407
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Understanding the origin of ancient carbonate ooids: recent findings

ORCID Icon, , , , & ORCID Icon
Pages 927-946 | Received 29 Mar 2023, Accepted 29 May 2023, Published online: 26 Jun 2023

References

  • Anderson, N.T., Cowan, C.A., and Bergmann, K.D., 2020, A case for the growth of ancient ooids within the sediment pile: Journal of Sedimentary Research, v. 90, no. 8, p. 843–854. doi:10.2110/jsr.2020.45
  • Ariztegui, D., Plée, K., Farah, R., Menzinger, N., and Pacton, M., 2012, Bridging the gap between biological and sedimentological processes in ooid formation: Archives des Sciences, v. 65, p. 93–102.
  • Ball, M.M., 1967, Carbonate sand bodies of Florida and the Bahamas: Journal of Sedimentary Petrology, v. 37, p. 556–591. doi:10.1306/74D7171C-2B21-11D7-8648000102C1865D
  • Batchelor, M.T., Burne, R.V., Henry, B.I., Li, F., and Paul, J., 2018, A biofilm and organomineralisation model for the growth and limiting size of ooids: Scientific Report, v. v, p. 8. doi:10.1038/s41598-017-18908-4
  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M., and Visscher, P.T., 2006, Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries: Sedimentary Geology, v. 185, no. 3–4, p. 131–145. doi:10.1016/j.sedgeo.2005.12.008
  • Benzerara, K., Menguy, N., López-García, P., Yoon, T.H., Kazmierczak, J., Tyliszczak, T., Guyot, F., and Brown, G.E., Jr., 2006, Nanoscale detection of organic signatures in carbonate microbialites: Proceedings of the National Academy of Sciences, USA, v. 103, p. 9440–9445.
  • Benzerara, K., Morin, G., Yoon, T.H., Miot, J., Tyliszczak, T., Casiot, C., Bruneel, O., Farges, F., and Brown, G.E., 2008, Nanoscale study of as biomineralization in an acid mine drainage system: Geochimica et Cosmochimica Acta, v. 72, no. 16, p. 3949–3963. doi:10.1016/j.gca.2008.05.046
  • Berner, R.A., 1971, Principles of chemical sedimentology, New York: McGraw Hill, p. 240 p.
  • Berner, R.A., and Raiswell, R., 1983, Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory: Geochimica et Cosmochimica Acta, v. 47, no. 5, p. 855–862. doi:10.1016/0016-7037(83)90151-5
  • Beukes, N., 1983, Ooids and oolites of the Proterophytic Boomplaas formatin, Transvaal supergroup, Griqualand West, South Africa, in Peryt, T.M., ed., Coated grains: Springer-Verlag, Berlin Heidelberg, pp. 199–214. doi:10.1007/978-3-642-68869-0_18
  • Black, M., 1933, The precipitation of calcium carbonate on the great Bahama bank: Geological Magazine, v. 70, no. 10, p. 455–466. doi:10.1017/S0016756800096539
  • Bots, P., Benning, L.G., Rodriguez-Blanco, J.D., Roncal-Herrero, T., and Shaw, S., 2012, Mechanistic insights into the crystallization of Amorphous Calcium Carbonate (ACC): Cry: Crystal Growth & Design, v. 12, no. 7, p. 3806–3814. doi:10.1021/cg300676b
  • Braissant, O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M., and Visscher, P.T., 2007, Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals: Geobiology, v. 5, no. 4, p. 401–411. doi:10.1111/j.1472-4669.2007.00117.x
  • Brehm, U., Krumbein, W.E., and Palinska, K.A., 2003, Microbial spheres: A novel cyanobacterial-diatom symbiosis: Naturwissenschaften, v. 90, p. 136–140. doi:10.1007/s00114-003-0403-x
  • Brehm, U., Krumbein, W.E., and Palinska, K.A., 2006, Biomicrospheres generate ooids in the Laboratory: Geomicrobiology Journal, v. 23, no. 7, p. 545–550. doi:10.1080/01490450600897302
  • Brehm, U., Palinska, K.A., and Krumbein, W.E., 2004, Laboratory cultures of calcifying biomicrospheres generate ooids-A contribution to the origin of oolites: Carnets de Géologie, v. 3, p. 1–6.
  • Castanier, S., Le Métayer-Levrel, G., and Perthuisot, J.P., 1999, Carbonate precipitation and limestone genesis-the microbiologist point of view: Sedimentary Geology, v. 126, p. 9–23. doi:10.1016/S0037-0738(99)00028-7
  • Chow, N., and James, N.P., 1987, Facies-specific, calcitic and bimineralic ooids from middle and upper cambrian platform carbonates, Western Newfoundland, Canada: Journal of Sedimentary Petrology, v. 57, p. 907–921. doi:10.1306/212F8CA1-2B24-11D7-8648000102C1865D
  • Cohen, A.S., and Thouin, C., 1987, Nearshore carbonate deposits in Lake Tanganyika: Geology, v. 15, no. 5, p. 414–418. doi:10.1130/0091-7613(1987)15<414:NCDILT>2.0.CO;2
  • Davaud, E., and Girardclos, S., 2001, Recent freshwater ooids and oncoids from Western Lake Geneva (Switzerland): Indications of a common organically mediated origin: Journal of Sedimentary Research, v. 71, no. 3, p. 423–429. doi:10.1306/2DC40950-0E47-11D7-8643000102C1865D
  • Davies, G.R., 1970, Carbonate bank sedimentation, Eastern Shark Bay, Western Australia, in Logan Davies, B.W., Read, J.R., and Cebulski, J.F., eds., Carbonate sedimentation and environments, Shark Bay: Western Australia, AAPG Memoir, Vol. 13, pp. 85–168. doi:10.1306/M13369C3
  • Davies, P.J., Bubela, B., and Ferguson, J., 1978, The formation of ooids: Sedimentology, v. 25, no. 5, p. 703–730. doi:10.1111/j.1365-3091.1978.tb00326.x
  • Davies, P.J., and Martin, K., 1978, Radial aragonitic ooids, Lizard Island, Great Barrier Reef: Queensland, Australia, Geology, Vol. 4, pp. 120–122 p.
  • Decho, A.W., 2000, Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms, in Riding, R.E., and Awrmik, S.M., eds., Microbial sediments: Springer-Verlag, Berlin, pp. 1–9. doi:10.1007/978-3-662-04036-2_2
  • Decho, A.W., 2010, Overview of biopolymer-induced mineralization: What goes on in biofilms?: Ecological Engineering, v. 36, no. 2, p. 137–144. doi:10.1016/j.ecoleng.2009.01.003
  • Decho, A.W., and Gutierrez, T., 2017, Microbial Extracellular Polymeric Substances (EPSs) in ocean systems: Frontiers in Microbiology, v. 8, p. 1–28. doi:10.3389/fmicb.2017.00922
  • Deelman, J.C., 1978, Experimental ooids and grapestones: Carbonate aggregates and their origin: Journal of Sedimentary Petrology, v. 48, p. 503–512. doi:10.1306/212F74B9-2B24-11D7-8648000102C1865D
  • De Wit, R., Gautret, P., Bettarel, Y., Roques, C., Marlière, C., Ramonda, M., Nguyen Thanh, T., Tran Quang, H., Bouvier, T., and Vopel, K.C., 2015, Viruses occur incorporated in biogenic high-Mg calcite from hypersaline microbial mats: PLoS One, v. 10, p. 10. doi:10.1371/journal.pone.0130552
  • Diaz, M.R., and Eberli, G.P., 2019, Decoding the mechanism of formation in marine ooids: A review: Earth-Sceince Review, v. 190, p. 536–556. doi:10.1016/j.earscirev.2018.12.016
  • Diaz, M.R., Eberli, G.P., Blackwelder, P., Phillips, B., and Swart, P.K., 2017, Microbially mediated organomineralization in the formation of ooids: Geology, v. 45, no. 9, p. 771–774. doi:10.1130/G39159.1
  • Diaz, M.R., Swart, P.K., Eberli, G.P., Oehlert, A.M., Devlin, Q., Saied, A., Altabet, M.A., and Porta, G.D., 2015, Geochemical evidence of microbial activity within ooids: Sedimentology, v. 62, p. 2090–2112. doi:10.1111/sed.12218
  • Donahue, J.D., 1965, Laboratory growth of pisolite grains: Journal of Sedimentary Petrology, v. 35, no. 1, p. 251–256. doi:10.1306/74D7123A-2B21-11D7-8648000102C1865D
  • Donahue, J.D., 1969, Genesis of oolite and pisolite grains: An energy index: Journal of Sedimentary Petrology, v. 39, p. 1399–1411. doi:10.1306/74D71E3D-2B21-11D7-8648000102C1865D
  • Douglas, S., and Beveridge, T.J., 1998, Mineral formation by bacteria in natural microbial communities: FEMS Microbiology Ecology, v. 26, no. 2, p. 79–88. doi:10.1111/j.1574-6941.1998.tb00494.x
  • Duguid, S.M.A., Kyser, T.K., James, N.P., and Rankey, E.C., 2010, Microbes and ooids: Journal of Sedimentary Research, v. 80, no. 3, p. 236–251. doi:10.2110/jsr.2010.027
  • Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., and Visscher, P.T., 2009, Processes of carbonate precipitation in modern microbial mats: Earth-Science Review, v. 96, p. 141–162. doi:10.1016/j.earscirev.2008.10.005
  • Dupraz, C., Reid, R.P., and Visscher, P.T., 2011, Microbialites, Modern, in Reitner, J., and Thiel, V., eds., Encyclopedia of geobiology: Springer Netherlands, Berlin, pp. 617–635. doi:10.1007/978-1-4020-9212-1_195
  • Dupraz, C., and Visscher, P.T., 2005, Microbial lithification in marine stromatolites and hypersaline mats: Trends in Microbiology, v. 13, no. 9, p. 429–438. doi:10.1016/j.tim.2005.07.008
  • Eardley, A.J., 1938, Sediments of great Salt Lake Utah: American Association of Petroleum Geologist Bulletin, v. 22, p. 1305–1411. doi:10.1306/3D932FFA-16B1-11D7-8645000102C1865D
  • Edgcomb, V.P., Bernhard, J.M., Beaudoin, D., Pruss, S., Welander, P.V., Schubotz, F., Mehay, S., Gillespie, A.L., and Summons, R.E., 2013, Molecular indicators of microbial diversity in oolitic sands of highborne cay: Bahamas, Geobiology, Vol. 11, pp. 234–251 p.
  • Evamy, B.D., 1969, The precipitational environment and correlation of some calcite cements deduced from artificial staining: Journal of Sedimentary Petrology, v. 39, no. 2, p. 787–793. doi:10.1306/74D71D1B-2B21-11D7-8648000102C1865D
  • Fabricius, F.H., 1977, Origin of marine ooids and grapestones: Contributions to Sedimentology, v. 7, p. 1–77.
  • Farias, M.E., Contreras, M., Rasuk, M.C., Kurth, D., Flores, M.R., Poiré, D.G., Novoa, F., and Visscher, P.T., 2014, Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La: Brava, Salar de Atacama, Chile, Extremophiles, Vol. 18, pp. 311–329 p.
  • Flannery, D.T., Allwood, A.C., Hodyss, R., Summons, R.E., Tuite, M., Walter, M.R., and Williford, K.H., 2018, Microbially influenced formation of Neoarchean ooids: Geobiology, v. 17, p. 151–160. doi:10.1111/gbi.12321
  • Flugel, E., 2004, Microfacies of carbonate rocks: Analysis, interpretation and application: Springer-Verlag, Berlin, p. 976 p.
  • Flügel, E., 1982, Microfacies analysis of limestones: Springer Berlin Heidelberg, Berlin. doi:10.1007/978-3-642-68423-4
  • Flügel, E., 2010, Microfacies of carbonate rock: Analysis, interpretation and application: 2nd, Springer, Berlin, p. 984 p. doi:10.1007/978-3-642-03796-2
  • Folk, R.L., 1993, SEM imaging of bacteria and nannobacteria in carbonate sediments and rocks: Journal of Sedimentary Petrology, v. 63, p. 990–999. doi:10.1306/D4267C67-2B26-11D7-8648000102C1865D
  • Folk, R.L., and Lynch, F.L., 2001, Organic matter, putative nanobacteria and the formation of ooids and hardgrounds: Sedimentology, v. 48, p. 215–229. doi:10.1046/j.1365-3091.2001.00354.x
  • Freeman, T., 1962, Quiet water oolites from Laguna Madre, Texas: Journal of Sedimentary Petrology, v. 32, p. 475–483. doi:10.1306/74D70CF4-2B21-11D7-8648000102C1865D
  • Friedman, G.M., Amiel, A.J., Braun, M., and Miller, D.S., 1973, Generation of carbonate particles and laminites in algal mats. Examples from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea: American Association of Petroleum Geologist Bulletin, v. 57, p. 541–557. doi:10.1306/819A4302-16C5-11D7-8645000102C1865D
  • Garber, R.A., Friedman, G.M., and Nissenbaum, A., 1981, Concentric aragonitic ooids from the dead sea: Journal of Sedimentary Research, v. 51, p. 455–458. doi:10.1306/212F7CA7-2B24-11D7-8648000102C1865D
  • Gerdes, G., Dunajtschik-Piewak, K., Riege, H., Taher, A.G., Krumbein, W.E., and Reineck, H.E., 1994, Structural diversity of biogenic carbonate particles in microbial mats: Sedimentology, v. 41, no. 6, p. 1273–1294. doi:10.1111/j.1365-3091.1994.tb01453.x
  • Guido, A., Vescogni, A., Mastandrea, A., Demasi, F., Tosti, F., Naccarato, A., Tagarelli, A., and Russo, F., 2012, Characterization of the micrites in the late miocene vermetid carbonate bioconstructions, Salento Peninsula, Italy: Record of a microbial/metazoan association: Sedimentary Geology, v. 263, p. 133–143. doi:10.1016/j.sedgeo.2011.10.005
  • Guo, Q., Jin, Z., Zhu, X., Shi, S., Wang, J., Wang, J., Li, Y., and Li, S., 2020, Characteristics and mechanism of dolomitization in the ooids of the Cambrian Zhangxia formation: Xiaweidian, China, Carbonates and Evaporites, Vol. 35, pp. 1–11 p.
  • Halley, R.B., 1977, Ooid fabric and fracture in the Great Salt Lake and the geological record: Journal of Sedimentary Petrology, v. 47, p. 1099–1120. doi:10.1306/212F72ED-2B24-11D7-8648000102C1865D
  • Harris, P.M., 1979, Facies anatomy and diagenesis of a Bahamian ooid shoal. University of Miami, Miami, Florida, comparative sedimentology laboratory: Sedimenta, v. 7, p. 163.
  • Harris, P.M., 1983, The joulters ooid shoal, Great Bahama Bank, in Peryt, T.M., ed., Coated GrainsNew York, Springer-Verlag, pp. 132–141. doi:10.1007/978-3-642-68869-0_11
  • Harris, P.M., Ellis, J.M., and Purkis, S.J., 2010, Delineating and quantifying depositional facies patterns of modern carbonate sand deposits on Great Bahama Bank: SEPM Society for Sedimentary Geology, v. v, p. 54. p. 1–51.
  • Harris, P.M., Purkis, S.J., and Ellis, J., 2011, Analyzing spatial patterns in modern carbonate sand bodies from Great Bahama Bank: Journal of Sedimentary Research, v. 81, no. 3, p. 185–206. doi:10.2110/jsr.2011.21
  • Harris, P.M., Purkis, S., Ellis, J., Swart, P., Reijmer, J.J.G., and Porta, G.D., 2015, Mapping bathymetry and depositional facies on Great Bahama Bank: Sedimentology, v. 62, p. 566–589. doi:10.1111/sed.12159
  • Heller, P.L., Komar, P.D., and Pevear, D.R., 1980, Transport processes in ooid genesis: Journal of Sedimentary Research, v. 50, p. 943–951. doi:10.1306/212F7B2B-2B24-11D7-8648000102C1865D
  • Illing, L.V., 1954, Bahamian calcareous sands: American Association of Petroleum Geologist Bulletin, v. 38, p. 1–95. doi:10.1306/5CEADEB4-16BB-11D7-8645000102C1865D
  • Jenkyns, H.C., 1972, Pelagic “oolites” from the Tethyan Jurassic: The Journal of Geology, v. 80, no. 1, p. 21–33. doi:10.1086/627711
  • Kahle, C.F., 1974, Ooids from Great Salt Lake, Utah, as an analogue for the genesis and diagenesis of ooids in marine limestones: SEPM Journal of Sedimentary Research, v. 44, p. 30–39. doi:10.1306/74D7296E-2B21-11D7-8648000102C1865D
  • Kahle, C.F., 2007, Proposed origin of aragonite bahaman and some pleistocene marine ooids involving bacteria: Nannobacteria (?), and Biofims: Carbonates and Evaporites, v. 22, p. 10–22. doi:10.1007/BF03175842
  • Kah, L.C., and Riding, R., 2007, Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria: Geology, v. 35, no. 9, p. 799–802. doi:10.1130/G23680A.1
  • Kaźmierczak, J., Fenchel, T., Kühl, M., Kempe, S., Kremer, B., Łącka, B., and Małkowski, K., 2015, CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites: Life, v. 5, no. 1, p. 744–769. doi:10.3390/life5010744
  • Krumbein, W.E., 1974, On the precipitation of aragonite on the surface of marine bacteria: Naturwissenschaften, v. 61, p. 167–168. doi:10.1007/BF00602591
  • Lalou, C., 1957, Studies on bacterial precipitation of carbonates in seawater: Journal of Sedimentary Petrology, v. 27, p. 190–195. doi:10.1306/74D706A0-2B21-11D7-8648000102C1865D
  • Land, L.S., Behrens, E.W., and Frishman, S.A., 1979, The ooids of Baffin Bay, Texas: Journal of Sedimentary Petrology, v. 49, p. 1269–1278. doi:10.1306/212F7905-2B24-11D7-8648000102C1865D
  • Latif, K., Xiao, E.Z., Riaz, M., Long, W., Khan, M.Y., Hussein, A.A., and Khan, M.U., 2018, Sequence stratigraphy, sea-level changes and depositional systems in the Cambrian of the North China Platform: A case study of Kouquan section: Shanxi Province, China: Journal of Himalayan Earth Sciences, v. v, p. 51, p. 1–16.
  • Linck, G., 1903, Die Bildung der Oolithe und Rogensteine: Neues Jahrbuch für Geologie und Paläontologie, v. 16, p. 495–513.
  • Li, F., Yan, J.X., Chen, Z.-Q., Ogg, J.G., Tian, L., Korngreen, D., Liu, K., Ma, Z.L., and Woods, A.D., 2015, Global oolite deposits across the Permian–Triassic boundary: A synthesis and implications for palaeoceanography immediately after the end-Permian biocrisis: Earth-Science Review, v. 149, p. 163–180. doi:10.1016/j.earscirev.2014.12.006
  • Lloyd, R.M., Perkins, R.D., and Kerr, S.D., 1987, Beach and shore face ooid deposition on shallow interior banks, Turks and Caicos Islands, British West Indies: Journal of Sedimentary Petrology, v. 57, p. 976–982. doi:10.1306/212F8CBF-2B24-11D7-8648000102C1865D
  • Loreau, J.P., and Purser, B.H., 1973, Distribution and ultrastructure of holocene ooids in the Persian Gulf, in Purser, B.H., ed., The Persian Gulf: Holocene carbonate sedimentation and diagenesis in a shallow epicontinental: SeaNew York, Springer-Verlag, pp. 279–328. doi:10.1007/978-3-642-65545-6_15
  • Maclean, L.C., Tyliszczak, T., Gilbert, P.U., Zhou, D., Pray, T.J., Onstott, T.C., and Shoutham, G., 2010, A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm: Geobiology, v. 6, p. 471–480. doi:10.1111/j.1472-4669.2008.00174.x
  • Ma, Y.S., Mei, M.X., Zhou, R.X., and Yang, W., 2017, Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the Western Suburb of Beijing: Acta Petrologica Sinica, v. 33, p. 1021–1036. in Chinese with English abstract
  • Maniloff, J., 1997, Nannobacteria: Size limits and evidence: Science, v. 276, no. 5320, p. 1773–1776. doi:10.1126/science.276.5320.1773e
  • Marshall, J.F., and Davies, P.J., 1975, High-magnesium calcite ooids from the Great Barrier Reef: Journal of Sedimentary Petrology, v. 45, p. 285–291. doi:10.1306/212F6D3E-2B24-11D7-8648000102C1865D
  • Martignier, A., Pacton, M., Filella, M., Jaquet, J.-M., Barja, F., Pollok, K., Langenhorst, F., Lavigne, S., Guagliardo, P., Kilburn, M.R., Thomas, C., Martini, R., and Ariztegui, D., 2017, Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes: Geobiology, v. 15, no. 2, p. 240–253. doi:10.1111/gbi.12213
  • Marynowski, L., Zaton, M., and Karwowski, L., 2008, Early diagenetic conditions during formation of the Callovian (Middle Jurassic) carbonate concretions from Lukow (eastern Poland): Evidence from organic geochemistry, pyrite framboid diameters and petrographic study: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, v. 247, p. 191–208. doi:10.1127/0077-7749/2008/0247-0191
  • Mei, M.X., 1996, The third-order carbonate cyclic sequences of drowned unconformity type with discussion on condensation of carbonate platforms: Sedimentary Facies Paleogeography, v. 16, p. 24–33. in Chinese
  • Mei, M.X., 2011, Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing: Geology in China, v. 38, p. 317–337. in Chinese with English abstract
  • Mei, M.X., Guo, R.T., and Hu, Y., 2011, Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing: Acta Petrologica Sinica, v. 27, p. 2473–2486. in Chinese with English abstract
  • Meng, X.H., Ge, M., and Tucker, M.E., 1997, Sequence Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform: Sedimentary Geology, v. 114, no. 1–4, p. 189–222. doi:10.1016/S0037-0738(97)00073-0
  • Miller, M.C., Mccave, I.N., and Komar, P.D., 1977, Threshold of sediment motion under unidirectional currents: Sedimentology, v. 24, no. 4, p. 507–527. doi:10.1111/j.1365-3091.1977.tb00136.x
  • Milliman, J.D., and Barreto, H.T., 1975, Relict magnesian calcite oolite and subsidence of the Amazon shelf: Sedimentology, v. 22, p. 137–145. doi:10.1111/j.1365-3091.1975.tb00288.x
  • Mitterer, R.M., 1968, Amino acid composition of organic matrix in calcareous oolites: Science, v. 162, no. 3861, p. 1498–1499. doi:10.1126/science.162.3861.1498
  • Mitterer, R.M., 1971, Influence of natural organic matter on CaCO3 precipitation, in Bricker, O.P., ed., Carbonate Cements, John Hopkins Press, Baltimore, MD, pp. 252–258
  • Mitterer, R.M., 1972, Biogeochemistry of aragonite mud and oolites: Geochimica et Cosmochimica Acta, v. 36, p. 1407–1422. doi:10.1016/0016-7037(72)90070-1
  • Monaghan, P., and Lytle, M.L., 1956, The origin of calcareous ooliths: Journal of Sedimentary Research, v. 26, p. 111–118. doi:10.1306/74D704D4-2B21-11D7-8648000102C1865D
  • Nesteroff, W.D., 1956, La substratum organique dans les depots calcaires, sa signifiation: Bulletin de la Société Géologique de France, v. 6, p. 381–390. doi:10.2113/gssgfbull.S6-VI.4-5.381
  • Newell, N.D., Purdy, E.G., and Imbrie, J., 1960, Bahamian oolitic sand: The Journal of Geology, v. 68, p. 481–497. doi:10.1086/626683
  • O’Reilly, S.S., Mariotti, G., Winter, A.R., Newman, S.A., Matys, E.D., McDermott, F., Pruss, S.B., Bosak, T., Summons, R.E., and Klepac-Ceraj, V., 2017, Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, the Bahamas: Geobiology, v. 15, no. 1, p. 112–130. doi:10.1111/gbi.12196
  • Pacton, M., Ariztegui, D., Wacey, D., Kilburn, M.R., Rollion-Bard, C., Farah, R., and Vasconcelos, C., 2012, Going nano: A new step toward understanding the processes governing freshwater ooid formation: Geology, v. 40, no. 6, p. 547–550. doi:10.1130/G32846.1
  • Pacton, M., Wacey, D., Corinaldesi, C., Tangherlini, M., Kilburn, M.R., Gorin, G.E., Danovaro, R., and Vasconcelos, C., 2014, Viruses as new agents of organomineralization in the geological record: Nature Communications, v. v, p. 5. doi:10.1038/ncomms5298
  • Pavlidis, Y.A., Ionin, A.S., Igantov, Y.I., Avello-Suarez, O.A., and Luis-Riera, M., 1972, Oolite sedimentation conditions in the shallow water of a tropical sea, island of Cuba, Golfo de Batabano: Oceanology, v. 12, p. 705–713.
  • Peng, S., 2006, A new global framework with four series for Cambrian system: Journal of Stratigraphy, v. 30, p. 147–148. in Chinese
  • Peng, S., and Bobcock, L.E., 2005, Newly proposed global chronostratigraphy subdivision on Cambrian System: Journal of Stratigraphy, v. 29, p. 92–93. in Chinese with English abstract
  • Plée, K., Ariztegui, D., Martini, R., and Davaud, E., 2008, Unraveling the microbial role in ooid formation– results of an in-situ experiment in modern freshwater Lake Geneva in Switzerland: Geobiology, v. 6, p. 341–350. doi:10.1111/j.1472-4669.2007.00140.x
  • Plée, K., Pacton, M., and Ariztegui, D., 2010, Discriminating the role of photosynthetic and heterotrophic microbes triggering low-Mg calcite precipitation in freshwater biofilms (Lake Geneva: Switzerland): Geomicrobiology Journal, v. 27, p. 391–399. doi:10.1080/01490450903451526
  • Popp, B.N., and Wilkinson, B.H., 1983, Holocene lacustrine ooids from Pyramid Lake, in Perty, T.M., ed., Coated Grains, Springer, Berlin, Heidelberg, pp. 142–153. doi:10.1007/978-3-642-68869-0_12
  • Purdy, E.G., 1963, Recent calcium carbonate facies of the Great Bahama bank: The Journal of Geology, v. 71, p. 472–497. doi:10.1086/626920
  • Rankey, E.C., and Reeder, S.L., 2009, Holocene ooids of Atutaki atolls: Cook IslandsGeology, South Pacific, Vol. 37, pp. 971–974 p.
  • Rankey, E.C., and Reeder, S.L., 2011, Holocene oolitic marine sand complexes of the Bahamas: Journal of Sedimentary Research, v. 81, no. 2, p. 97–117. doi:10.2110/jsr.2011.10
  • Rankey, E.C., Reeder, S.L., and Correa, T.B.S., 2008, Geomorphology and sedimentology of Ambergris ooid shoal, Caicos Platform, in Morgan, W.A., and Harris, P.M., eds., Developing models and analogs for isolated carbonate platforms-holocene and pleistocene carbonates of Caicos Platform, British West carbonates of Caicos Platform, British West Indies: SEPM Core Workshop, Vol. 22, pp. 127–132. doi:10.2110/pec.08.22.0127
  • Rankey, E.C., Reeder, S.L., and Garza-Perez, J.R., 2011, Controls on links between geomorphical and surface sedimentological variability: Aitutaki and Maupiti atolls: South Pacific Ocean: Journal of Sedimentary Research, v. 81, p. 885–900. doi:10.2110/jsr.2011.73
  • Riaz, M., Bhat, G.M., Latif, K., Zafar, T., and Ghazi, S., 2022, Sequence stratigraphy, depositional and diagenetic environments of the Late Cambrian glauconite bearing oolitic limestones in the Kelan Section, Shanxi, China: Journal of Earth System Science, v. v, p. 131. doi:10.1007/s12040-021-01743-7
  • Riaz, M., Jafarian, A., Koeshidayatullah, A., Frontalini, F., Jiang, L., Latif, K., and Zafar, T., 2023, Tracking depositional and geochemical variations in the Cambrian North China Platform: Insights from sedimentology, geochemistry, and C-O isotopic records: Sedimentary Geology, v. v, p. 443. doi:10.1016/j.sedgeo.2022.106301
  • Riaz, M., Latif, K., Zafar, T., Xiao, E.Z., and Ghazi, S., 2022, Morphology and genesis of the Cambrian oncoids in Wuhai section: Inner Mongolia, China, Carbonates and Evaporites, Vol. 37. doi:10.1007/s13146-021-00750-5
  • Riaz, M., Latif, K., Zafar, T., Xiao, E.Z., Ghazi, S., Long, W., and Hussein, A.A., 2019, Assessment of Cambrian sequence stratigraphic style of the North China platform exposed in Wuhai division: Inner Mongolia: Himalayan Geology, v. 40, p. 92–102.
  • Riaz, M., Xiao, E.Z., Latif, K., and Zafar, T., 2019a, Sequence-stratigraphic position of oolitic bank of Cambrian in North China Platform: Example from the Kelan section of Shanxi Province: Arabian Journal for Science and Engineering, v. 44, no. 1, p. 391–407. doi:10.1007/s13369-018-3403-z
  • Riaz, M., Zafar, T., Latif, K., Ghazi, S., and Xiao, E.Z., 2020, Petrographic and rare earth elemental characteristics of Cambrian Girvanella oncoids exposed in the North China Platform: Constraints on forming mechanism, REE sources, and paleoenvironments: Arabian Journal of Geosciences, v. v, p. 13. doi:10.1007/s12517-020-05750-8
  • Riaz, M., Zafar, T., Latif, K., Xiao, E.Z., and Ghazi, S., 2021, Cambrian ooids, their genesis and relationship to sea-level rise and fall: A case study of the Qingshuihe section: Inner Mongolia, China, Stratigraphy, Vol. 18, pp. 139–151 p.
  • Rickard, D., Mussmann, M., and Steadman, J.A., 2017, Sedimentary Sulfides: Elements, v. 13, p. 119–124. doi:10.2113/gselements.13.2.117
  • Riding, R., 1991, Calcified cyanobacteria, in Riding, R., ed., Calcareous algae and stromatolites: Springer Berlin Heidelberg, Berlin, pp. 55–87. doi:10.1007/978-3-642-52335-9_3
  • Riding, R., 2000, Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms: Sedimentology, v. 47, p. 179–214. doi:10.1046/j.1365-3091.2000.00003.x
  • Riding, R., 2011a, Calcified cyanobacteria, in Reitner, J., and Thiel, V., eds., Encyclopedia of geobiology: Springer Netherlands, Berlin, pp. 211–223. doi:10.1007/978-1-4020-9212-1_63
  • Riding, R., 2011b, Microbialites, stromatolites, and thrombolites, in Reitner, J., and Thiel, V., eds., Encyclopedia of geobiology: Springer Netherlands, Berlin, pp. 635–654. doi:10.1007/978-1-4020-9212-1_196
  • Ries, J.B., Anderson, M.A., and Hill, R.T., 2008, Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite-aragonite seas in Precambrian time: Geobiology, v. 6, no. 2, p. 106–119. doi:10.1111/j.1472-4669.2007.00134.x
  • Rodriguez-Blanco, J.D., Shaw, S., and Benning, L.G., 2011, The kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, via Vaterite: Nanoscale, v. 3, p. 265–271. doi:10.1039/C0NR00589D
  • Rothpletz, A., 1892, On the formation of oolite: American Geologist, v. 10, p. 279–282.
  • Sandberg, P.A., 1975, New interpretations of Great Salt Lake ooids and of ancient nonskeletal carbonate mineralogy: Sedimentology, v. 22, p. 497–537. doi:10.1111/j.1365-3091.1975.tb00244.x
  • Schieber, J., 2002, Sedimentary pyrite: A window into the microbial past: Geology, v. 30, no. 6, p. 531–534. doi:10.1130/0091-7613(2002)030<0531:SPAWIT>2.0.CO;2
  • Shearman, D.J., and d’E Skipwith, P.A., 1965, Organic matter in recent and ancient limestones and its role in their diagenesis: Nature, v. 208, p. 1310–1311. doi:10.1038/2081310a0
  • Simone, L., 1981, Ooids: A review: Earth-Science Review, v. 16, p. 319–355. doi:10.1016/0012-8252(80)90053-7
  • Sorby, H.C., 1879, The structure and origin of limestones: The Popular Science Review, v. 3, no. 9, p. 134–137.
  • Soule, T., Palmer, K., Gao, Q., Potrafka, R.M., Stout, V., and Garcia-Pichel, F., 2009, A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria: BMC Genomics, v. 10, no. 1, p. 336–345. doi:10.1186/1471-2164-10-336
  • Spadafor, A., Perri, E., Mckenzie, J.A., and Vasconcelos, C., 2010, Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites: Sedimentology, v. 57, no. 1, p. 27–40. doi:10.1111/j.1365-3091.2009.01083.x
  • Suess, E., and Fütterer, D., 1972, Aragonitic ooids: Experimental precipitation from sea water in the presence of humic acid: Sedimentology, v. 19, p. 129–139. doi:10.1111/j.1365-3091.1972.tb00240.x
  • Summer, D.Y., and Grotzinger, J.P., 1993, Numerical modeling of ooid size and the problem of Neoproterozoic giant ooids: Journal of Sedimentary Petrology, v. 63, p. 974–982. doi:10.1306/D4267C5D-2B26-11D7-8648000102C1865D
  • Summons, R.E., Bird, L.R., Gillespie, A.L., Pruss, S.B., Roberts, M., and Sessions, A.L., 2013, Lipid biomarkers in ooids from different locations and ages: Evidence for a common bacterial flora: Geobiology, v. 11, no. 5, p. 420–436. doi:10.1111/gbi.12047
  • Thorie, A., Mukhopadhyay, A., Banerjee, T., and Mazumdar, P., 2018, Giant ooids in a neoproterozoic carbonate shelf, Simla Group, Lesser Himalaya, India: An analogue related to Neoproterozoic glacial deposits: Marine and Petroleum Geology, v. 98, p. 582–606. doi:10.1016/j.marpetgeo.2018.08.025
  • Trower, E.J., Cantine, M.D., Gomes, M.L., Grotzinger, J.P., Knoll, A.H., Michael, P., Lingappa, U., O’Reilly, S.S., Present, T.M., Stein, N., Strauss, J.V., and Fischer, W., 2018, Active ooid growth driven by sediment transport in a high-energy shoal, little Ambergris Cay, Turks and Caicos Islands: Journal of Sedimentary Research, v. 88, p. 1132–1151. doi:10.2110/jsr.2018.59
  • Trower, E.J., Lamb, M.P., and Fischer, W.W., 2017, Experimental evidence that ooid size re?ects a dynamic equilibrium between rapid precipitation and abrasion rates: Earth and Planetary Science Letters, v. 468, p. 112–118. doi:10.1016/j.epsl.2017.04.004
  • Tucker, M.E., 1984, Calcitic, aragonitic and mixed calcitic-aragonitic ooids from the mid proterozoic belt super group: Montana, Sedimentology, Vol. 31, pp. 627–644 p.
  • Tucker, M.E., and Wright, V.P., 1990, Carbonate SedimentologyOxford: Blackwell Sciences. doi:10.1002/9781444314175
  • Vaughan, T.W., 1914, Preliminary remarks on the geology of the Bahamas, with special reference to the origins of the Bahamian and Floridan oolites: Papers from the Tortugas Laboratory of the Carnegie Institution of Washington, v. 183, p. 39–44.
  • Wang, H., Xiao, E.Z., Li, Y., Latif, K., and Riaz, M., 2018, Study advances and existed problem for the forming mechanism of the microbial dolomite: International Journal of Oil, Gas and Coal Engineering, v. 6, p. 126–133. doi:10.1155/2018/3563728
  • Wanless, H.R., and Tedesco, L.P., 1993, Comparison of oolitic sand bodies generated by tidal vs wind-wave agitation, in Keith, B.D., and Zuppann, C.W., eds., Mississippian oolites and modern analogs: American association of petroleum geologist: Vol. 35, pp. 199–225. doi:10.1306/St35571C15
  • Ward, W.C., and Brady, M.J., 1973, High-energy carbonates on the inner shelf, northeastern Yucatan Peninsula, Mexico: Gcags Transactions, v. 23, p. 226–238.
  • Wethered, E., 1895, The formation of oolite: Quarterly Journal of the Geological Society, v. 51, p. 196–206. doi:10.1144/GSL.JGS.1895.051.01-04.18
  • Weyl, P., 1967, The solution behavior of carbonate materials in seawater. Proceeding of the International Conference on Tropical Oceanography, University Miami, Florida, pp. 178–228.
  • Wilkinson, B.H., and Landing, E., 1978, Eggshell diagenesis” and primary radial fabric in calcite ooids: Journal of Sedimentary Petrology, v. 48, p. 1129–1138. doi:10.1306/212F7608-2B24-11D7-8648000102C1865D
  • Xiao, E.Z., Latif, K., and Riaz, M., 2020, The genetic implications of microbial fossils for microbial carbonate: An example of Cambrian in North China platform: Himalayan Geology, v. 41, p. 183–194.
  • Xiao, E.Z., Qin, Y., Riaz, M., Latif, K., Yao, L., and Wang, H., 2017, Sequence stratigraphy division of Cambrian in the northeast area of Lvliang Mountain: A case study of the Cangerhui section in Wenshui City: Journal of Northeast Petroleum University, v. 41, p. 43–53. in Chinese with English abstract
  • Xiao, E.Z., Riaz, M., Zafar, T., and Latif, K., 2021, Cambrian marine radial cerebroid ooids: Participatory products of microbial processes: Geological Journal, v. 56, no. 9, p. 4627–4644. doi:10.1002/gj.4203
  • Xiao, E.Z., Sui, M., Qing, Y., Latif, K., Riaz, M., and Wang, H., 2017, Cambrian sequence stratigraphic division for Qijiayu section in Hebei Laiyuan: Petroleum Geology and Oilfield Development in Daqing, v. 36, p. 16–25. in Chinese with English abstract
  • Zhu, T.T., Lin, Y.C., Lu, X.C., and Dittrich, M., 2018, Assessment of cyanobacterial species for carbonate precipitation on mortar surface under different conditions: Ecological Engineering, v. 120, p. 154–163. doi:10.1016/j.ecoleng.2018.05.038

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.