227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An assessment of dip-slip versus strike-slip faulting modes along the Patagonian Andes (39°-50° S) and their related orogenic models

, , , , , & show all
Pages 1185-1215 | Received 06 Mar 2023, Accepted 24 Jun 2023, Published online: 03 Jul 2023

References

  • Agurto, H., Rietbrock, A., Barrientos, S., Bataille, K., and Legrand, D., 2012, Seismo-tectonic structure of the Aysén Region, Southern Chile, inferred from the 2007 Mw = 6.2 Aysén earthquake sequence: Geophysical Journal International, v. 190, p. 116–130. doi:10.1111/j.1365-246X.2012.05507.x.
  • Albano, J., Lombardi, L., Rocha, E., Tobal, J., Aramendía, I., Fosdick, J.C., Stevens Goddard, A.L., Vanderleest, R.A., Ramos, M., Giampaoli, P., Kress, P., Raggio, F., and Ghiglione, M.C., 2023, Tectonic evolution of the eastern margin of the Southern Patagonian Andes fold-thrust belt: U-Pb detrital zircon geochronology and kinematic-structural modelling: Tectonophysics, v. 848, p. 229705. doi:10.1016/j.tecto.2023.229705.
  • Allard, J.O., Foix, N., Bueti, S.A., Sánchez, F.M., Ferreira, L., and Atencio, M., 2020, Comparative structural analysis of inverted structures in the San Bernardo fold belt (Golfo San Jorge basin, Argentina): Inversion controls and tecto-sedimentary context of the Chubut group: Journal of South American Earth Sciences, v. 97, p. 102405. doi:10.1016/j.jsames.2019.102405.
  • Allmendinger, R.W., 1989, Notes on fault slip analysis: Geological Society of America, Short Course on “Quantitative Interpretation of Joints and Faults”, p. 1–56.
  • Alvarado, A., Audin, L., Nocquet, J.M., Jaillard, E., Mothes, P., Jarrín, P., Segovia, M., Rolandone, F., and Cisneros, D., 2016, Partitioning of oblique convergence in the Northern Andes subduction zone: Migration history and the present-day boundary of the North Andean Sliver in Ecuador: Tectonics, v. 35, no. 5, pp. 1048–1065. doi:10.1002/2016TC004117.
  • Anderson, E.M., 1905, The dynamics of faulting: Transactions of the Edinburgh Geological Society, v. 8, p. 387–402. doi:10.1144/transed.8.3.387.
  • Angelier, J., 1984, Tectonic analysis of fault slip data sets: Journal of Geophysical Research: Solid Earth, v. 89, p. 5835–5848. doi:10.1029/JB089iB07p05835.
  • Angelier, J., and Mechtler, P., 1977, Sur une methode graphique de recherche des contraintes principales egalement utilisable en tectonique et en seismologie: la methode des diedres droits: Bulletin de la Société Géologique de France, v. S7-XIX, p. 1309–1318. doi:10.2113/gssgfbull.S7-XIX.6.1309.
  • Aragón, E., Pinotti, L., D´eramo, F., Castro, A., Rabbia, O., Coniglio, J., Demartis, M., Hernando, I., Cavarozzi, C.E., and Aguilera, Y.E., 2013, The Farallon-Aluk ridge collision with South America: Implications for the geochemical changes of slab window magmas from fore- to back-arc: Geoscience Frontiers, v. 4, p. 377–388. doi:10.1016/j.gsf.2012.12.004.
  • Aramendía, I., Cuitiño, J.I., Ghiglione, M.C., and Bouza, P.J., 2022, Timing and stratigraphic evolution of a Miocene foreland unroofing sequence in the Austral–Magallanes Basin during Southern Patagonian Andes uplift: Journal of the Geological Society, v. 180, no. 1. doi:10.1144/jgs2022-038.
  • Aramendía, I., Cuitiño, J., Ghiglione, M., and Bouza, J., 2019, Tectonostratigraphic significance of the Neogene sedimentary record of northwestern Austral-magallanes Basin, Argentinean Patagonia: Latin American Journal of Sedimentology and Basin Analysis, v. 26, p. 99–126.
  • Arancibia, G., Cembrano, J., and Lavenu, A., 1999, Tranpresión dextral y partición de la deformación en la Zona de Falla de Liquiñe-Ofqui, Aisén, Chile (44-45° S): Revista Geológica de Chile, v. 26, p. 3–22. doi:10.4067/S0716-02081999000100001.
  • Armijo, R., Lacassin, R., Coudurier-Curveur, A., and Carrizo, D., 2015, Coupled tectonic evolution of Andean orogeny and global climate: Earth-Science Reviews, v. 143, p. 1–35. doi:10.1016/j.earscirev.2015.01.005.
  • Arriagada, C., 2018, Tectonic rotations along the Western Central Andes, in Folguera, A., ed., The evolution of the Chilean-Argentinean Andes: Springer Earth System Sciences, p. 329–341. doi:10.1007/978-3-319-67774-3_13.
  • Audet, P., 2015, Layered crustal anisotropy around the San Andreas fault near Parkfield, California: Journal of Geophysical Research: Solid Earth, v. 120, p. 3527–3543.
  • Ávila, P., and Dávila, F.M., 2020, Lithospheric thinning and dynamic uplift effects during slab window formation, southern Patagonia (45°-55° S): Journal of Geodynamics, v. 133, p. 101689. doi:10.1016/j.jog.2019.101689.
  • Barberón, V., Ronda, G., Aramendía, I., Suárez, R.J., Ramos, M.E., Naipauer, M., Sue, C., and Ghiglione, M., 2019, Tectonic evolution of the northern Austral-Magallanes basin in the Southern Patagonian Andes from provenance analysis: Journal of South American Earth Sciences, v. 95, p. 102234. doi:10.1016/j.jsames.2019.102234.
  • Barberón, V., Sue, C., Ghiglione, M., Ronda, G., and Aragón, E., 2018, Late Cenozoic brittle deformation in the Southern Patagonian Andes: Record of plate coupling/decoupling during variable subduction?: Terra Nova, v. 30, p. 296–309. doi:10.1111/ter.12339.
  • Bechis, F., Encinas, A., Concheyro, A., Litvak, V.D., Aguirre-Urreta, B., and Ramos, V.A., 2014, New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°–43° S): Paleogeographic and tectonic implications: Journal of South American Earth Sciences, v. 52, p. 72–93. doi:10.1016/j.jsames.2014.02.003.
  • Bechis, F., Sobol, M., Mizerit, I., Voglino, S., and Bran, D.M., 2015, ¿Deformación transpresiva en el sector argentino de los Andes Norpatagónicos?, XVI Reunión de Tectónica, General Roca (Río Negro, Argentina): Argentina, Universidad Nacional de Río Negro, p. 122–123.
  • Beck, M.E., Jr, 1991, Coastwise transport reconsidered: Lateral displacements in oblique subduction zones, and tectonic consequences: Physics of the Earth and Planetary Interiors, v. 68, p. 1–8. doi:10.1016/0031-9201(91)90002-Y.
  • Biddle, K.T., Uliana, M.A., Mitchum, R.M., Fitzgerald, M.G., and Wright, R.C., 1986, The stratigraphic and structural evolution of the Central and Eastern Magallanes Basin, Southern South America, in Allen, A. Homewood, P., eds., Foreland basins, Vol. 8: London, Blackwell Publishing Ltd., p. 41–61. doi:10.1002/9781444303810.ch2.
  • Bilek, S.L., 2010, Invited review paper: Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity: Tectonophysics, v. 495, no. 1–2, p. 2–14. doi:10.1016/j.tecto.2009.02.037.
  • Bilmes, A., D’Elia, L., Franzese, J.R., Veiga, G.D., and Hernández, M., 2013, Miocene block uplift and basin formation in the Patagonian foreland: The gastre basin, Argentina: Tectonophysics, v. 601, p. 98–111. doi:10.1016/j.tecto.2013.05.001.
  • Bourgois, J., Frutos, J., and Cisternas, M.E., 2021, The internal versus external dynamics in building the Andes (46°30′–47°30′ S) at the Patagonia slab window, with special references to the lower Miocene morphotectonic frontline: A review: Earth-Science Reviews, v. 223, p. 103822. doi:10.1016/j.earscirev.2021.103822.
  • Bourgois, J., Lagabrielle, Y., Martin, H., Dyment, J., Frutos, J., and Cisternas, M.E., 2016, A review on forearc ophiolite obduction, adakite-like generation, and slab window development at the chile triple junction area: Uniformitarian framework for spreading-ridge subduction: Pure & Applied Geophysics, v. 173, p. 3217–3246. doi:10.1007/s00024-016-1317-9.
  • Breitsprecher, K., and Thorkelson, D.J., 2009, Neogene kinematic history of Nazca–Antarctic–Phoenix slab windows beneath Patagonia and the Antarctic Peninsula: Tectonophysics, v. 464, p. 10–20. doi:10.1016/j.tecto.2008.02.013.
  • Busteros, A.O., and Lapido, O., 1983, Rocas básicas en la vertiente noroccidental de la meseta del Lago Buenos Aires, Provincia de Santa Cruz: Revista de la Asociación Geológica Argentina, v. 38, p. 427–436, Buenos Aires.
  • Butler, K.L., Horton, B.K., Echaurren, A., Folguera, A., and Fuentes, F., 2019, Cretaceous-Cenozoic growth of the Patagonian broken foreland basin, Argentina: Chronostratigraphic framework and provenance variations during transitions in Andean subduction dynamics: Journal of South American Earth Sciences, v. 97, p. 102242. doi:10.1016/j.jsames.2019.102242.
  • Calderon, M., Fildani, A., Herve, F., Fanning, C., Weislogel, A., and Cordani, U., 2007, Late Jurassic bimodal magmatism in the northern sea-floor remnant of the Rocas Verdes basin, southern Patagonian Andes: Journal of the Geological Society, v. 164, no. 5, p. 1011–1022. doi:10.1144/0016-76492006-102.
  • Calderón, M., Prades, C., Hervé, F., Avendaño, V., Fanning, C., Massonne, H., Theye, T., and Simonetti, A., 2013, Petrological vestiges of the late Jurassic-early cretaceous transition from rift to back-arc basin in southernmost Chile: New age and geochemical data from the Capitán Aracena, Carlos III, and Tortuga ophiolitic complexes: Geochemical Journal, v. 47, p. 201–217. doi:10.2343/geochemj.2.0235.
  • Cande, S.C., and Leslie, R.B., 1986, Late Cenozoic tectonics of the Southern chile trench: Journal of Geophysical Research, v. 91, p. 471–496. doi:10.1029/JB091iB01p00471.
  • Castro, A., Moreno-Ventas, I., Fernández, C., Vujovich, G., Gallastegui, G., Heredia, N., Martino, R.D., Becchio, R., Corretgé, L.G., Díaz-Alvarado, J., Such, P., García-Arias, M., and Liu, D.Y., 2011, Petrology and SHRIMP U–Pb zircon geochronology of cordilleran granitoids of the Bariloche area, Argentina: Journal of South American Earth Sciences, v. 32, p. 508–530. doi:10.1016/j.jsames.2011.03.011.
  • Cembrano, J., Hervé, F., and Lavenu, A., 1996, The liquiñe ofqui fault zone: A long-lived intra-arc fault system in southern Chile: Tectonophysics, v. 259, p. 55–66. doi:10.1016/0040-1951(95)00066-6.
  • Cembrano, J., and Lara, L., 2009, The link between volcanism and tectonics in the Southern Volcanic zone of the Chilean Andes: A review: Tectonophysics, v. 471, p. 96–113. doi:10.1016/j.tecto.2009.02.038.
  • Cembrano, J., Lavenu, A., Reynolds, P., Arancibia, G., López, G., and Sanhueza, A., 2002, Late Cenozoic transpressional ductile deformation north of the Nazca–South America–Antarctica triple junction: Tectonophysics, v. 354, p. 289–314. doi:10.1016/S0040-1951(02)00388-8.
  • Cembrano, J., Schermer, E., Lavenu, A., and Sanhueza, A., 2000, Contrasting nature of deformation along an intra-arc shear zone, the Liquiñe–Ofqui fault zone, southern Chilean Andes: Tectonophysics, v. 319, no. 2, p. 129–149. doi:10.1016/S0040-1951(99)00321-2.
  • Charrier, R., Pinto, L., and Rodriguez, M.P., 2007, Tectonostratigraphic evolution of the Andean Orogen in Chile: Geological Society London, Special Publications, p. 21–114. doi:10.1144/GOCH.3.
  • Chemenda, A., Lallemand, S., and Bokun, S., 2000, Strain partitioning and interplate friction in oblique subduction zones: Constraints provided by experimental modelling: Journal of Geophysical Research: Solid Earth, v. 105, p. 5567–5581. doi:10.1029/1999JB900332.
  • Cole, J., Milner, D., and Spinks, K., 2005, Calderas and caldera structures: a review: Earth-Science Reviews, v. 69, no. 1–2, p. 1–26. doi:10.1016/j.earscirev.2004.06.004.
  • Correa-Otto, S., and Gianni, G., 2023, Lower and upper plate controls on crustal seismicity in the Southern Central and Patagonian Andes: Tectonics, v. 42. doi:10.1029/2022TC007335.
  • DeCelles, P.G., Gray, M.B., Ridgway, K.D., Cole, R.B., Srivastava, P., Pequera, N., and Pivnik, D.A., 1991, Kinematic history of a foreland uplift from Paleocene synorogenic conglomerate, Beartooth range, Wyoming and Montana: Geological Society of America, Bulletin, v. 103, p. 1458–1475. doi:10.1130/0016-7606(1991)103<1458:KHOAFU>2.3.CO;2.
  • Delvaux, D., and Barth, A., 2010, African stress pattern from formal inversion of focal mechanism data: Tectonophysics, v. 482, p. 105–128. doi:10.1016/j.tecto.2009.05.009.
  • Delvaux, D., and Sperner, B., 2003, New aspects of tectonic stress inversion with reference to the TENSOR program, In Nieuwland, D.A., ed., New insights into structural interpretation and modelling: London, Geological Society, Special Publications, v. 212, p. 75–100. doi:10.1144/GSL.SP.2003.212.01.06.
  • De Pascale, G.P., Froude, M., Penna, I., Hermanns, R.L., Sepúlveda, S.A., Moncada, D., Persico, M., Easton, G., Villalobos, A., and Gutiérrez, F., 2021, Liquiñe-Ofqui’s fast slipping intra-volcanic arc crustal faulting above the subducted Chile Ridge: Scientific Reports, v. 11, no. 1. doi:10.1038/s41598-021-86413-w.
  • Diraison, M., Cobbold, P.R., Gapais, D., Rossello, E.A., and Le Corre, C., 2000, Cenozoic crustal thickening, wrenching and rifting in the foothills of the southernmost Andes: Tectonophysics, v. 316, p. 91–119. doi:10.1016/S0040-1951(99)00255-3.
  • Diraison, M., Cobbold, P.R., Rossello, E.A., and Amos, A.J., 1998, Neogene dextral transpression due to oblique convergence across the Andes of northwestern Patagonia, Argentina: Journal of South American Earth Sciences, v. 11, p. 519–532. doi:10.1016/S0895-9811(98)00032-7.
  • Dziewonski, A.M., Chou, T.-A., and Woodhouse, J.H., 1981, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity: Journal of Geophysical Research, v. 86, p. 2825–2852. doi:10.1029/JB086iB04p02825.
  • Echaurren, A., Encinas, A., Sagripanti, L., Gianni, G., Zambrano, P., Duhart, P., and Folguera, A., 2022, Fore-to-retroarc crustal structure of the north Patagonian margin: How is shortening distributed in Andean-type orogens?: Global and Planetary Change, v. 209, p. 103734. doi:10.1016/j.gloplacha.2022.103734.
  • Echaurren, A., Folguera, A., Gianni, G., Orts, D.L., Tassara, A., Encinas, A., Giménez, M., and Valencia, V.A., 2016, Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata: Tectonophysics, v. 677-678, p. 99–114. doi:10.1016/j.tecto.2016.04.009.
  • Echaurren, A., Oliveros, V., Folguera, A., Ibarra, F., Creixell, C., and Lucassen, F., 2017, Early Andean tectonomagmatic stages in north Patagonia: Insights from field and geochemical data: Journal of the Geological Society, v. 174, p. 405–421. doi:10.1144/jgs2016-087.
  • Ekström, G., Nettles, M., and Dziewonski, A.M., 2012, The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes: Physics of the Earth and Planetary Interiors, v. 200-201, p. 1–9. doi:10.1016/j.pepi.2012.04.002.
  • Encinas, A., Folguera, A., Oliveros, V., De Girolamo Del Mauro, L., Tapia, F., Riffo, R., Hervé, F., Finger, K.L., Valencia, V.A., Gianni, G., and Álvarez, O., 2016, Late Oligocene–early Miocene submarine volcanism and deep-marine sedimentation in an extensional basin of southern Chile: Implications for the tectonic development of the North Patagonian Andes: Geological Society of America Bulletin, v. 128, p. 807–823. doi:10.1130/B31303.1.
  • Encinas, A., Folguera, A., Riffo, R., Molina, P., Fernández Paz, L., Litvak, V.D., Colwyn, D.A., Valencia, V.A., and Carrasco, M., 2019, Cenozoic basin evolution of the Central Patagonian Andes: Evidence from geochronology, stratigraphy, and geochemistry: Geoscience Frontiers, v. 10, p. 1139–1165. doi:10.1016/j.gsf.2018.07.004.
  • Encinas, A., Pérez, F., Nielsen, S.N., Finger, K.L., Valencia, V., and Duhart, P., 2014, Geochronologic and paleontologic evidence for a Pacific–Atlantic connection during the late Oligocene–early Miocene in the Patagonian Andes (43–44°S): Journal of South American Earth Sciences, v. 55, p. 1–18. doi:10.1016/j.jsames.2014.06.008.
  • Espinoza, M., Oliveros, V., Vásquez, P., Giambiagi, L., Morgan, L., González, R., Solari, L., and Bechis, F., 2021, Gondwanan Inheritance on the Building of the Western Central Andes (Domeyko Range, Chile): Structural and Thermochronological Approach (U‐Pb and 40Ar/39Ar): Tectonics, v. 40, no. 3. doi:10.1029/2020TC006475.
  • Fennell, L.M., Iannelli, S.B., Encinas, A., Naipauer, M., Valencia, V., and Folguera, A., 2019, Alternating contraction and extension in the southern Central Andes (35°–37° S): American Journal of Science, v. 319, p. 381–429. doi:10.2475/05.2019.02.
  • Fennell, L.M., Quinteros, J., Iannelli, S.B., Litvak, V.D., and Folguera, A., 2018, The role of the slab pull force in the late Oligocene to early Miocene extension in the Southern Central Andes (27°-46°S): Insights from numerical modeling: Journal of South American Earth Sciences, v. 87, p. 174–187. doi:10.1016/j.jsames.2017.12.012.
  • Fernández Paz, L., Iannelli, S., Echaurren, A., Ramos, M., Bechis, F., Litvak, V.D., Encinas, A., Kasemann, S., Lucassen, F., and Folguera, A., 2020, The late Eocene–early Miocene El Maitén belt evolution: Magmatic response to the changing subduction zone geodynamics: Journal of South American Earth Sciences, v. 103, p. 102713. doi:10.1016/j.jsames.2020.102713.
  • Flint, S.S., Prior, D.J., Agar, S.M., and Turner, P., 1994, Stratigraphic and structural evolution of the tertiary Cosmelli Basin and its relationship to the Chile triple junction: Journal of Geological Society, v. 151, p. 251–268. doi:10.1144/gsjgs.151.2.0251.
  • Folguera, A., Encinas, A., Echaurren, A., Gianni, G., Orts, D., Valencia, V., and Carrasco, G., 2018, Constraints on the Neogene growth of the central Patagonian Andes at the latitude of the chile triple junction (45–47°S) using U/Pb geochronology in synorogenic strata: Tectonophysics, v. 744, p. 134–154. doi:10.1016/j.tecto.2018.06.011.
  • Fosdick, J.C., Romans, B.W., Fildani, A., Bernhardt, A., Calderón, M., and Graham, S.A., 2011, Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51 30’S: Geological Society of America Bulletin, v. 123, p. 1679–1698. doi:10.1130/B30242.1.
  • Fossen, H., and Tikoff, B., 1993, The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics: Journal of Structural Geology, v. 15, p. 413–422. doi:10.1016/0191-8141(93)90137-Y.
  • Fossen, H., and Tikoff, B., 1998, Extended models of transpression and transtension, and application to tectonic settings, in Holdsworth, R.E., Strachan, R.A., and Dewey, J.E., eds., Continental transpressional and transtensional tectonics. Geological society, Vol. 135: London, Special Publications, p. 15–33.
  • Fossen, H., Tikoff, T.B., and Teyssier, C.T., 1994, Strain modeling of transpressional and transtensional deformation: Norsk Geologisk Tidsskrift, v. 74, p. 134–145.
  • Frohlich, C., 1992, Triangle diagrams: Ternary graphs to display similarity and diversity of earthquake focal mechanisms: Physics of the Earth and Planetary Interiors, v. 75, p. 193–198. doi:10.1016/0031-9201(92)90130-N.
  • García Morabito, E., Beltrán-Triviño, A., Terrizzano, C.M., Bechis, F., Likerman, J., Von Quadt, A., and Ramos, V.A., 2021, The influence of climate on the dynamics of mountain building within the Northern Patagonian Andes: Tectonics, v. 40, p. e2020TC006374. doi:10.1029/2020TC006374.
  • García Morabito, E., and Ramos, V.A., 2012, Andean evolution of the Aluminé fold and thrust belt, Northern Patagonian Andes (38°30′–40°30′S): Journal of South American Earth Sciences, v. 38, p. 13–30. doi:10.1016/j.jsames.2012.03.005.
  • Ghiglione, M.C, Naipauer, M., Sue, C., Barberón, V., Valencia, V., Aguirre-Urreta, B., and Ramos, V.A., 2015, U–Pb zircon ages from the northern Austral basin and their correlation with the Early Cretaceous exhumation and volcanism of Patagonia: Cretaceous Research, v. 55, p. 116–128. doi:10.1016/j.cretres.2015.02.006.
  • Ghiglione, M.C., Navarrete-Rodríguez, A.T., González-Guillot, M., and Bujalesky, G., 2013, The opening of the Magellan strait and its geodynamic implications: Terra Nova, v. 25, p. 13–20. doi:10.1111/j.1365-3121.2012.01090.x.
  • Ghiglione, M.C., Ramos, V.A., and Cristallini, E., 2002, Estructura y estratos de crecimiento en la faja plegada y corrida de los Andes Fueguinos: Revista Geológica de Chile, v. 29, p. 17–41. doi:10.4067/S0716-02082002000100002.
  • Ghiglione, M.C., Ronda, G., Suárez, R.J., Aramendía, I., Barberón, V., Ramos, M.E., Tobal, J., Morabito, E., Martinod, J., and Sue, C., 2019, Structure and tectonic evolution of the South Patagonian fold and thrust belt: Coupling between subduction dynamics, climate and tectonic deformation, in Horton, B., and Folguera, A., eds., Andean tectonics 24: Elsevier, p. 675–697.
  • Ghiglione, M., Suarez, F., Ambrosio, A., Da Poian, G., Cristallini, E., Pizzio, M., and Reinoso, M., 2009, Structure and evolution of the Austral Basin fold-thrust belt, southern Patagonian Andes: Revista Asociación Geológica Argentina, v. 65, p. 215–236.
  • Giacosa, R.E., 2019, Basement control, sedimentary basin inception and early evolution of the Mesozoic basins in the Patagonian foreland: Journal of South American Earth Sciences, v. 97, p. 102407. doi:10.1016/j.jsames.2019.102407.
  • Giacosa, R.E., Afonso, J.C., Herdia, N.C., and Paredes, J., 2005, Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42°30′S): Journal of South American Earth Sciences, v. 20, p. 157–170. doi:10.1016/j.jsames.2005.05.013.
  • Giacosa, R., Fracchia, D., and Heredia, N., 2012, Structure of the southern Patagonian Andes at 49°S, Argentina: Geologica Acta, v. 10, p. 265–282.
  • Giacosa, R., and Heredia, N., 2004, Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41°–42°S): Journal of South American Earth Sciences, v. 18, no. 1, p. 61–72. doi:10.1016/j.jsames.2004.08.006.
  • Giambiagi, L., Alvarez, P., and Spagnotto, S., 2016, Temporal variation of the stress field during the construction of the central Andes: Constrains from the volcanic arc region (22-26°S), Western Cordillera, Chile, during the last 20 Ma: Tectonics, v. 35, p. 2014–2033. doi:10.1002/2016TC004201.
  • Giambiagi, L., Tassara, A., Echaurre, A., Julve, J., Quiroga, R., Barrionuevo, M., Liu, S., Echeverría, I., Mardónez, D., Suriano, J., Mescua, J., Lossada, A., Spagnotto, S., Bertoa, M., and Lothari, L., 2022, Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S): Earth-Science Reviews, v. 232, p. 104138. doi:10.1016/j.earscirev.2022.104138.
  • Gianni, G.M., Dávila, F., Echaurren, A., Fennell, L., Tobal, J., Navarrete, C., Quezada, P., Folguera, A., and Giménez, M., 2018, A geodynamic model linking cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America: Earth-Science Reviews, v. 185, p. 437–462. doi:10.1016/j.earscirev.2018.06.016.
  • Gianni, G.M., Echaurren, A., Folguera, A., Likerman, J., Encinas, A., García, H.P.A., Dalmolin, C., and Valencia, V.A., 2017, Cenozoic intraplate tectonics in Central Patagonia: Record of main Andean phases in a weak upper plate: Tectonophysics, v. 721, p. 151–166.
  • Gianni, G.M., Likerman, J., Navarrete, C., Echaurren, A., Butler, K., and Folguera, A., 2021, Antepaís fragmentado patagónico: Control estructural previo, mecanismos de deformación y sedimentación sintectónica: Relatorio XXI Congreso Geológico Argentino, v. 3, p. 58–79.
  • Gianni, G., Navarrete, C., Echaurren, A., Díaz, M., Butler, K., Horton, B., Encinas, A., and Folguera, A., 2020, Northward propagation of Andean genesis: Insights from early cretaceous synorogenic deposits in the Aysén-Río Mayo basin: Gondwana Research, v. 77, p. 238–259. doi:10.1016/j.gr.2019.07.014.
  • Gianni, G.M., Pesce, A., and Soler, S.R., 2018, Transient plate contraction between two simultaneous slab windows: Insights from Paleogene tectonics of the Patagonian Andes: Journal of Geodynamics, v. 121, p. 64–75. doi:10.1016/j.jog.2018.07.008.
  • Göllner, P.L., Eisermann, J.O., Balbis, C., Petrinovic, I.A., and Riller, U., 2021, Kinematic partitioning in the Southern Andes (39° S–46° S) inferred from lineament analysis and reassessment of exhumation rates: International Journal of Earth Sciences, v. 110, p. 2385–2398. doi:10.1007/s00531-021-02068-y.
  • González, P.D., 2013,Estratigrafía ígnea y estructura del sector Brillantes, distrito minero Cerro Bayo, XI Región, Chile: Chile, Compañía Minera Cerro Bayo-Mandalay Resources (unpublished), p. 30.
  • Guillaume, B., Gianni, G., Kermarrec, J.-J., and Bock, K., 2022, Control of crustal strength, tectonic inheritance, and stretching/shortening rates on crustal deformation and basin reactivation: Insights from laboratory models: Solid Earth, v. 13, no. 9, p. 1393–1414. doi:10.5194/se-13-1393-2022.
  • Guillaume, B., Martinod, J., and Espurt, N., 2009, Variations of slab dip and overriding plate tectonics during subduction: Insights from analogue modelling: Tectonophysics, v. 463, p. 167–174. doi:10.1016/j.tecto.2008.09.043.
  • Guzmán-Marín, P., 2020, Seismicity of the Austral Andes, Southernmost Patagonia [ Master of Science Thesis (unpublished)]: ETH Zurich, 117 p.
  • Hernandez-Moreno, C., Speranza, F., and Di Chiara, A., 2014, Understanding kinematics of intra-arc transcurrent deformation: Paleomagnetic evidence from the Liquiñe-Ofqui fault zone (Chile, 38-41°S): Tectonics, v. 33, p. 1964–1988. doi:10.1002/2014TC003622.
  • Hervé, M.A., 1976, Estudio geológico de la Falla Liquiñe-Reloncavi en el area de Liquiñe; antecedentes de un movimiento transcurrente (provincia de Valdivia): Chile, Primer Congreo Geológico Chileno.
  • Hervé, F., Calderon, M., Fanning, C.M., Pankhurst, R.J., Fuentes, F., Rapela, C.W., Correa, J., Quezada, P., and Marambio, C., 2016, Devonian magmatism in the accretionary complex of southern Chile: Journal of the Geological Society, v. 173, p. 587–602. doi:10.1144/jgs2015-163.
  • Hervé, F., Fuentes, F., Calderon, M., Fanning, C.M., Quezada, P., Pankhurst, R.J., and Rapela, C.W., 2017, Ultramafic rocks in the North Patagonian Andes: Is their emplacement associated with the Neogene tectonics of the Liquiñe–Ofqui Fault zone?: Andean Geology, v. 44, p. 1–16. doi:10.5027/andgeoV44n1-a01.
  • Hervé, F., Pankhurst, R.J., Drake, R., and Beck, M.E., 1995, Pillow metabasalts in a mid-tertiary extensional basin adjacent to the Liquiñe-Ofqui fault zone: The Isla Magdalena area, Aysén, Chile: Journal of South American Earth Sciences, v. 8, p. 33–46. doi:10.1016/0895-9811(94)00039-5.
  • Heuret, A., Funiciello, F., Faccenna, C., and Lallemand, S., 2007, Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones: Earth and Planetary Science Letters, v. 256, p. 473–483. doi:10.1016/j.epsl.2007.02.004.
  • Horton, B.K., 2018, Sedimentary record of Andean mountain building: Earth-Science Reviews, v. 178, p. 279–309. doi:10.1016/j.earscirev.2017.11.025.
  • Horton, B., and Folguera, A., 2022, Tectonic inheritance and structural styles in the Andean fold-thrust belt and foreland basin, in Zamora, G., and Mora, A., eds., Andean structural styles: Elsevier. doi:10.1016/B978-0-323-85175-6.00001-8.
  • Iannelli, S.B., Fennell, L.M., Litvak, V.D., Fernández Paz, L., Encinas, A., and Folguera, A., 2018, Geochemical and tectonic evolution of late cretaceous to early Paleocene magmatism along the Southern Central Andes (35-36°S): Journal of South American Earth Sciences, v. 87, p. 139–156. doi:10.1016/j.jsames.2017.12.008.
  • Iturrieta, P., Hurtado, D., Cembrano, J., and Stanton-Yonge, A., 2017, States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling: Earth and Planetary Science Letters, v. 473, p. 71–82. doi:10.1016/j.epsl.2017.05.041.
  • Japas, M.S., Sruoga, P., Kleiman, L.E., Gayone, M.R., Maloberti, A., and Comito, O., 2013, Cinemática de la extensión jurásica vinculada a la provincia silícea Chon Aike, Santa Cruz, Argentina: Revista Asociación Geológica Argentina, v. 70, p. 16–30.
  • König, M., and Jokat, W., 2006, The Mesozoic breakup of the Weddell sea: Journal of Geophysical Research: Solid Earth, v. 111, p. 1–28. doi:10.1029/2005JB004035.
  • Kraemer, P., Ploszkiewicz, J., and Ramos, V.A., 2002, Estructura de la Cordillera Patagónica Austral entre los 46 y 52° S. In Haller, M.J., ed., Geología y Recursos Naturales de Santa Cruz. El Calafate (Buenos Aires), Relatorio del 15º Congreso Geológico Argentino I-21, p. 1–12.
  • Lacombe, O., 2012, Do fault slip data inversions actually yield “paleostresses” that can be compared with contemporary stresses? A critical discussion: Comptes Rendus Geosciences, v. 344, p. 159–173. doi:10.1016/j.crte.2012.01.006.
  • Lagabrielle, Y., Suárez, M., Rossello, E.A., Hérail, G., Martinod, J., Régnier, M., and De la Cruz, R., 2004, Neogene to quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile triple junction: Tectonophysics, v. 385, p. 211–241. doi:10.1016/j.tecto.2004.04.023.
  • Lamb, S., 2006, Shear stresses on megathrusts: Implications for mountain building behind subduction zones: Journal of Geophysical Research, v. 111, p. B07401.
  • Lange, D., Cembrano, J., Rietbrock, A., Haberland, C., Dahm, T., and Bataille, K., 2008, First seismic record for intra-arc strike-slip tectonics along the Liquiñe-Ofqui fault zone at the obliquely convergent plate margin of the Southern Andes: Tectonophysics, v. 455, p. 14–24. doi:10.1016/j.tecto.2008.04.014.
  • Lavenu, A., and Cembrano, J., 1999, Compressional- and transpressional-stress pattern for Pliocene and Quaternary brittle deformation in fore arc and intra-arc zones (Andes of Central and Southern Chile): Journal of Structural Geology, v. 21, no. 12, p. 1669–1691. doi:10.1016/S0191-8141(99)00111-X.
  • Legrand, D., Barrientos, S., Bataille, K., Cembrano, J., and Pavez, A., 2011, The fluid-driven tectonic swarm of Aysen Fjord, Chile (2007) associated with two earthquakes (Mw=6.1 and Mw=6.2) within the Liquiñe-Ofqui fault zone: Continental Shelf Research, v. 31, p. 154–161. doi:10.1016/j.csr.2010.05.008.
  • López, M., García, M., Bucher, J., Funes, D.S., D’Elia, L., Bilmes, A., Franzese, J.R., Sato, A.M., Valencia, V.A., and Franzese, J.R., 2019, Structural evolution of the collón Cura basin: Tectonic implications for the north Patagonian broken foreland: Journal of South American Earth Sciences, v. 93, p. 424–438. doi:10.1016/j.jsames.2019.04.021.
  • Maksymowicz, A., Montecinos-Cuadros, D., Díaz, D., Segovia, M.J., and Reyes, T., 2021, Forearc density structure of the overriding plate in the northern area of the giant 1960 valdivia earthquake: Solid Earth Discussions. doi:10.5194/se-2021-53.
  • Marret, R., and Allmendinger, R.W., 1990, Kinematic analysis of fault-slip data: Journal of Structural Geology, v. 12, p. 973–986. doi:10.1016/0191-8141(90)90093-E.
  • Martínez, F., López, C., Bascuñan, S., and Arriagada, C., 2018, Tectonic interaction between Mesozoic to Cenozoic extensional and contractional structures in the preandean depression (23°–25°S): Geologic implications for the Central Andes: Tectonophysics, v. 744, p. 333–349. doi:10.1016/j.tecto.2018.07.016.
  • Martinod, J., Gérault, M., Husson, L., and Regard, V., 2020, Widening of the Andes: An interplay between subduction dynamics and crustal wedge tectonics: Earth-Science Reviews, v. 204, p. 103170. doi:10.1016/j.earscirev.2020.103170.
  • Mavor, S.P., Singleton, J.S., Gomila, R., Heuser, G., Seymour, N.M., Williams, S.A., Arancibia, G., Johnston, S.M., Kylander-Clark, A.R.C., and Stockli, D.F., 2020, Timing, kinematics, and displacement of the Taltal fault system, northern Chile: Implications for the cretaceous tectonic evolution of the Andean margin: Tectonics, v. 39. doi:10.1029/2019TC005832.
  • McCaffrey, R., 1992, Oblique plate convergence, slip vectors, and forearc deformation: Journal of Geophysical Research, v. 97, p. 8905–8915. doi:10.1029/92JB00483.
  • Monger, J.W.H., and Gibson, H.D., 2019, Mesozoic-Cenozoic deformation in the Canadian cordillera: The record of a “continental bulldozer”?: Tectonophysics, v. 757, p. 153–169. doi:10.1016/j.tecto.2018.12.023.
  • Monod, B., Dhont, D., and Hervouët, Y., 2010, Orogenic float of the Venezuelan Andes: Tectonophysics, v. 490, p. 123–135. doi:10.1016/j.tecto.2010.04.036.
  • Mpodozis, C., and Allmendinger, R., 1993, Extensional tectonics, cretaceous Andes, northern Chile (27°S): Geological Society of America Bulletin, v. 105, p. 1462–1477. doi:10.1130/0016-7606(1993)105<1462:ETCANC>2.3.CO;2.
  • Mpodozis, C., and Ramos, V.A., 2008, Tectónica jurásica en Argentina y Chile: extensión, subducción oblicua, rifting, deriva y colisiones?: Revista de la Asociación Geológica Argentina, v. 63, p. 481–497.
  • Müller, R.D., Cannon, J., Qin, X., Watson, R.J., Gurnis, M., Williams, S., Pfaffelmoser, T., Seton, M., Russell, S.H., and Zahirovic, S., 2018, GPlates: Building a Virtual Earth Through Deep Time: Geochemistry, Geophysics, Geosystems, v. 19, no. 7, p. 2243–2261. doi:10.1029/2018GC007584.
  • Nelson, E., Forsythe, R., and Arit, I., 1994, Ridge collision tectonics in terrane development: Journal of South American Earth Sciences, v. 7, p. 271–278. doi:10.1016/0895-9811(94)90013-2.
  • Oldow, J.S., Bally, A.W., and Avé Lallemant, H.G., 1990, Transpression, orogenic float, and lithospheric balance: Geology, v. 18, p. 991–994. doi:10.1130/0091-7613(1990)018<0991:TOFALB>2.3.CO;2.
  • Oriolo, S., González, P.D., Renda, E.M., Basei, M.A., Otamendi, J., Cordenons, P., Marcos, P., Yoya, M.B., Ballivián Justiniano, C.A., and Suárez, R., 2023, Linking accretionary orogens with continental crustal growth and stabilization: Lessons from Patagonia: Gondwana Research, v. 121, p. 368–382. doi:10.1016/j.gr.2023.05.011.
  • Orts, D.L., Folguera, A., Encinas, A., Ramos, M., Tobal, J., and Ramos, V.A., 2012, Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′-43°S): Tectonics, v. 31, p. 3012.
  • Pankhurst, R.J., Hervé, F., Rojas, L., and Cembrano, J., 1992, Magmatism and tectonics in Continental Chiloé, Chile (42°–42°30′S): Tectonophysics, v. 205, p. 283–294. doi:10.1016/0040-1951(92)90431-5.
  • Pankhurst, R.J., Weaver, S.D., Hervé, F., and Larrondo, P., 1999, Mesozoic-Cenozoic evolution of the North Patagonian Batholith in Aysen, southern Chile: Journal of the Geological Society, v. 156, no. 4, p. 673–694. doi:10.1144/gsjgs.156.4.0673.
  • Pérez‐Estay, N., Yáñez, G., Crempien, J., Roquer, T., Cembrano, J., Valdenegro, P., Aravena, D., Arancibia, G., and Morata, D., 2020, Seismicity in a transpressional volcanic arc: The Liquiñe‐Ofqui fault system in the Puyuhuapi area, Southern Andes, Chile (44°S): Tectonics, v. 39, p. e2020TC006391. doi:10.1029/2020TC006391.
  • Petit, J.P., 1987, Criteria for the sense of movement on fault surfaces in brittle rocks: Journal of Structural Geology, v. 9, p. 597–608. doi:10.1016/0191-8141(87)90145-3.
  • Philippon, M., and Corti, G., 2016, Obliquity along plate boundaries: Tectonophysics, v. 693, p. 171–182. doi:10.1016/j.tecto.2016.05.033.
  • Quezada, P., 2015, Geología del basamento de la Región de Los Lagos, Chile: evidencias de magmatismo calco alcalino y aportes sedimentarios devónicos [ Graduation thesis]: Santiago, Universidad de Chile.
  • Quezada, P., Hervé, F., Calderón, M., Fanning, M., Pankhurst, R., Godoy, E., Urbina, O., and Suárez, R.J., 2021, Mid-Cenozoic SHRIMP U-Pb detrital zircon ages from metasedimentary rocks in the North Patagonian Andes of Aysén, Chile: Andean Geology, v. 48, p. 54–74. doi:10.5027/andgeoV48n1-3282.
  • Ramos, V.A., 1999, Las provincias geológicas del territorio argentino, in Caminos, R., ed., Geología Argentina, Vol. 3: Buenos Aires, Instituto de Geología y Recursos Minerales (SEGEMAR), Anales 29, p. 41–96.
  • Ramos, V.A., 2010, The tectonic regime along the Andes: Present-day and Mesozoic regimes: Geological Journal, v. 45, p. 2–25. doi:10.1002/gj.1193.
  • Ramos, V.A., and Drake, R., 1987, Edad y significado tectónico de la Formación Río Tarde (Cretácico) Lago Posadas, provincia de Santa Cruz: 10º Congreso Geológico Argentino, Actas, v. 1, p.143–148, Tucumán.
  • Ramos, V.A., and Folguera, A., 2009, Andean flat slab subduction through time, in Murphy, B., ed., Ancient orogens and modern analogues: London, Geological Society, Special Publication 327, p. 31–54.
  • Ramos, M.E., Folguera, A., Fennell, L., Giménez, M., Litvak, V.D., Dzierma, Y., and Ramos, V.A., 2014, Tectonic evolution of the North Patagonian Andes from field and gravity data (39–40°S): Journal of South American Earth Sciences, v. 51, p. 59–75. doi:10.1016/j.jsames.2013.12.010.
  • Ramos, V.A., and Ghiglione, M., 2008, The tectonic evolution of the Patagonian Andes, in Rabassa, J., ed., The late Cenozoic of Patagonia and Tierra del Fuego, Vol. 11: Developments in Quaternary Sciences, p. 57–71. doi:10.1016/S1571-0866(07)10004-X.
  • Ramos, V., and Kay, S.M., 1992, Southern Patagonian plateau basalts and deformation: Backarc testimony of ridge collisions: Tectonophysics, v. 205, p. 261–282. doi:10.1016/0040-1951(92)90430-E.
  • Ramos, M.E., Orts, D.L., Calatayud, F., Pazos, P.J., Folguera, A., and Ramos, V.A., 2011, Estructura, Estratigrafía y evolucion tectonica de la cuenca de Ñirihuau en las nacientes del río Cushamen: Chubut Revista de la Asociación Geológica Argentina, v. 68, p. 210–224.
  • Ramos, M.E., Suárez, R.J., Boixart, G., Ghiglione, M.C., and Ramos, V.A., 2019, The structure of the northern Austral Basin: Tectonic inversion of Mesozoic normal faults: Journal of South American Earth Sciences, v. 94, p. 102195. doi:10.1016/j.jsames.2019.05.013.
  • Ramos, M.E., Tobal, J.E., Sagripanti, L., Folguera, A., Orts, D.L., Giménez, M., and Ramos, V.A., 2015, The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (∼42°S): Journal of South American Earth Sciences, v. 64, p. 467–485. doi:10.1016/j.jsames.2015.08.006.
  • Ramsay, J.G., and Lisle, L., 2000, The techniques of modern structural geology: Applications of continuum mechanics in structural geology: San Diego, USA, Elsevier Academic Press, v. 3, p. 358.
  • Rapela, C.W., Hervé, F., Pankhurst, R.J., Calderón, M., Fanning, C.M., Quezada, P., Poblete, F., Palape, C., and Reyes, T., 2021, The Devonian accretionary orogen of the North Patagonian cordillera: Gondwana Research, v. 96, p. 1–21. doi:10.1016/j.gr.2021.04.004.
  • Renda, E., Alvarez, D., Prezzi, C., Oriolo, S., and Vizán, A., 2019, Inherited basement structures and their influence in foreland evolution: A case study in Central Patagonia, Argentina: Tectonophysics, v. 772, p. 228232. doi:10.1016/j.tecto.2019.228232.
  • Riba, O., 1976, Syntectonic unconformities of the alto cardener, Spanish Pyrenees: A genetic interpretation: Sedimentary Geology, v. 15, p. 213–233. doi:10.1016/0037-0738(76)90017-8.
  • Ronda, G., Ghiglione, M., Barberon, V., Coutand, I., and Tobal, J.E., 2019, Mesozoic – Cenozoic evolution of the Southern Patagonian Andes fold and thrust belt (47°–48°S): Influence of the Rocas Verdes basin inversion and onset of Patagonian glaciations: Tectonophysics, v. 765, p. 83–101. doi:10.1016/j.tecto.2019.05.009.
  • Ronda, G., Ghiglione, M.C., Martinod, J., Barberón, V., Ramos, M.E., Coutand, I., Grujic, D., and Kislitsyn, R., 2022, Early Cretaceous to Cenozoic Growth of the Patagonian Andes as Revealed by Low‐Temperature Thermochronology: Tectonics, v. 41, no. 10. doi:10.1029/2021TC007113.
  • Rosenau, M., Melnick, D., and Echtler, H., 2006, Kinematic constraints on intra-arc shear and strain partitioning in the southern Andes between 38°S and 42°S latitude: Tectonics, v. 25, p. TC4013. doi:10.1029/2005TC001943.
  • Scheuber, E., and Andriessen, P.A.M., 1990, The kinematic and geodynamic significance of the Atacama fault zone, northern Chile: Journal of Structural Geology, v. 12, p. 243–257. doi:10.1016/0191-8141(90)90008-M.
  • Sielfeld, G., Lange, D., and Cembrano, J., 2019, Intra-Arc Crustal Seismicity: Seismotectonic Implications for the Southern Andes volcanic zone, Chile: Tectonics, v. 38, p. 552–578. doi:10.1029/2018TC004985.
  • Sperner, B., and Zweigel, P., 2010, A plea for more caution in fault–slip analysis: Tectonophysics, v. 482, p. 29–41. doi:10.1016/j.tecto.2009.07.019.
  • Sruoga, P., Japas, M.S., Salani, F., Kleiman, L., and Rubinstein, N., 2010, Caldera La Peligrosa (47º15´S, 71°40´O): Un evento clave en la provincia silícea Chon Aike: Revista de la Asociación Geológica Argentina, v. 66, p. 368–380.
  • Suárez, R.J., Ghiglione, M., Sue, C., Quezada, P., Roy, S., Rojo, D., and Calderón, M., 2021, Paleozoic-early Mesozoic structural evolution of the West Gondwana accretionary margin in southern Patagonia, Argentina, in Oriolo, S., ed., The Precambrian to Paleozoic crustal growth of South America: From collisional to accretional tectonics, Vol. 106: p. 103062. doi:10.1016/j.jsames.2020.103062.
  • Suárez, R.J., Guillaume, B., Martinod, J., Ghiglione, M., Sue, C., and Kermarrec, J.-J., 2022, Role of convergence obliquity and inheritance on sliver tectonics: Insights from 3-D subduction experiments: Tectonophysics, v. 842, p. 229583. doi:10.1016/j.tecto.2022.229583.
  • Suárez, R.J., Sue, C., Ghiglione, M., Guillaume, B., Ramos, M., Martinod, J., and Barberón, V., 2021, Seismotectonic implications of the South Chile ridge subduction beneath the Patagonian Andes: Terra Nova, v. 33, p. 364–374. doi:10.1111/ter.12521.
  • Tikoff, B., and Teyssier, C.T., 1994, Strain modeling of displacement-field partitioning in transpressional orogens: Journal of Structural Geology, v. 16, p. 1575–1588. doi:10.1016/0191-8141(94)90034-5.
  • Tobal, J., Folguera, A., Likerman, J., Naipauer, M., Sellés, D., Boedo, F.L., Ramos, V.A., and Gimenez, M., 2015, Middle to late Miocene extensional collapse of the North Patagonian Andes (41°30′–42°S): Tectonophysics, v. 657, p. 155–171. doi:10.1016/j.tecto.2015.06.032.
  • Twiss, R.J., and Moores, E.M., 2007, Structural geology (2ed): New York, W. H. Freeman and Company, 736 p.
  • Uliana, M.A., Biddle, K.T., and Cerdán, J., 1989, Mesozoic extension and the formation of Argentine sedimentary basins, in Tankard, A.J., and Balkwill, H.R., eds., Extensional tectonics and stratigraphy of the North Atlantic margins, Vol. 46: American Association of Petroleum Geologists, p. 599–614. doi:10.1306/M46497C39.
  • Uyeda, S., and Kanamori, H., 1979, Back-arc opening and the mode of subduction: Journal of Geophysical Research, v. 84, p. 1049–1061. doi:10.1029/JB084iB03p01049.
  • Wallace, R., 1951, Geometry of shearing stress and relation to faulting: The Journal of Geology, v. 59, p. 118–130. doi:10.1086/625831.
  • Yamaji, A., 2000, The multiple inverse method: A new technique to separate stresses from heterogeneous fault-slip data: Journal of Structural Geology, v. 22, p. 441–452. doi:10.1016/S0191-8141(99)00163-7.
  • Zoback, M.L., 1992, First- and second-order patterns of stress in the lithosphere: The World Stress Map Project: Journal of Geophysical Research, v. 97, no. B8, p. 11703. doi:10.1029/92JB00132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.