914
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Possible partial melting and production of felsic melt in a Jurassic oceanic plateau of the Izanagi Plate: Insights from 159 Ma plagiogranites from northern Japan

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 993-1022 | Received 17 Jun 2021, Accepted 08 Jun 2023, Published online: 20 Jun 2023

References

  • Alt, J.C., 1995, Subseafloor processes in mid-ocean ridge hydrothermal systems, in Humphris, S.E., Zierenberg, R.A., Mullineaux, L.S., and Thomson, R.E. eds., Seafloor hydrothermal systems: Washington, D.C., American Geophysical Union, v. 91, p. 85–114.
  • Aoki, S., Aoki, K., Sakata, S., Tsuchiya, Y., and Kato, D., 2019, Origin of the Tonaru body in the Sanbagawa metamorphice belt, SW Japan: Island Arc, v. 29, p. e12332. doi:10.1111/iar.12332.
  • Bacon, C.R., and Druitt, T.H., 1988, Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon: Contributions to Mineralogy and Petrology, v. 98, no. 2, p. 224–256. doi:10.1007/BF00402114
  • Barker, F., 1979, Trondhjemites: Definition, environment and hypotheses of origin, in Barker, F. ed., Trondhjemites, Dacites and related rocks, Amsterdam, Elsevier, p. 1–12.
  • Beard, J.S., and Lofgren, G.E., 1991, Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb: Journal of Petrology, v. 32, no. 2, p. 365–401. doi:10.1093/petrology/32.2.365
  • Bindeman, I., Gurenko, A., Carley, T., Miller, C., Martin, E., and Olgeir, S., 2012, Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB: Terra Nova, v. 24, p. 227–232.
  • Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., and Foudoulis, C., 2004, Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards: Chemical Geology, v. 205, p. 115–140.
  • Blundy, J., and Cashman, K., 2001, Ascent-driven crystallization of dacite magmas at Mount St Helens, 1980–1986: Contributions to Mineralogy and Petrology, v. 140, p. 631–650.
  • Boschman, L.M., and van Hinsbergen, D.J.J., 2016, On the enigmatic birth of the Pacific plate within the Panthalassa Ocean: Science Advances, v. 2, p. e1600022. doi:10.1126/sciadv.1600022.
  • Bryan, S.E., and Ernst, R.E., 2008, Revised definition of Large Igneous Provinces (LIPs): Earth-Science Reviews, v. 86, p. 175–202.
  • Campbell, I.H., and Griffiths, R.W., 1990, Implications of mantle plume structure for the evolution of flood basalts: Earth and Planetary Science Letters, v. 99, no. 1–2, p. 79–93. doi:10.1016/0012-821X(90)90072-6
  • Castillo, P.R., 2004, Geochemistry of Cretaceous volcaniclastic sediments in the Nauru and East Mariana basins provides insights into the mantle sources of giant oceanic plateaus, in Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. eds., Origin and evolution of the Ontong Java, London, Geological Society, No. 229, p. 353–368.
  • Coffin, M.F., and Eldholm, O., 1994, Large igneous provinces: Crustal structure, dimensions, and external consequences: Reviews of Geophysics, v. 32, no. 1, p. 1–36. doi:10.1029/93RG02508
  • Coleman, R.G., and Donato, M.M., 1979, Oceanic plagiogranite revisited, in Baker, F. ed., Trondhjemites, dacites, and related rocks, Amsterdam, Elsevier, p. 149–167.
  • Defant, M.J., and Drummond, M.S., 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, v. 347, no. 6294, p. 662–665. doi:10.1038/347662a0
  • Dick, H.J.B., Natland, J.H., and Alt, J.C., Bach W, Bideau D, Gee J.S, Haggas S, Hertogen J.G, Hirth G, Holm P.M, Ildefonse B. A, 2000, A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge: Earth and Planetary Science Letters, v. 179, p. 31–51.
  • Duncan, R.A., and Richards, M.A., 1991, Hotspots, mantle plumes, flood basalts, and true polar wander: Reviews of Geophysics, v. 29, no. 1, p. 31–50. doi:10.1029/90RG02372
  • France, L., Koepke, J., Ildefonse, B., Cichy, S.B., and Deschamps, F., 2010, Hydrous partial melting in the sheeted dike complex at fast spreading ridges: Experimental and natural observations: Contributions to Mineralogy and Petrology, v. 160, no. 5, p. 683–704. doi:10.1007/s00410-010-0502-6
  • Ghiorso, M.S., and Gualda, G.A.R., 2016, An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS: Contributions to Mineralogy and Petrology, v. 169, p. 53. doi:10.1007/s00410-015-1141-8.
  • Griffiths, R.W., and Campbell, I.H., 1990, Stirring and structure in mantle starting plumes: Earth and Planetary Science Letters, v. 99, no. 1–2, p. 66–78. doi:10.1016/0012-821X(90)90071-5
  • Grimes, C.B., Wooden, J.L., Cheadle, M.J., and John, B.E., 2015, Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon: Contributions to Mineralogy and Petrology, v. 170, p. 46. doi:10.1007/s00410-015-1199-3.
  • Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., 2012, Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems: Journal of Petrology, v. 53, p. 875–890.
  • Hannington, M., Jamieson, J., Monecke, T., Peterson, S., and Beaulieu, S., 2011, The abundance of seafloor massive sulfide deposits: Geology, v. 39, p. 1155–1158.
  • Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C., and Welch, M.D., 2012, Nomenclature of the amphibole supergroup: American Mineralogist, v. 97, no. 11–12, p. 2031–2048. doi:10.2138/am.2012.4276
  • Helz, R.T., 1976, Phase relations of basalts in their melting ranges PH2O = 5 kb. Part II. Melt compositions: Journal of Petrology, v. 17, p. 139–193.
  • Heydolph, K., Murphy, D.T., Geldmacher, J., Romanova, I.V., Greene, A., Hoernle, K., Weis, D., and Mahoney, J., 2014, Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes: Lithos, v. v, p. 200–201, p. 49–63.
  • Ichiyama, Y., Ishiwatari, A., Kimura, J.-I., Senda, R., and Miyamoto, T., 2014, Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus: Contributions to Mineralogy and Petrology, v. 168, p. 1019. doi:10.1007/s00410-014-1019-1.
  • Ichiyama, Y., Ishiwatari, A., and Koizumi, K., 2008, Petrogenesis of greenstones from the Mino–Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau: Lithos, v. 100, no. 1–4, p. 127–146. doi:10.1016/j.lithos.2007.06.014
  • Imai, N., Terashima, S., Itoh, S., and Ando, A., 1995, 1994 compilation values for GSJ reference samples, “Igneous rock series: Geochemical Journal, v. 29, p. 91–95.
  • Isozaki, Y., Maruyama, S., and Furuoka, F., 1990, Accreted oceanic materials of Japan: Tectonophysics, v. 181, p. 179–205.
  • Iwano, H., 2013, An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard: Island Arc, v. 22, p. 382–394.
  • Iwasaki, M., 1984, Sequence of igneous events and ocean-floor metamorphism in the greenstone (ophiolitic detritus deposit) from eastern Shikoku, Japan: Ophioliti, v. 9, p. 443–462.
  • Jahn, B.-M., Usuki, M., Usuki, T., and Chung, S.-L., 2014, Generation of Cenozoic granitoids in Hokkaido (Japan): Constraints from zircon geochronology, Sr-Nd-Hf isotopic and geochemical analyses, and implications for crustal growth: American Journal of Science, v. 314, no. 2, p. 704–750. doi:10.2475/02.2014.09
  • Jiang, Q., Jourdan, F., Olierook, H.K.H., Merle, R.E., Verati, C., and Mayers, C., 2021, 40ar/39ar dating of basaltic rocks and the pitfalls of plagioclase alteration: Geochimica et Cosmochimica Acta, v. 314, p. 334–357.
  • Johannes, W., and Holtz, F., 1996, Petrogenesis and experimental petrology of granitic rocks: Berlin, Springer Berlin Heidelberg, p. 335. doi:10.1007/978-3-642-61049-3.
  • Karig, D.E., 1971, Remnant arcs: Geological Society of America Blletin, v. 83, p. 1057–1068.
  • Kiminami, K., and Kontani, Y., 1983, Mesozoic arc-trench systems in Hokkaido Japan, in Hashimoto, M., and Ueda, S. eds., Accretion tectonics in the circus-pacific regions, Tokyo, Terrapub, p. 107–122.
  • Kimura, G., 1997, Cretaceous episodic growth of the Japanese Islands: Island Arc, v. 6, no. 1, p. 52–68. doi:10.1111/j.1440-1738.1997.tb00040.x.
  • Kimura, G., Sakakibara, M., and Okamura, M., 1994, Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan: Tectonics, v. 13, no. 4, p. 905–916. doi:10.1029/94TC00351
  • Kizaki, K., 2000, Age of the formation and the metamorphic process of the Poroshiri Ophiolite, Hokkaido, Japan [PhD thesis]: Hokkaido University, 172 p.
  • Koepke, J., Berndt, J., Feig, S.T., and Holtz, F., 2007, The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros: Contributions to Mineralogy and Petrology, v. 153, no. 1, p. 67–84. doi:10.1007/s00410-006-0135-y
  • Koepke, J., Feig, S.T., Snow, J., and Freise, M., 2004, Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study: Contributions to Mineralogy and Petrology, v. 146, no. 4, p. 414–432. doi:10.1007/s00410-003-0511-9
  • Kusky, T.M., Windley, B.F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., and Santosh, M., 2013, Recognition of oceanic plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion: Gondwana Research, v. 24, p. 501–547.
  • Larson, R.L., 1991, Latest pulse of Earth: Evidence for a mid-Cretaceous superplume: Geology, v. 19, no. 6, p. 547–550. doi:10.1130/0091-7613(1991)019<0547:LPOEEF>2.3.CO;2
  • Lehnert, K., Su, Y., Langmuir, C., Sarbas, B., and Nohl, U., 2000, A global geochemical database structure for rocks: Geochemistry, Geophysics, Geosystems, v. v, p. 1. doi:10.1029/1999GC000026.
  • Le Maitre, R.W. ed., 2002, Igneous Rocks, a Classification and Glossary of Terms, 2nd: Cambridge, Cambridge University Press, p. 236
  • Lippard, S.J., Shelton, A.W., and Gass, I.G., 1986, The ophiolite of northern Oman, geological society of London memoir 11: Oxford, Blackwell Scientific Publications, p. 178
  • Ludwig, K.R., 2008, Isoplot 3.70: A geochronological toolkit for Microsoft excel: Berkeley, Berkeley Geochronology Center.
  • Mahoney, J.J., Duncan, R.A., Tejada, M.L.G., Sager, W.W., and Bralower, T.J., 2005, Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise: Geology, v. 33, p. 185–188.
  • Mahoney, J.J., Frei, R., Tejada, M.L.G., Mo, X.X., Leat, P.T., and Nägler, T.F., 1998, Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, west Tethyan, and south Pacific seafloor: Journal of Petrology, v. 39, p. 1285–1306.
  • Makishima, A., Nath, B.N., and Nakamura, E., 2007, Precise determination of Pb isotope ratios by simple double spike MC-ICP-MS technique without Tl addition: Journal of Analytical and Atomic Spectrometry, v. 22, p. 407–410.
  • Makishima, A., Nath, B.N., and Nakamura, E., 2008, New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICPMS and TIMS: Geochemical Journal, v. 42, p. 237–246.
  • Martin, H., Smithies, R.H., Rapp, R., Moyen, J.-F., and Champion, D., 2005, An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution: Lithos, v. 79, p. 1–24.
  • Matsuoka, K., 1999, Late Jurassic radiolarians from red shale on the Mikabu greenstones in the northern margin of Kanto Mountains, Japan: Earth Science (Chikyu Kagaku), v. 53, p. 71–74. in Japanese.
  • Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., and Muüller, R.D., 2016, Global plate boundary evolution and kinematics since the late Paleozoic: Global and Planetary Change, v. 146, p. 226–250.
  • Miyagi, S., 1978, Sr isotopic features of the ophiolitic rocks in the Kamuikotan Zone, Hokkaido: Earth Science (Chikyu Kagaku), v. 32, p. 280–292. in Japanese with English abstract.
  • Miyoshi, M., Sano, T., Shimizu, K., Delacour, A., Hasenaka, T., Mori, Y., and Fukuoka, T., 2015, Boron and chlorine contents of basalts from the Shatsky Rise, IODP Expedition 324: Implications for the alteration of oceanic plateaus, in Neal, C.R., Sager, W.W., Sano, T., and Erba, E. eds., The origin, evolution, and environmental impact of oceanic large igneous provinces: The origin, evolution, and environmental impact of oceanic large igneous provinces: Boulder, Geological Society of America, No. 511, p. 69–84.
  • Morag, N., Golan, T., Katzir, Y., Coble, M.A., Kitajima, K., and Valley, J.W., 2020, The origin of plagiogranites: Coupled SIMS O isotope ratios, U–Pb dating and trace element composition of zircon from the Troodos Ophiolite: Cyprus: Journal of Petrology, v. 61, p. 10. doi:10.1093/petrology/egaa057.
  • Moyen, J.-F., and Stevens, G., 2006, Experimental constraints on TTG petrogenesis: Implications for Archean geodynamics, in Benn, K., Mareschal, J.-C., and Condie, K.C. eds., Archean geodynamics and environments: Washington, D.C., American Geophysical Union, v. 164, p. 149–178.
  • Müller, R.D., Cannon, J., Qin, X., Watson, R.J., Gurnis, M., and Williams, S., Pfaffelmoser T, Seton M, Russell S.H, Zahirovic S, 2018, Gplates: Building a virtual Earth through deep time: Geochemistry, Geophysics, Geosystems, v. 19, p. 2243–2261. doi:10.1029/2018GC007584.
  • Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., and Cannon, J., 2016, Ocean basin evolution and global-scale plate reorganization events since Pangea breakup: Annual Review of Earth and Planetary Sciences, v. 44, no. 1, p. 107–138. doi:10.1146/annurev-earth-060115-012211
  • Nakanishi, M., Sager, W.W., and Klaus, A., 1999, Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot-triple junction interaction and oceanic plateau formation: Journal of Geophysical Research, v. 104, no. B4, p. 7539–7556. doi:10.1029/1999JB900002
  • Nanayama, F., 1992, Stratigraphy and facies of the Paleocene Nakanogawa Group in the southern part of central Hokkaido: Japan: Journal of the Geological Society of Japan, v. 98, p. 1041–1059. in Japanese with English abstract.
  • Nanayama, F., Kanamatsu, T., and Fujiwara, Y., 1993, Sedimentary petrology and paleotectonic analysis of the arc-arc junction: The Paleocene Nakanogawa group in the Hidaka Belt, central Hokkaido, Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 105, p. 53–69.
  • Nanayama, F., Takahashi, Y., Yamasaki, T., Nakagawa, M., Iwano, H., Danhara, T., and Hirata, T., 2018, U-Pb zircon ages of the Nakanogawa Group in the Hidaka belt, northern Japan: Implications for its provenance and the protolith of the Hidaka metamorphic rocks: Island Arc, v. 27, p. e12234. doi:10.1111/iar.12234.
  • Nanayama, F., Yamasaki, T., Iwano, H., Danhara, T., and Hirata, T., 2019, Zircon U-Pb ages of sedimentary complexes in the Hidaka Belt: New age data on the northern, southern, and western areas of the Paleogene Nakanogawa Group, central Hokkaido, northern Japan: Journal of the Geological Society of Japan, v. 125, p. 421–438.
  • Nara, K., Akutsu, Y., and Ueda, H., 2019, Age and sandstone provenances of the Nikoro Group in the Tokoro Belt, Eastern Hokkaido. 126th Annual Meeting of the Geological Society of Japan, Abstract, Yamaguchi, p. 269 (in Japanese).
  • Nicolas, A., Boudier, F., Ildefonse, B., and Ball, E., 2000, Accretion of Oman and United Arab Emirates ophiolite – Discussion of a new structural map: Marine Geophysical Researches, v. 21, p. 147–179.
  • Paces, J.B., and Miller, J.D., 1993, Precise U–Pb age of Duluth Complex and related mafic intrusions, northern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system: Journal of Geophysical Research, v. 98, p. 13997–14013.
  • Pallister, J.S., and Knight, R.J., 1981, Rare-earth element geochemistry of the Samail Ophiolite near Ibra: Oman: Journal of Geophysical Research, v. 86, p. 2673–2697.
  • Pearce, J.A., 2003, Supra-subduction zone ophiolites: The search for modern analogues, in Dilek, Y., and Newcomb, S., eds., Ophiolite concept and the evolution of geological thought: Geological society of America, special paper: Boulder, Geological Society of America, v. 373, p. 269–293.
  • Pearce, J.A., Stern, R.J., Bloomer, S.H., and Fryer, P., 2005, Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components: Geochemistry, Geophysics, Geosystems, v. 6, p. Q07006. doi:10.1029/2004GC000895.
  • Polat, A., and Hofmann, A.W., 2003, Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, west Greenland: Precambrian Research, v. 126, no. 3–4, p. 197–218. doi:10.1016/S0301-9268(03)00095-0
  • Poli, S., 1993, The amphibolite-eclogite transformation: An experimental study on basalt: American Journal of Science, v. 293, p. 1061–1107.
  • Rapp, R.P., Shimizu, N., and Norman, M.D., 2003, Growth of early continental crust by partial melting of eclogite: Nature, v. 425, p. 605–609.
  • Ridolfi, F., and Renzulli, A., 2012, Calcic amphiboles in calc-alkaline and alkaline magmas: Thermometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa: Contributions to Mineralogy and Petrology, v. 163, p. 877–895.
  • Rollinson, H., 2009, New models for the genesis of plagiogranites in the Oman ophiolite: Lithos, v. 112, no. 3–4, p. 603–614. doi:10.1016/j.lithos.2009.06.006
  • Rudnick, R.L., and Gao, S., 2003, Composition of the continental crust, in Rudnick, R.L. ed., The crust. Treatise on geochemistry: Vol. 3, Oxford, Elsevier–Pergamon, p. 1–64.
  • Safonova, I.Y., Kojima, S., Nakae, S., Romer, R.L., Seltmann, R., Sano, H., and Onoue, T., 2015, Oceanic island basalts in accretionary complexes of SW Japan: Tectonic and petrogenetic implications: Journal of Asian Earth Sciences, v. 113, p. 508–523. doi:10.1016/j.jseaes.2014.09.015.
  • Safonova, I., Maruyama, S., Kojima, S., Komiya, T., Krivonogov, S., and Koshida, K., 2016, Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry: Gondwana Research, v. 33, p. 92–114. doi:10.1016/j.gr.2015.06.013.
  • Safonova, I.Y., and Santosh, M., 2014, Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes: Gondwana Research, v. 25, no. 1, p. 126–158. doi:10.1016/j.gr.2012.10.008
  • Sager, W.W., Sano, T., and Geldmacher, J., 2016, Formation and evolution of Shatsky Rise oceanic plateau: Insights from IODP Expedition 324 and recent geophysical cruises: Earth-Science Reviews, v. 159, p. 306–336. doi:10.1016/j.earscirev.2016.05.011.
  • Sakai, S., Hirano, N., Dilek, Y., Machida, S., Yasukawa, K., and Kato, Y., 2019, Tokoro Belt (NE Hokkaido): An exhumed, Jurassic – Early Cretaceous seamount in the Late Cretaceous accretionary prism of northern Japan: Geological Magazine, v. 158, p. 72–83. doi:10.1017/S0016756819000633.
  • Sakakibara, M., Hori, R.S., Kimura, G., Ikeda, M., Koumoto, T., and Kato, H., 1999, The age of magmatism and petrochemical characteristics of the Sorachi plateau reconstructed in Cretaceous accretionary complex, central Hokkaido, Japan: Memoirs of the Geological Society of Japan, v. 52, p. 1–15. in Japanese with English abstract.
  • Sakakibara, M., Niida, K., Toda, H., Kito, N., Kimura, G., Tajika, J., Kato, T., and Yoshida, A., 1986, and Research Group of the Tokoro Belt: Nature and Tectonic History of the Tokoro Belt: Monograph of the Association for the Geological Collaboration in Japan, v. 31, p. 173–187. in Japanese with English abstract.
  • Sano, T., Hanyu, T., Tejada, M.L.G., Koppers, A.A.P., Shimizu, S., Miyazaki, T., Chang, Q., Senda, R., Vaglarov, B.S., Ueki, K., Toyama, C., Kimura, J.-I., and Nakanishi, M., 2020, Two-stages of plume tail volcanism formed Ojin Rise Seamounts adjoining Shatsky Rise: Lithos, v. v, p. 372–373, 105652. doi:10.1016/j.lithos.2020.105652.
  • Sano, T., and Nishio, Y., 2015, Lithium isotope evidence for magmatic assimilation of hydrothermally influenced crust beneath oceanic large igneous provinces, in Neal, C.R., Sager, W.W., Sano, T., and Erba, E. eds., The origin, evolution, and environmental impact of oceanic large Igneous provinces Geological Society of America, Special Paper: Boulder, Geological Society of America, No. 511, p. 173–183.
  • Sawada, H., Isozaki, Y., Aoki, S., Sakata, S., Sawaki, Y., Hasegawa, R., and Nakamura, Y., 2019, The Late Jurassic magmatic protoliths of the Mikabu greenstones in SW Japan: A fragment of an oceanic plateau in the Paleo-Pacific Ocean: Journal of Asian Earth Sciences, v. 169, p. 228–236. doi:10.1016/j.jseaes.2018.08.018.
  • Shervais, J.W., 2008, Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: Low-pressure slab melting and reaction with the mantle wedge: Geological Society of America Special Paper, v. 438, p. 113–132.
  • Sigloch, K., and Mihalynuk, M.G., 2013, Intra-oceanic subduction shaped the assembly of Cordilleran North America: Nature, v. 496, no. 7443, p. 50–56. doi:10.1038/nature12019
  • Sun, S.-S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M.J. : eds., Magmatism in the Ocean Basins: Geological society special publication: London, Geological Society, No. 42, p. 313–345.
  • Tanaka, T., Togashi, S., Kamioka, H., Amakawa, H., Kagami, H., Hamamoto, T., Yuhara, M., Orihashi, Y., Yoneda, S., Shimizu, H., Kunimaru, T., Takahashi, K., Yanagi, T., Nakano, T., Fujimaki, H., Shinjo, R., Asahara, Y., Tanimizu, M., Dragusanu, C., et al., 2000, Jndi-1: A neodymium isotopic reference in consistency with La Jolla neodymium: Chemical Geology, v. 168, no. 3–4, p. 279–281. doi:10.1016/S0009-2541(00)00198-4.
  • Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W.W., and Klaus, A., 1998, Geochemical evidence for a mid-Cretaceous superplume: Geology, v. 26, no. 2, p. 151–154. doi:10.1130/0091-7613(1998)026<0151:GEFAMC>2.3.CO;2
  • Taylor, B., 2006, The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi: Earth and Planetary Science Letters, v. 241, no. 3–4, p. 372–380. doi:10.1016/j.epsl.2005.11.049
  • Taylor, R.N., Ishizuka, O., Michalik, A., Milton, J.A., and Croudace, I.W., 2015, Evaluating the precision of Pb isotope measurement by mass spectrometry: Journal of Analytical and Atomic Spectrometry, v. 30, p. 198–213.
  • Tejada, M.L.G., Mahoney, J.J., Castillo, P.R., Ingle, S.P., Sheth, H.C., and Weis, D., 2004, Pinpricking the elephant: Evidence on the origin of the Ontong Java Plateau from Pb-Sr-Hf-Nd isotopic characteristics of ODP Leg 192 basalts, in Fitton, J.G., Mahoney, J.J., Wallace, P.J., and Saunders, A.D. eds., Origin and Evolution of the Ontong Java: London, Geological Society, No. 229, p. 133–150.
  • Timm, C., Hoernle, K., Werner, R., Hauff, F., van den Bogaard, P., Michael, P., Coffin, M.F., and Koppers, A., 2011, Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: New evidence for a plume origin: Earth and Planetary Science Letters, v. 304, no. 1–2, p. 135–146. doi:10.1016/j.epsl.2011.01.025
  • Tominaga, K., and Hara, H., 2021, Paleogeography of Late Jurassic large-igneous-province activity in the Paleo-Pacific Ocean: Constraints from the Mikabu greenstones and Chichibu accretionary complex, Kanto Mountains, Central Japan: Gondwana Research, v. 89, p. 177–192.
  • Tsutsumi, Y., Horie, K., Sano, T., Miyawaki, R., Momma, K., Matsubara, S., Shigeoka, M., and Yokoyama, K., 2012, LA-ICP-MS and SHRIMP ages of zircons in chevkinite and monazite tuffs from the Boso Peninsula, central Japan: Bulletin of the National Museum of Nature and Science, v. 38, p. 15–32.
  • Tuttle, O.F., and Bowen, N.L., 1958, Origin of granite in the light of experimental studies in the NaAlSi3O8–KAlSi3O8–SiO2–H2O: Geological Society of America Memoirs, v. 74, p. 153.
  • Uchino, T., Nakae, S., and Nakashima, R., 2017, Geology of the Toba District. Quadrangle Series, 1: 50,000, Geological Survey of Japan, AIST, 141 p. (in Japanese with English abstract).
  • Ueda, H., 2016, 2g Hokkaido, in Morent, T. ed., The Geology of Japan: London, Geological Society, p. 201–221.
  • Ueda, H., and Miyashita, S., 2005, Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest: Island Arc, v. 14, p. 582–598.
  • Van der Meer, D.G., Torsvik, T.H., Spakman, W., van Hinsbergen, D.J.J., and Amaru, M.L., 2012, Intra-Panthalassa Ocean subduction zones revealed by fossil arcs and mantle structure: Nature Geoscience, v. 5, no. 3, p. 215–219. doi:10.1038/ngeo1401
  • Wakaki, S., Kawai, T., Nagaishi, K., and Ishikawa, T., 2018, Sequential chemical separation of Sr, Nd and Pb from geological samples using multi-step extraction column chromatography: JAMSTEC Report of Research and Development, v. 27, p. 1–12. in Japanese with English abstract.
  • Wakita, K., 2015, OPS mélange: A new term for mélange of convergent margins of the world: International Geology Review, v. 57, p. 529–539.
  • Walker, D.A., and McDougall, I., 1982, 40ar/39ar and K–Ar dating of altered glassy volcanic rocks: The dabi volcanics, P.N.G.: Geochimica et Cosmochimica Acta, v. 46, p. 2181–2190.
  • Weinberg, R.F., and Hasalová, P., 2015, Water-fluxed melting of the continental crust: A review: Lithos, v. 212, no. 215, p. 158–188.
  • White, A.J.R., and Chappell, B.W., 1977, Ultrametamorphism and granitoid genesis: Tectonophysics, v. 43, p. 7–22.
  • Wilson, S.A., 2000, Data compilation for USGS reference material BCR-2: Columbia River Basalt, USGS open file report (in progress).
  • Yamasaki, T., 2014, XRF major element analyses of silicate rocks using 1: 10 dilution ratio glass bead and a synthetically extended calibration curve method: Bulletin of the Geological Survey of Japan, v. 65, no. 7–8, p. 97–103. doi:10.9795/bullgsj.65.97
  • Yamasaki, T., and Nanayama, F., 2017, Enriched mid-ocean ridge basalt-type geochemistry of basalts and gabbros from the Nikoro Group, Tokoro Belt, Hokkaido, Japan: Journal of Mineralogical and Petrological Sciences, v. 112, p. 311–323.
  • Yamasaki, T., and Nanayama, F., 2018, Immature intra-oceanic arc-type volcanism on the Izanagi Plate revealed by the geochemistry of the Daimaruyama greenstones in the Hiroo Complex, southern Hidaka Belt, central Hokkaido, Japan: Lithos, v. 302–303, p. 224–241.
  • Yamasaki, T., and Nanayama, F., 2020, Three types of greenstone from the Hidaka belt, Hokkaido, Japan: Insights into geodynamic setting of northeastern margin of the Eurasian plate in the Paleogene: Journal of Mineralogical and Petrological Sciences, v. 115, p. 29–43.
  • Yamasaki, T., Shimoda, G., Tani, K., Maeda, J., and Nanayama, F., 2021, Subduction of the Izanagi–Pacific Ridge–transform intersection at the northeastern end of the Eurasian Plate: Geology, v. 49, doi:10.1130/G48611.1
  • Yamasaki, T., and Yamashita, K., 2016, Whole rock multiple trace element analyses using fused glass bead by laser ablation-ICP-MS: Bulletin of the Geological Survey of Japan, v. 67, no. 1, p. 27–40. doi:10.9795/bullgsj.67.27
  • Yamasaki, T., Yamashita, K., Ogasawara, M., and Saito, G., 2015, Multiple trace element analyses for silicate minerals and glasses by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS: Bulletin of the Geological Survey of Japan, v. 66, p. 179–197.
  • Zharov, A.E., 2005, South Sakhalin tectonics and geodynamics: A model for the Cretaceous-Paleogene accretion of the East Asian continental margin: Russian Journal of Earth Sciences, v. V, no. 7, p. ES5002. doi:10.2205/2005ES000190.