  • Smykatz–Kloss, W., and Roy, P.D., 2010, Evaporite mineralogy and major element geochemistry as tools for palaeoclimatic investigations in arid regions: A synthesis: Boletín de la Sociedad Geologica Mexicana, 62, 379 390.
  • Smykatz–Kloss, W., Smykatz–Kloss, B., Naguib, N., and Zöller, L., 2004, The reconstruction of palaeoclimatological changes from mineralogical and geochemical compositions of loess and alluvial loess profiles, Smykatz–Kloss, W., and Felix–Henningsen, P. eds., Palaeoecology of quaternary drylands, lecture notes on Earth sciences, Berlin, Springer, 101–118.
  • Sosson, M., Rolland, Y., Danelian, T., Muller, C., Melkonyan, R., Adamia, S., Kangarli, T., Avagyan, A., and Galoyan, G.H., 2010, Subductions, obduction and collision in the lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights, Sosson, M., Kaymakci, N., Stephanson, R., Bergarat, F., and Storatchenoko, V. eds., Sedimentary basin tectonic from the black sea and Caucasus to the Arabian platform, London, Geological Society, Special Publications,Vol. 340, 329–352.
  • Spötl, C., and Pak, E., 1996, A strontium and sulfur isotopic study of permo-Triassic evaporites in the Northern Calcareous Alps, Austria: Chemical Geology, 1311–4, 219–234. 10.1016/0009-2541(96)00017-4
  • Tekin, E., 2001b, Stratigraphy, geochemistry and depositional environment of celestite-bearing gypsiferous formations, in tertiary Ulaş- Sivas basin, Turkey: Turkish Journal of Earth Science, 10, 35–49.
  • Tekin, E., Ayyıldız, T., Gündoğan, İ., and Orti, F., 2007, Modern halolites (halite oolites) in the Tuz Gölü, Turkey: Sedimentary Geology, 1953–4, 101–112.10.1016/j.sedgeo.2006.07.012
  • Tekin, E., Varol, B., and Friedman, G.M., 2001a, A prelimenary study: Celestite-bearing gypsum in the tertiary sivas basin, Central-Eastern Turkey: Carbonates and Evaporites, 161, 93–101.10.1007/BF03176228
  • Tekin, E., Varol, B., Gündoğan, İ., Herece, E., Akgün, F., Sözeri, K., Şen, Ş., and Us, M.S., 2016, Şereflikoçhisar-Paşadağ Tersiyer Havzası (Tuz Gölü Doğu-Kuzeyi, İç Anadolu) Evaporitlerinin Sedimantolojisi, 69:Türkiye Jeoloji Kurultayi, 584-585, MTA–Ankara.
  • Testa, G., and Lugli, S., 2000, Gypsum–anhydrite transformations in messinian evaporites of central Tuscany (Italy: Sedimentary Geology, 130, 249–268. 10.1016/S0037-0738(99)00118-9
  • Turchyn, A.V., Sivan, O., and Schrag, D.P., 2006, Oxygen isotopic composition of sulfate in deep sea pore fluid: Evidence for rapid sulfur cycling: Geobiology, 43, 191–201. 10.1111/j.1472-4669.2006.00079.x
  • Türkmen, İ., and Özkul, M., 1999, Sedimentology and evaporite genesis of neogene continental sabkha playa complex, karakecili basin, Central Anatolia, Turkey: Carbonates and Evaporites, 141, 21–31.10.1007/BF03176145
  • Uğuz, F., Turhan, N., Bilgin, A.Z., Umut, M., Şen, M., and Acarlar, M., 1999, Geology of Kulu Haymana and Kırıkkale: MTA Report no: 10399. [in Turkish]
  • Urai, J.L., Schléder, Z., Spiers, C.J., and Kukla, P.A., 2008, Flow and transport properties of salt rocks, Littke, R., Eds., Dynamics of complex intracontinental basins: The central European basin system, Berlin: Elsevier, 277–290.
  • Utrilla, R., Pierre, C., Ortí, F., and Pueyo, J.J., 1992, Oxygen and sulfur isotope composition as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain: Chemical Geology,1021–4, 229–244. 10.1016/0009-2541(92)90158-2
  • Varol, E.B., Tekin, E., Görmüş, M., Herece, Sözeri, K., Gündoğan, İ., Us, M.S., İslamoğlu, Y., Akgün, F., Şen, Ş., and Göksu, B., 2014, Depositional history of the yeniceoba-cihanbeyli tertiary basin-fill deposits. 8th International Symposium on Eastern Mediterranean Geology. Muğla Sıtkı Koçman Üniversity, Muğla-Turkey, 148–149.
  • Varol, B., Tekin, E., Herece, E.İ., Gündoğan, İ., Sözeri, K., Büyükmeriç, Y., Akgün, F., Şen, Ş., Görmüş, M., and Us, M.S., 2015, Gypsum conglomerate and its environmental implication: An example of Cihanbeyli-Yeniceoba tertiary basin, central Anatolian. Krakow-Poland: , 22-25 June 2015. , 553.
  • Von Allmen, K., Böttcher, M.E., Samankassou, E., and Nägler, T.F., 2010, Barium isotope fractionation in the global barium cycle: First evidence from barium minerals and precipitation experiments: Chemical Geology, 2771–2, 70–77. 10.1016/j.chemgeo.2010.07.011
  • Warren, J.K., 1982, The hydrological setting, occurrence and significance of gypsum in late quaternary salt lakes in South Australia: Sedimentology, 295, 609–637. 10.1111/j.1365-3091.1982.tb00071.x
  • Warren, J.K., 2006, Evaporites: Sediments, resources and hydrocarbons, Springer, Berlin, 1036.
  • Warren, J.K.,2016,Evaporites: A Geological Compendium,Springer,Berlin,1813.
  • Yamamoto, M., and Uneki, Y.,1978,The distribution of strontium between gypsum and aqueous solutions: Sekko To Sekkai, 156, 196–200,in Japanese
  • Yang, S., Li, C., and Cai, J., 2006, Geochemical compositions of core sediments in eastern China: Implication for late Cenozoic palaeoenvironmental changes: Palaeogeography, Palaeoclimatology: Palaeoecology, 2294, 287–302.10.1016/j.palaeo.2005.06.026
  • Yılmaz, A. 1994. An example of a post-collisional trough: Sivas basin, Turkey. In: Proceedings of the 10th Petroleum Congress of Turkey: Turkish Association of Petroleum Geologists Publications (Ankara-Turkey), 21–32.
  • Yılmaz, Y., Genç, S.C., Gürer, Ö., Bozcu, F., Yılmaz, M., Karacık, K., Altunkaynak, Z.S., and Elmas, A., 2000, When did the western Anatolian grabens begin to develop?, Tectonics and magmatism in Turkey and the surrounding area, eds.Bozkurt, E., Winchester, J.A., and Piper, J.D.A., United Kingdom: Geological Society of London, Special Publication, 353–384.
  • Yılmaz, A., and Yılmaz, H., 2006, Characteristic features and structural evolution of a post collisional basin: The sivas basin, central Anatolia, Turkey: Journal of Asian Earth Sciences, 272, 164–176. 10.1016/j.jseaes.2005.02.006
  • Zachos, J.C., McCarren, H., Murphy, B., Röhl, U., and Westerhold, T., 2010, Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals: Earth and Planetary Science Letters, 2991–2, 242–249. 10.1016/j.epsl.2010.09.004
  • Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, 2925517, 686–693. 10.1126/science.1059412
  • Zhang, J., and Nancollas, G.H., 1992, Influence of calcium/sulfate molar ratio on the growth rate of calcium sulfate dihydrate at constant supersaturation: Journal of Crystal Growth, 1183–4, 287–294. 10.1016/0022-0248(92)90073-R
  • Zorlu, K., İnan, S., Gül, M., İnan, N., Kurt, M.A., and Alpaslan, M., 2011, Geological evolution of the Ulukışla basin (late Cretaceous-Eocene) Central Anatolia, Turkey: Bulletin of the Earth Sciences (Application and Research Centre of Hacettepe University), 32-2, 151–170.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.