415
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Dynamics of Cambro–Ordovician rifting of the northern margin of Gondwana as revealed by the timing of subsidence and magmatism in rift-related basins

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3004-3027 | Received 11 May 2022, Accepted 21 Jan 2023, Published online: 08 Feb 2023

References

  • Anczkiewicz, R., Oberli, F., Burg, J.P., Villa, I.M., Günther, D., and Meier, M., 2001, Timing of normal faulting along the Indus Suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon: Earth and Planetary Science Letters, 191, 101–114. 10.1016/S0012-821X(01)00406-X
  • Andersen, T.B., Corfu, F., Labrousse, L., and Osmundsen, P.-T., 2012, Evidence for hyperextension along the pre-Caledonian margin of Baltica: Journal of the Geological Society, 169, 601–612.
  • Arenas, R., Martínez Catalán, J.R., Sánchez Martínez, S., Fernández-Suárez, J., Andonaegui, P., Pearce, J.A., and Corfu, F., 2007, The Vila de Cruces ophiolite: A remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif): Journal of Geology, 115, 129–148.10.1086/510645
  • Bábek, O., Faměra, M., Hladil, J., Kapusta, J., Weinerová, H., Šimíček, D., Slavík, L., and Ďurišová, J., 2018a, Origin of red pelagic carbonates as an interplay of global climate and local basin factors: Insight from the lower Devonian of the Prague Basin: Czech Republic: Sedimentary Geology, 364, 71–88.
  • Bábek, O., Faměra, M., Šimíček, D., Weinerová, H., Hladil, J., and Kalvoda, J., 2018b, Sea-level changes vs. organic productivity as controls on Early and Middle Devonian bioevents: facies- and gamma-ray based sequence-stratigraphic correlation of the Prague Basin, Czech Republic: Global and Planetary Change, 160, 75–95.
  • Bea, F., Montero, P., González-Lodeiro, F., and Talavera, C., 2007, Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician: Journal of Petrology, 48, 2327–2339. 10.1093/petrology/egm061
  • Brenchley, P.J., and Štorch, P., 1989, Environmental changes in the Hirnantian (upper Ordovician) of the Prague Basin: Czechoslovakia: Geological Journal, 24, 165–181.
  • Brun, J.P., and Choukroune, P., 1983, Normal faulting: block tilting, and décollement in a stretched crust: Tectonics, 2, 345–356.
  • Buck, W.R., 1991, Modes of continental lithospheric extension: Journal of Geophysical Research: Solid Earth, 96, 20161–20178.
  • Buck, W.R., Martinez, F., Steckler, M.S., and Cochran, J.R., 1988, Thermal consequences of lithospheric extension: Pure and simple: Tectonics, 7, 213–234.10.1029/TC007i002p00213
  • Bues, C., Dörr, W., Fiala, J., Vejnar, Z., and Zulauf, G., 2002, Emplacement depths and radiometric ages of Paleozoic plutons of the Neukirchen–Kdyne massif: Differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse Bohemian Massif): Tectonophysics, 352, 225–243.10.1016/S0040-1951(02)00198-1
  • Bues, C., and Zulauf, G., 2000, Microstructural evolution and geologic significance of garnet pyriclasites in the Hoher-Bogen shear zone (Bohemian Massif: Germany): International Journal of Earth Sciences, 88, 803–813.
  • Buriánek, D., Buřivalová, L., Houzar, S., Losos, Z., and Míková, J., 2020, Geochronology and petrogenesis of orthogneisses from the Pacov body: Implications for the subdivision of the Cambro–Ordovician peraluminous magmatism and related mineralizations in the Monotonous and Varied units of the Moldanubian Zone (Bohemian Massif): Mineralogy and Petrology, 114, 175–197. 10.1007/s00710-020-00699-8
  • Buriánek, D., Verner, K., Hanžl, P., and Krumlová, H., 2012, Ordovician metagranites and migmatites of the Svratka and Orlice–Sněžník Units, northeastern Bohemian Massif: Journal of Geosciences, 181–200. 10.3190/jgeosci.049
  • Cháb, J., Stráník, Z., and Eliáš, M., 2007, Geological map of the Czech Republic 1:500,000: Prague, Czech Geological Survey.
  • Chlupáč, I., 1988, Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian–Middle Devonian: Czechoslovakia): Journal of Geological Sciences, Geology, 43, 83–146.
  • Chlupáč, I., 1993, Geology of the Barrandian: A field trip guide: Stuttgart, Schweizerbart Science Publishers, v. 163.
  • Chlupáč, I., 2003, Comments on facies development and stratigraphy of the Devonian: Barrandian Area, Czech Republic: Bulletin of Geosciences, 78, 299–312.
  • Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z., and Štorch, P., 1998, Palaeozoic of the Barrandian, Prague, Czech Geological Survey.
  • Clerc, C., Ringenbach, J.-C., Jolivet, L., and Ballard, J.-F., 2018, Rifted margins: ductile deformation, boudinage, continentward-dipping normal faults and the role of the weak lower crust: Gondwana Research, 53, 20–40.
  • Cocks, L.R.M., and Torsvik, T.H., 2002, Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review: Journal of the Geological Society, 159, 631–644.10.1144/0016-764901-118
  • Collett, S., Schulmann, K., Štípská, P., and Míková, J., 2020, Chronological and geochemical constraints on the pre-Variscan tectonic history of the Erzgebirge: Saxothuringian Zone: Gondwana Research, 79, 27–48.
  • Cooke, R.A., and O´Brien, P.J., 2001, Resolving the relationship between high P–T rocks and gneisses in collisional terranes: An example from the Gföhl gneiss–granulite association in the Moldanubian Zone: Austria: Lithos, 58, 33–54.
  • Crowley, Q.G., Floyd, P.A., Winchester, J.A., Franke, W., and Holland, J.G., 2000, Early Palaeozoic rift-related magmatism in Variscan Europe: Fragmentation of the Armorican Terrane Assemblage: Terra Nova, 12, 171–180.10.1046/j.1365-3121.2000.00290.x
  • Díez Fernández, R., Pereira, M.F., and Foster, D.A., 2015, Peralkaline and alkaline magmatism of the Ossa-Morena zone (SW Iberia): age, source, and implications for the Paleozoic evolution of Gondwanan lithosphere: Lithosphere, 7, 73–90.
  • Domeier, M., 2016, A plate tectonic scenario for the Iapetus and Rheic oceans: Gondwana Research, 36, 275–295.10.1016/j.gr.2015.08.003
  • Dörr, W., Fiala, J., Vejnar, Z., and Zulauf, G., 1998, U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: Evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic): Geologische Rundschau, 87, 135–149.10.1007/s005310050195
  • Dörr, W., and Zulauf, G., 2010, Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: The role of the Bohemian shear zone: International Journal of Earth Sciences, 99, 299–325.10.1007/s00531-008-0389-x
  • Dörr, W., Zulauf, G., Fiala, J., Franke, W., and Vejnar, Z., 2002, Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit: A correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia: Czech Republic): Tectonophysics, 352, 65–85.
  • Drost, K., 2008, Sources and geotectonic setting of Late Neoproterozoic–Early Palaeozoic volcano-sedimentary successions of the Teplá–Barrandian unit (Bohemian Massif): Evidence from petrographical, geochemical, and isotope analyses: Geologica Saxonica, 54, 1–168.
  • Drost, K., Gerdes, A., Jeffries, T., Linnemann, U., and Storey, C., 2011, Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): Evidence from U–Pb detrital zircon ages: Gondwana Research, 19, 213–231. 10.1016/j.gr.2010.05.003
  • Faryad, S.W., and Cuthbert, S.J., 2020, High-temperature overprint in (U)HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)?: Earth-Science Reviews, 202, 103108.10.1016/j.earscirev.2020.103108
  • Faryad, S.W., and Kachlík, V., 2013, New evidence of blueschist facies rocks and their geotectonic implication for Variscan suture(s) in the Bohemian Massif: Journal of Metamorphic Geology, 31, 63–82.10.1111/jmg.12009
  • Faryad, S.W., Kachlík, V., Sláma, J., and Hoinkes, G., 2015, Implication of Corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian Zone (Bohemian Massif): Journal of Metamorphic Geology, 33, 295–310.10.1111/jmg.12121
  • Fatka, O., and Mergl, M., 2009, The ‘microcontinent’ Perunica: Status and story 15 years after conception: Geological Society, London, Special Publications, 325, 65–101.10.1144/SP325.4
  • Fernández, R.D., Castiñeiras, P., and Barreiro, J.G., 2012, Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin: Gondwana Research, 21, 1066–1079.10.1016/j.gr.2011.07.028
  • Finger, F., Gerdes, A., Janoušek, V., René, M., and Riegler, G., 2007, Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: The significance of the Bavarian and the Moravo–Moldanubian tectonometamorphic phases: Journal of Geosciences, 52, 9–28.
  • Franěk, J., Schulmann, K., Lexa, O., Tomek, C., and Edel, J.B., 2011, Model of syn-convergent extrusion of orogenic lower crust in the core of the Variscan belt: Implications for exhumation of high-pressure rocks in large hot orogens: Journal of Metamorphic Geology, 29, 53–78. 10.1111/j.1525-1314.2010.00903.x
  • Franke, W., 2006, The Variscan orogen in Central Europe: Construction and collapse: Geological Society: London, Memoirs, 32, 333–343.10.1144/GSL.MEM.2006.032.01.20
  • Franke, W., Cocks, L.R.M., and Torsvik, T.H., 2017, The Palaeozoic Variscan oceans revisited: Gondwana Research, 48, 257–284.10.1016/j.gr.2017.03.005
  • Friedl, G., Finger, F., Paquette, J.-L., von Quadt, A., McNaughton, N.J., and Fletcher, I.R., 2004, Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages: International Journal of Earth Sciences: 5, 93, 802–823.
  • Froitzheim, N., and Manatschal, G., 1996, Kinematics of Jurassic rifting: Mantle Exhumation, and passive-margin Formation in the Austroalpine and Penninic Nappes (Eastern Switzerland): Geological Society of America Bulletin, 108, 1120–1133.
  • García-Arias, M., Díez-Montes, A., Villaseca, C., and Blanco-Quintero, I.F., 2018, The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: A review: Earth-Science Reviews, 176, 345–372.10.1016/j.earscirev.2017.11.004
  • Gillard, M., Autin, J., and Manatschal, G., 2016, Fault systems at hyper-extended rifted margins and embryonic oceanic crust: Structural style evolution and relation to magma: Marine and Petroleum Geology, 76, 51–67.
  • Gutiérrez-Alonso, G., Fernández-Suárez, J., Jeffries, T.E., Jenner, G.A., Tubrett, M.N., Cox, R., and Jackson, S.E., 2003, Terrane accretion and dispersal in the northern Gondwana margin. An Early Paleozoic analogue of a long-lived active margin: Tectonophysics, 365, 221–232. 10.1016/S0040-1951(03)00023-4
  • Hajná, J., Žák, J., and Dörr, W., 2017, Time scales and mechanisms of growth of active margins of Gondwana: A model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex: Bohemian Massif: Gondwana Research, 42, 63–83.
  • Hajná, J., Žák, J., Dörr, W., Kachlík, V., and Sláma, J., 2018, New constraints from detrital zircon ages on prolonged, multiphase transition from the Cadomian accretionary orogen to a passive margin of Gondwana: Precambrian Research, 317, 159–178.
  • Hajná, J., Žák, J., and Kachlík, V., 2014, Growth of accretionary wedges and pulsed ophiolitic melange formation by successive subduction of trench-parallel volcanic elevations: Terra Nova, 26, 322–329. 10.1111/ter.12103
  • Havlíček, J., 1981, Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area – Central Bohemia): Journal of Geological Sciences: Geology, 35, 7–48.
  • Henderson, B.J., Collins, W.J., Murphy, J.B., Gutiérrez-Alonso, G., and Hand, M., 2016, Gondwanan basement terranes of the Variscan–Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes: Tectonophysics, 681, 278–304.
  • Holub, F.V., Cocherie, A., and Rossi, P., 1997a, Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex: Constraints on the chronology of thermal and tectonic events along the Barrandian–Moldanubian boundary: Comptes Rendus de L’Academie des Sciences: Series IIA, Earth and Planetary Science, 325, 19–26.
  • Holub, F.V., Machart, J., and Manová, M., 1997b, The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation: Journal of Geological Sciences, Economic Geology, Mineralogy, 31, 27–50.
  • Horstwood, M.S.A., Košler, J., Gehrels, G., Jackson, S.E., McLean, N.M., Paton, C., Pearson, N.J., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J.F., Condon, D.J., and Schoene, B., 2016, Community‐derived standards for LA‐ICP-MS U–(Th–)Pb geochronology: uncertainty Propagation, age interpretation and data reporting: Geostandards and Geoanalytical Research, 40, 311–332.
  • Hoskin, P.W.O., and Black, L.P., 2002, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon: Journal of Metamorphic Geology, 18, 423–439.10.1046/j.1525-1314.2000.00266.x
  • Hoskin, P.W.O., and Schaltegger, U., 2003, The composition of zircon and igneous and metamorphic petrogenesis: Reviews in Mineralogy and Geochemistry, 53, 27–62.10.2113/0530027
  • Huismans, R.S., and Beaumont, C., 2014, Rifted continental margins: The case for depth-dependent extension: Earth and Planetary Science Letters, 407, 148–162.10.1016/j.epsl.2014.09.032
  • Huppert, H.E., and Sparks, R.S.J., 1988, The generation of granitic magmas by intrusion of basalt into continental crust: Journal of Petrology, 29, 599–624.10.1093/petrology/29.3.599
  • Jackson, S.E., Pearson, N.J., Griffin, W.L., and Belousova, E.A., 2004, The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology: Chemical Geology, v: 211, No, 1–2, 47–69.
  • Janoušek, V., Bowes, D.R., Rogers, G., Farrow, C.M., and Jelínek, E., 2000, Modelling diverse processes in the petrogenesis of a composite batholith: The Central Bohemian Pluton: Central European Hercynides: Journal of Petrology, 41, 511–543.
  • Janoušek, V., and Holub, F., 2007, The causal link between HP–HT metamorphism and ultrapotassic magmatism in collisional orogens: Case study from the Moldanubian Zone of the Bohemian Massif: Proceedings of the Geologists´ Association, 118, 75–86.10.1016/S0016-7878(07)80049-6
  • Janoušek, V., Vrána, S., Erban, V., Vokurka, K., and Drábek, M., 2008, Metabasic rocks in the Varied Group of the Moldanubian Zone, southern Bohemia: their petrology, geochemical character and possible petrogenesis: Journal of Geosciences, 53, 31–64.
  • Janoušek, V., Wiegand, B.A., and Žák, J., 2010, Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: New U–Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite: Central Bohemian Plutonic Complex: Journal of the Geological Society, 167, 347–360.
  • Kachlík, V., 1999, Relationship between Moldanubicum, the Kutná Hora crystalline unit, and Bohemicum (Central Bohemia, Czech Republic): A result of the polyphase nappe tectonics: Journal of the Czech Geological Society, 3–4, 201–289.
  • Keppie, J.D., Dostal, J., Nance, R.D., Miller, B.V., Ortega-Rivera, A., and Lee, J.K.W., 2006, Circa 546 Ma plume-related dykes in the ∼1 Ga Novillo Gneiss (east-central Mexico): Evidence for the initial separation of Avalonia: Precambrian Research, 147, 342–353.
  • Keppie, J.D., Nance, R.D., Murphy, J.B., and Dostal, J., 2003, Tethyan, Mediterranean, and Pacific analogues for the Neoproterozoic–Paleozoic birth and development of peri-Gondwanan terranes and their transfer to Laurentia and Laurussia: Tectonophysics, 365, 195–219.
  • Klomínský, J., Jarchovský, P., and Rajpoot, G.S., 2010, Atlas of plutonic rocks and orthogneisses in the Bohemian Massif: RAWRA Technical Report, TR-1-2010, 1–638.
  • Košler, J., Konopásek, J., Sláma, J., and Vrána, S., 2014, U–Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif: Journal of the Geological Society, 171, 83–95.10.1144/jgs2013-059
  • Kotková, J., 2007, High-pressure granulites of the Bohemian Massif: Recent advances and open questions: Journal of Geosciences, 52, 45–71.
  • Kříž, J., 1992, Silurian field exkursions: Prague Basin (Barrandian): Bohemia: National Museum of Wales, Geological Notes, 13, 1–111.
  • Kroner, U., and Romer, R.L., 2013, Two plates – many subduction zones: The Variscan orogeny reconsidered: Gondwana Research, 24, 298–329.
  • Kukal, Z., and Jäger, O., 1988, Siliciclastic signal of the Variscan orogenesis: The Devonian Srbsko Formation of Central Bohemia: Bulletin of the Czech Geological Survey, 63, 65–80.
  • Landing, E., Keppie, J.D., Keppie, D.F., Geyer, G., and Westrop, S.R., 2022, Greater Avalonia—latest Ediacaran–Ordovician “peribaltic” terrane bounded by continental margin prisms (“Ganderia,” Harlech Dome, Meguma): Review, tectonic implications, and paleogeography: Earth-Science Reviews, 224, 103863.10.1016/j.earscirev.2021.103863
  • Lardeaux, J.M., Schulmann, K., Faure, M., Janoušek, V., Lexa, O., Skrzypek, E., Edel, J.B., and Štípská, P., 2014, The Moldanubian Zone in the French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities: Geological Society, London, Special Publications, 405, 7–44.10.1144/SP405.14
  • Lehnert, O., Frýda, J., Buggisch, W., Munnecke, A., Nützel, A., Kříž, J., and Manda, Š., 2007, δ13C records across the late Silurian Lau event: New data from middle palaeo-latitudes of northern peri-Gondwana (Prague Basin, Czech Republic): Palaeogeography, Palaeoclimatology, Palaeoecology, 245, 227–244.10.1016/j.palaeo.2006.02.022
  • Linnemann, U., 2007, Ediacaran rocks from the Cadomian basement of the Saxo-Thuringian Zone (NE Bohemian Massif, Germany): age constraints, geotectonic setting and basin development: Geological Society, London, Special Publications, 286, 35–51.
  • Linnemann, U., Gerdes, A., Hofmann, M., and Marko, L., 2014, The Cadomian Orogen: Neoproterozoic to Early Cambrian crustal growth and orogenic zoning along the periphery of the West African Craton – Constraints from U–Pb zircon ages and Hf isotopes (Schwarzburg Antiform: Germany): Precambrian Research, 244, 236–278.
  • Linnemann, U., McNaughton, N.J., Romer, R.L., Gehmlich, M., Drost, K., and Tonk, C., 2004, West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana?– U/Pb-SHRIMP zircon evidence and the Nd-isotopic record: International Journal of Earth Sciences, 93, 683–705.10.1007/s00531-004-0413-8
  • Linnemann, U., Pereira, F., Jeffries, T.E., Drost, K., and Gerdes, A., 2008, The Cadomian Orogeny and the opening of the Rheic Ocean: The diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones: Iberian and Bohemian Massifs): Tectonophysics, 461, 21–43.
  • Lister, G.S., Etheridge, M.A., and Symonds, P.A., 1986, Detachment faulting and the evolution of passive continental margins: Geology, 14, 246–250.10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2
  • Ludwig, K.R., 2012, User´s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center Special Publication, 5, 1–75.
  • Manatschal, G., 2004, New models for evolution of magma-poor rifted margins based on a review of data and concepts from West Iberia and the Alps: International Journal of Earth Sciences, 93, 432–466.10.1007/s00531-004-0394-7
  • McKenzie, D., 1978, Some remarks on the development of sedimentary basins: Earth and Planetary Science Letters, 40, 25–32.10.1016/0012-821X(78)90071-7
  • Medaris, G., Wang, H., Jelínek, E., Mihaljevič, M., and Jakeš, P., 2005, Characteristics and origins of diverse Variscan peridotites in the Gföhl Nappe: Bohemian Massif, Czech Republic: Lithos, 82, 1–23.
  • Merdith, A.S., Williams, S.E., Collins, A.S., Tetley, M.G., Mulder, J.A., Blades, M.L., Young, A., Armistead, S.E., Cannon, J., Zahirovic, S., and Müller, R.D., 2021, Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic: Earth-Science Reviews, 214, 103477.
  • Mohn, G., Manatschal, G., Beltrando, M., Masini, E., and Kusznir, N., 2012, Necking of continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins: Tectonics, 31, TC1012.10.1029/2011TC002961
  • Murphy, J.B., Eguiluz, L., and Zulauf, G., 2002, Cadomian Orogens: peri-Gondwanan Correlatives and Laurentia–Baltica Connections: Tectonophysics, 352, 1–9.
  • Murphy, J.B., Gutierrez-Alonso, G., Nance, R.D., Fernandez-Suarez, J., Keppie, J.D., Quesada, C., Strachan, R.A., and Dostal, J., 2006, Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture?: Geology, 34, 325–328.10.1130/G22068.1
  • Murphy, J.B., Keppie, J.D., Dostal, J., and Nance, R.D., 1999, The Neoproterozoic–early Paleozoic evolution of Avalonia: Geological Society of America Special Paper, 336, 253–266.
  • Murphy, J.B., Nance, R.D., and Wu, L., 2023, The provenance of Avalonia and its tectonic implications: A critical reappraisal: Geological Society, London, Special Publications, 531. 10.1144/SP531-2022-176
  • Nagel, T.J., and Buck, W.R., 2004, Symmetric alternative to asymmetric rifting models: Geology, 32, 937–940. 10.1130/G20785.1
  • Nagel, T.J., and Buck, W.R., 2007, Control of rheological stratification on rifting geometry: A symmetric model resolving the upper plate paradox: International Journal of Earth Sciences, 96, 1047–1057. 10.1007/s00531-007-0195-x
  • Nahodilová, R., Faryad, S.W., Dolejš, D., Tropper, P., and Konzett, J., 2011, High-pressure partial melting and melt loss in felsic granulites in the Kutná Hora complex, Bohemian Massif (Czech Republic): Lithos, 125, 641–658.
  • Nahodilová, R., Hasalová, P., Štípská, P., Schulmann, K., Závada, P., Míková, J., Kylander-Clark, A., and Maierová, P., 2020, Exhumation of subducted continental crust along the arc region: Gondwana Research, 80, 157–187.10.1016/j.gr.2019.10.011
  • Nahodilová, R., Štípská, P., Powell, R., Košler, J., and Racek, M., 2014, High-Ti muscovite as a prograde relict in high pressure granulites with metamorphic Devonian zircon ages (Běstvina granulite body, Bohemian Massif): Consequences for the relamination model of subducted crust: Gondwana Research, 25, 630–648.
  • Nance, R.D., Gutierréz-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., and Woodcock, N.H., 2010, Evolution of the Rheic Ocean: Gondwana Research, 17, 194–222.
  • Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., and Woodcock, N.H., 2012, A brief history of the Rheic Ocean: Geoscience Frontiers, 3, 125–135. 10.1016/j.gsf.2011.11.008
  • Nance, R.D., and Linnemann, U., 2008, The Rheic Ocean: Origin, evolution, and significance: GSA Today, 18, 4–12.
  • Nance, R.D., Murphy, J.B., and Keppie, J.D., 2002, A Cordilleran model for the evolution of Avalonia: Tectonophysics, 352, 11–31.10.1016/S0040-1951(02)00187-7
  • Nance, R.D., Murphy, J.B., Strachan, R.A., D’Lemos, R.S., and Taylor, G.K., 1991, Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes: Precambrian Research, 53, 41–78.10.1016/0301-9268(91)90005-U
  • Patočka, F., and Štorch, P., 2004, Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá-Barrandian Unit: Bohemian Massif, Czech Republic): International Journal of Earth Sciences, 93, 728–741.
  • Patočka, F., Vlašímský, P., and Blechová, K., 1993, Geochemistry of Early Paleozoic volcanics of the Barrandian Basin (Bohemian Massif, Czech Republic): Implications for paleotectonic reconstructions: Jahrbuch der Geologischen Bundesanstalt, 136, 873–896.
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data: Journal of Analytical Atomic Spectrometry, 26, 2508–2518. 10.1039/c1ja10172b
  • Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., and Maas, R., 2010, Improved laser ablation U–Pb zircon geochronology through robust downhole fractionation correction: Geochemistry, Geophysics, Geosystems, 11, Q0AA06.10.1029/2009GC002618
  • Péron-Pinvidic, G., and Manatschal, G., 2009, The final rifting evolution at deep magma-poor passive margins from Iberia–Newfoundland: A new point of view: International Journal of Earth Sciences, 98, 1581–1597.10.1007/s00531-008-0337-9
  • Péron-Pinvidic, G., and Manatschal, G., 2019, Rifted margins: State of the art and future challenges: Frontiers in Earth Science, 7, 218.10.3389/feart.2019.00218
  • Péron-Pinvidic, G., Manatschal, G., and Osmundsen, P.T., 2013, Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts: Marine and Petroleum Geology, 43, 21–47.10.1016/j.marpetgeo.2013.02.002
  • Pertoldová, J., Verner, K., Vrána, S., Buriánek, D., Štědrá, V., and Vondrovic, L., 2010, Comparison of lithology and tectonometamorphic evolution of units at the northern margin of the Moldanubian Zone: Implications for geodynamic evolution in the northeastern part of the Bohemian Massif: Journal of Geosciences, 55, 299–319.
  • Petersen, K.D., and Schiffer, C., 2016, Wilson cycle passive margins: Control of orogenic inheritance on continental breakup: Gondwana Research, 39, 131–144.10.1016/j.gr.2016.06.012
  • Petrakakis, K., 1997, Evolution of Moldanubian rocks in Austria: Review and synthesis: Journal of Metamorphic Geology, 15, 203–222.10.1111/j.1525-1314.1997.00015.x
  • Petri, B., Štípská, P., Skrzypek, E., Schulmann, K., Corsini, M., and Franěk, J., 2014, Thermal and mechanical behaviour of the orogenic middle crust during the syn- to late-orogenic evolution of the Variscan root zone: Bohemian Massif: Journal of Metamorphic Geology, 32, 599–626.
  • Petrus, J.A., and Kamber, B.S., 2012, VizualAge: A novel approach to laser ablation ICP-MS U–Pb geochronology data reduction: Geostandards and Geoanalytical Research, 36, 247–270. 10.1111/j.1751-908X.2012.00158.x
  • Pin, C., Kryza, R., Oberc-Dziedzic, T., Mazur, S., Turniak, K., and Waldhausrová, J., 2007, The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: A review based on Sm–Nd isotope and geochemical data: Geological Society of America Special Paper, 423, 209–229.
  • Pitra, P., Burg, J.P., Schulmann, K., and Ledru, K., 1994, Late orogenic extension in the Bohemian Massif: Petrostructural evidence in the Hlinsko region: Geodinamica Acta, 7, 15–30.10.1080/09853111.1994.11105256
  • Pitra, P., and Guiraud, M., 1996, Probable anticlockwise P–T evolution in extending crust: Hlinsko region: Bohemian Massif: Journal of Metamorphic Geology, 14, 49–60.
  • Pollock, J.C., Hibbard, J.P., and Sylvester, P.J., 2009, Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland: Journal of the Geological Society, 166, 501–515.10.1144/0016-76492008-088
  • Pouclet, A., Álvaro, J.J., Bardintzeff, J.-M., Imaz, A.G., Monceret, E., and Vizcaïno, D., 2017, Cambrian–early Ordovician volcanism across the South Armorican and Occitan domains of the Variscan Belt in France: Continental break-up and rifting of the northern Gondwana margin: Geoscience Frontiers, 8, 25–64. 10.1016/j.gsf.2016.03.002
  • Prigmore, J.K., Butler, A.J., and Woodcock, N.H., 1997, Rifting during separation of Eastern Avalonia from Gondwana: Evidence from subsidence analysis: Geology, 25, 203–206.10.1130/0091-7613(1997)025<0203:RDSOEA>2.3.CO;2
  • Reitz, E., 1992, Silurian miospores from a mica-schist near Rittsteig: Northern Bavarian Forest: Neues Jahrbuch für Geologie and Paläontologie, Monatshefte, 6, 351–358.
  • René, M., 2006, Provenance studies of Moldanubian paragneisses based on geochemical data (Bohemian Massif: Czech Republic): Neues Jahrbuch für Geologie and Paläontologie, Abhandlungen, 242, 83–101.
  • René, M., and Finger, F., 2016, The Blaník Gneiss in the southern Bohemian Massif (Czech Republic): A rare rock composition among the early palaeozoic granites of Variscan Central Europe: Mineralogy and Petrology, 110, 503–514. 10.1007/s00710-016-0427-5
  • Robardet, M., 2003, The Armorica ‘microplate’: Fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data: Palaeogeography: Palaeoclimatology, Palaeoecology, 195, 125–148.10.1016/S0031-0182(03)00305-5
  • Rodríguez, C., Castro, A., Gómez-Frutos, D., Gutiérrez-Alonso, G., Francisco Pereira, M., and Fernández, C., 2022, The unique Cambro-Ordovician silicic large igneous province of NW Gondwana: Catastrophic melting of a thinned crust: Gondwana Research, 106, 164–173.10.1016/j.gr.2022.01.011
  • Romer, R.L., and Kroner, U., 2019, First direct evidence for a contiguous Gondwana shelf to the south of the Rheic Ocean: Geology, 47, 767–770. 10.1130/G46255.1
  • Rubatto, D., 2017, Zircon: The metamorphic mineral: Reviews in Mineralogy and Geochemistry, 83, 261–295.10.2138/rmg.2017.83.9
  • Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopásek, J., Lexa, O., and Štípská, P., 2005, Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic: American Journal of Science, 305, 407–448.10.2475/ajs.305.5.407
  • Sláma, J., Dunkley, D.J., Kachlík, V., and Kusiak, M.A., 2008a, Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif: Tectonophysics, 461, 44–59.10.1016/j.tecto.2008.03.005
  • Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., and Whitehouse, M.J., 2008b, Plešovice zircon: A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, 249, 1–35. 10.1016/j.chemgeo.2007.11.005
  • Soejono, I., Machek, M., Sláma, J., Janoušek, V., and Kohút, M., 2020, Cambro–Ordovician anatexis and magmatic recycling at the thinned Gondwana margin: New constraints from the Kouřim Unit, Bohemian Massif: Journal of the Geological Society, 177, 325–341. 10.1144/jgs2019-037
  • Stephan, T., Kroner, U.W.E., and Romer, R.L., 2019b, The pre-orogenic detrital zircon record of the Peri-Gondwanan crust: Geological Magazine, 156, 281–307. 10.1017/S0016756818000031
  • Stephan, T., Kroner, U., Romer, R.L., and Rösel, D., 2019a, From a bipartite Gondwanan shelf to an arcuate Variscan belt: The early Paleozoic evolution of northern Peri-Gondwana: Earth-Science Reviews, 192, 491–512.
  • Štorch, P., 2006, Facies development, depositional settings and sequence stratigraphy across the Ordovician–Silurian boundary: A new perspective from the Barrandian area of the Czech Republic: Geological Journal, 41, 163–192.10.1002/gj.1038
  • Štorch, P., Fatka, O., and Kraft, P., 1993, Lower Palaeozoic of the Barrandian area (Czech Republic) – A review: Coloquios de Paleontología, 45, 163–191.
  • Štorch, P., and Kraft, P., 2009, Graptolite assemblages and stratigraphy of the lower Silurian Mrákotín Formation, Hlinsko Zone, NE interior of the Bohemian Massif (Czech Republic): Bulletin of Geosciences, 84, 51–74.10.3140/bull.geosci.1077
  • Strnad, L., and Mihaljevič, M., 2005, Sedimentary provenance of Mid-Devonian clastic sediments in the Teplá–Barrandian Unit (Bohemian Massif): U–Pb and Pb–Pb geochronology of detrital zircons by laser ablation ICP-MS: Mineralogy and Petrology, 84, 47–68.10.1007/s00710-004-0057-1
  • Syahputra, R., Žák, J., and Nance, R.D., 2022, Cambrian sedimentary basins of northern Gondwana as geodynamic markers of incipient opening of the Rheic Ocean: Gondwana Research, 105, 492–513.10.1016/j.gr.2021.10.004
  • Synek, J., and Oliveriová, D., 1993, Terrane character of the north-east margin of the Moldanubian Zone: The Kutná Hora Crystalline Complex, Bohemian Massif: Geologische Rundschau, 82, 566–582.10.1007/BF00212417
  • Tasáryová, Z., Janoušek, V., and Frýda, J., 2018, Failed Silurian continental rifting at the NW margin of Gondwana: Evidence from basaltic volcanism of the Prague Basin (Teplá–Barrandian Unit, Bohemian Massif): International Journal of Earth Sciences, 107, 1231–1266. 10.1007/s00531-017-1530-5
  • Teipel, U., Eichhorn, R., Loth, G., Rohrmuller, J., Holl, R., and Kennedy, A., 2004, U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician magmatism: International Journal of Earth Sciences, 93, 782–801.10.1007/s00531-004-0419-2
  • Thompson, M.D., Grunow, A.M., and Ramezani, J., 2010, Cambro-Ordovician paleogeography of the Southeastern New England Avalon Zone: Implications for Gondwana breakup: Geological Society of America Bulletin, 122, 76–88. 10.1130/B26581.1
  • Tugend, J., Manatschal, G., Kusznir, N.J., Masini, E., Mohn, G., and Thinon, I., 2014, Formation and deformation of hyperextended rift systems: Insights from rift domain mapping in the Bay of Biscay–Pyrenees: Tectonics, 33, 1239–1276. 10.1002/2014TC003529
  • Tunheng, A., and Hirata, T., 2004, Development of signal smoothing device for precise elemental analysis using laser ablation-ICP-mass spectrometry: Journal of Analytical Atomic Spectrometry, 19, 932–934. 10.1039/b402493a
  • Unternehr, P., Péron-Pinvidic, G., Manatschal, G., and Sutra, E., 2010, Hyper-extended crust in the South Atlantic: In search of a model: Petroleum Geoscience, 16, 207–215. 10.1144/1354-079309-904
  • Vacek, F., 2011, Palaeoclimatic event at the Lochkovian–Pragian boundary recorded in magnetic susceptibility and gamma-ray spectrometry (Prague Synclinorium, Czech Republic): Bulletin of Geosciences, 86, 259–268.10.3140/bull.geosci.1243
  • Vacek, F., Slavík, L., Sobień, K., and Čáp, P., 2018, Refining the late Silurian sea-level history of the Prague Syncline: A case study based on the Přídolí GSSP (Czech Republic): Facies, 64, 30. 10.1007/s10347-018-0542-3
  • Vacek, F., and Žák, J., 2019, A lifetime of the Variscan orogenic plateau from uplift to collapse as recorded by the Prague Basin, Bohemian Massif: Geological Magazine, 156, 485–509. 10.1017/S0016756817000875
  • van Breemen, O., Aftalion, M., Bowes, D.R., Dudek, A., Mísař, Z., Povondra, P., and Vrána, S., 1982, Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe: Transactions of the Royal Society of Edinburgh: Earth Sciences, 73, 89–108.
  • Verner, K., Buriánek, D., Vrána, S., Vondrovic, L., Pertoldová, J., Hanžl, P., and Nahodilová, R., 2009, Tectonometamorphic features of geological units along the northern periphery of the Moldanubian Zone (Bohemian Massif): Journal of Geosciences, 54, 87–100.
  • Villaseca, C., Merino Martínez, E., Orejana, D., Andersen, T., and Belousova, E., 2016, Zircon Hf signatures from granitic orthogneisses of the Spanish Central System: Significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt: Gondwana Research, 34, 60–83.10.1016/j.gr.2016.03.004
  • Vondrovic, L., Verner, K., Buriánek, D., Halodová, P., Kachlík, V., and Míková, J., 2011, Emplacement, structural and P–T evolution of the ~346 Ma Miřetín Pluton (eastern Teplá–Barrandian Zone, Bohemian Massif): Implications for regional transpressional tectonics: Journal of Geosciences, 56, 343–357.
  • von Raumer, J.F., Bussy, F., Schaltegger, U., Schulz, B., and Stampfli, G.M., 2013, Pre-Mesozoic Alpine basements: Their place in the European Paleozoic framework: Geological Society of America Bulletin, 125, 89–108.10.1130/B30654.1
  • von Raumer, J.F., and Stampfli, G.M., 2008, The birth of the Rheic Ocean: Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios: Tectonophysics, 461, 9–20.10.1016/j.tecto.2008.04.012
  • von Raumer, J.F., Stampfli, G.M., Arenas, R., and Sánchez Martínez, S., 2015, Ediacaran to Cambrian oceanic rocks of the Gondwana margin and their tectonic interpretation: International Journal of Earth Sciences, 104, 1107–1121.10.1007/s00531-015-1142-x
  • Weinerová, H., Bábek, O., Slavík, L., Vonhof, H., Joachimski, M.M., and Hladil, J., 2020, Oxygen and carbon stable isotope records of the Lochkovian–Pragian boundary interval from the Prague Basin (Lower Devonian, Czech Republic): Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110036.10.1016/j.palaeo.2020.110036
  • Wernicke, B., 1985, Uniform-sense normal simple shear of the continental lithosphere: Canadian Journal of Earth Sciences, 22, 108–125.10.1139/e85-009
  • Wernicke, B., and Burchfiel, B.C., 1982, Modes of extensional tectonics: Journal of Structural Geology, 4, 105–115.10.1016/0191-8141(82)90021-9
  • Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., and Spiegel, W., 1995, Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses: Geostandards Newsletter, 19, 1–23. 10.1111/j.1751-908X.1995.tb00147.x
  • Žák, J., Kraft, P., and Hajná, J., 2013, Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean: International Journal of Earth Sciences, 102, 415–433.10.1007/s00531-012-0811-2
  • Žák, J., and Sláma, J., 2018, How far did the Cadomian terranes travel from Gondwana during early Palaeozoic? A critical reappraisal based on detrital zircon geochronology: International Geology Review, 60, 319–338. 10.1080/00206814.2017.1334599
  • Žák, J., Svojtka, M., Gerdjikov, I., Kounov, A., and Vangelov, D.A., 2022, The Balkan terranes: A missing link between the eastern and western segments of the Avalonian–Cadomian orogenic belt?: International Geology Review, 64, 2389–2415.10.1080/00206814.2020.1861486
  • Žák, J., Svojtka, M., Hajná, J., and Ackerman, L., 2020, Detrital zircon geochronology and processes in accretionary wedges: Earth-Science Reviews, 207, 103214.10.1016/j.earscirev.2020.103214
  • Žák, J., Verner, K., Holub, F.V., Kabele, P., Chlupáčová, M., and Halodová, P., 2012, Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif: Journal of Structural Geology, 36, 27–42.10.1016/j.jsg.2011.12.011
  • Zieger, J., Linnemann, U., Hofmann, M., Gärtner, A., Marko, L., and Gerdes, A., 2017, A new U–Pb LA-ICP-MS age of the Rumburk granite (Lausitz Block, Saxo-Thuringian Zone): Constraints for a magmatic event in the Upper Cambrian: International Journal of Earth Sciences, 107, 933–953. 10.1007/s00531-017-1511-8
  • Ziegler, P.A., and Cloetingh, S., 2004, Dynamic processes controlling evolution of rifted basins: Earth-Science Reviews, 64, 1–50.
  • Zulauf, G., Bues, C., Dörr, W., and Vejnar, Z., 2002, 10 km Minimum throw along the West Bohemian shear zone: Evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides): International Journal of Earth Sciences, 91, 850–864. 10.1007/s00531-001-0250-y
  • Zulauf, G., Dörr, W., Fiala, J., and Vejnar, Z., 1997, Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides): Geologische Rundschau, 86, 571–584.10.1007/s005310050164
  • Zulauf, G., and Helferich, S., 1997, Strain and strain rate in a synkinematic trondhjemitic dike: Evidence for melt-induced strain softening during shearing (Bohemian Massif, Czech Republic): Journal of Structural Geology, 19, 639–652. 10.1016/S0191-8141(96)00100-9
  • Zulauf, G., Schitter, F., Riegler, G., Finger, F., Fiala, J., and Vejnar, Z., 1999, Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite: Zeitschrift der Deutschen Geologischen Gesellschaft, 150, 627–639.10.1127/zdgg/150/2000/627

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.