410
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bias in detrital zircon geochronology: a review of sampling and non-sampling errors

Pages 1259-1279 | Received 06 Apr 2023, Accepted 01 Jul 2023, Published online: 25 Jul 2023

References

  • Adams, C.J., Mortimer, N., Campbell, H.J., and Griffin, W.L., 2021, Detrital zircon provenance of Permian to Triassic Gondwana sequences, Zealandia and eastern Australia: New Zealand Journal of Geology and Geophysics, v. 65, p. 457‒469. doi:10.1080/00288306.2021.1954957.
  • Allen, P.A., 2017, Sediment routing systems, the fate of sediment from source to sink: Cambridge, United Kingdom: Cambridge University Press, 407 p.
  • Allen, T., 2003, Powder Sampling and Particle Size Determination: Amsterdam, The Netherlands, Elsevier B.V, 660 p. doi:10.1016/B978-044451564-3/50003-6.
  • Amidon, W.H., Burbank, D.W., and Gehrels, G.E., 2005, U–Pb zircon ages as a sediment mixing tracer in the Nepal Himalaya: Earth and Planetary Science Letters, v. 235, p. 244–260. doi:10.1016/j.epsl.2005.03.019.
  • Andersen, T., 2005, Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation: Chemical Geology, v. 216, p. 249‒270. doi:10.1016/j.chemgeo.2004.11.013.
  • Andersen, T., and Elburg, M.A., 2022, Open-system behavior of detrital zircon during weathering: An example from the Palaeoproterozoic Pretoria Group, South Africa: Geological Magazine, v. 159, p. 561–576. doi:10.1017/S001675682100114x.
  • Andersen, T., Kristoffersen, M., Marlina, M., and Elburg, A., 2016, How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study: Gondwana Research, v. 34, p. 129–148. doi:10.1016/j.gr.2016.03.003.
  • Anderson, T., Van Niekerk, H., Elburg, M.A., and Hu, X., 2022, Detrital zircon in an active sedimentary recycling system: Challenging the ‘source-to-sink’ approach to zircon-based provenance analysis: Sedimentology, v. 69, p. 2436–2462. doi:10.1111/sed.12996.
  • Armstrong-Altrin, J.S., 2020, Detrital zircon U–Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: A new insight on palaeoenvironment: Journal of Palaeogeography, v. 9, p. 1‒27. doi:10.1186/s42501-020-00075-9.
  • Assael, H., and Keon, J., 1982, Nonsampling vs. sampling errors in survey research: Journal of Marketing, v. 46, p. 114‒123. doi:10.1177/002224298204600212.
  • Bailar, B.A., 1987, Nonsampling errors: Journal of Official Statistics, v. 3, p. 323‒325.
  • Barham, M., Kirkland, C.L., and Handoko, A.D., 2022, Understanding ancient tectonic settings through detrital zircon analysis: Earth and Planetary Science Letters, v. 583, p. 1‒10. doi:10.1016/j.epsl.2022.117425.
  • Berk, R.A., and Freedman, D.A., 2003, Statistical assumptions as empirical commitments, in Bloomberg, T.G., and Cohen, S. eds., Law, punishment, and social control: Essays in honor of Sheldon Messinger: Second, Hawthorne, New York, Aldine de Gruyter, p. 235‒254.
  • Bethlehem, J., 2009, Applied survey methods, a statistical perspective: Hoboken, New jersey, John Wiley & Sons, Inc, 392 p. doi:10.1002/9780470494998.
  • Bickerton, L., Kontak, D.J., Murphy, J.B., Kellett, D.A., Samson, I.M., Marsh, J.H., Dunning, G., and Stern, R., 2022, The age and origin of the South Mountain Batholith (Nova Scotia, Canada) as constrained by zircon U-Pb geochronology, geochemistry, and O-Hf isotopes: Canadian Journal of Earth Sciences, v. 59, p. 418‒454. doi:10.1139/cjes-2021-0097.
  • Blastland, M., and Dilnot, A., 2008, The Tiger that isn’t, seeing through a world of numbers: Exmouth market: London, Profile Books Ltd, 192 p.
  • Blatt, H., 1992, Sedimentary petrology: Second New York, New York, W.H. Freeman and Company, 514 p.
  • Bonich, M.B., Samson, S.D., and Fedo, C.M., 2017, Incongruity of detrital zircon ages of granitic bedrock and its derived alluvium: An example from the Stepladder Mountains, southeastern California: The Journal of Geology, v. 125, no. 3, p. 337‒350. doi:10.1086/691146.
  • Boutcher, S.M.A., Davis, G.L., and Moorhouse, W.W., 1965, Potassium-argon and uranium-lead ages from two localities: The Canadian Mineralogist, v. 8, p. 198‒203.
  • Bullen, P.B., 2022, How to choose a sample size (for the statistically challenged): accessed 27 December 2022. https://tools4dev.org/resources/how-to-choose-a-sample-size/
  • Butler, R.J., Brusatte, S.L., Andres, B., and Benson, R.B.J., 2012, How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity: Evolution, v. 66, p. 147‒162. doi:10.1111/j.1558-5646.2011.01415.x.
  • Campbell, I., and Allen, C., 2008, Formation of supercontinents linked to increases in atmospheric oxygen: Nature Geoscience, v. 1, p. 554–558. doi:10.1038/ngeo259.
  • Cantine, M., Setera, J.B., Vantongeren, J.A., Mwinde, C., and Bergman, K.D., 2021, Grain size and transport biases in Ediacaran detrital zircon record: Journal of Sedimentary Research, v. 91, p. 913–928. doi:10.2110/jsr.2020.153.
  • Castillo, P., Bahlburg, H., Fernandez, R., Fanning, C.M., and Berndt, J., 2022, The European continental crust through detrital zircons from modern rivers: Testing representativity of detrital zircon U-Pb geochronology: Earth-Science Reviews, v. 232, p. 1‒22. doi:10.1016/j.earscirev.2022.104145.
  • Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., 2012, Detrital zircon record and tectonic setting: Geology, v. 40, p. 875‒878. doi:10.1130/G32945.1.
  • Cawood, P.A., and Nemchin, A.A., 2001, Paleogeographic development of the east Laurentian margin: Constraints from U-Pb dating of detrital zircons in the Newfoundland Appalachians: Geological Society of America Bulletin, v. 113, p. 1234–1246. doi:10.1130/0016-7606(2001)113<1234:PDOTEL>2.0.CO;2.
  • Chen, S.-W., Keglovits, M., Devine, M., and Stark, S., 2022, Sociodemographic differences in respondent preferences for survey formats: Sampling bias and potential threats to external validity: Archives of Rehabilitation Research and Clinical Translation, v. 4, p. 1–7. doi:10.1016/j.arrct.2021.100175.
  • Cochran, W.G., 1977, Sampling techniques: Third New York, New York, John Wiley & Sons, 428 p.
  • Cochran, W.G., Mosteller, F., and Tukey, J.W., 1954, Principles of sampling: Journal of the American Statistical Association, v. 49, p. 13‒35. doi:10.1080/01621459.1954.10501212.
  • Condie, K.C., Belousova, E., Griffin, W.L., and Sircombe, K.N., 2009, Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra: Gondwana Research, v. 15, p. 228‒242. doi:10.1016/j.gr.2008.06.001.
  • Conroy, R.M., 2018, The RCSI sample size handbook, a rough guide: Royal college of surgeons in Ireland, technical report: The Journal of Hospital Infection, v. 101, p. 313–319. doi:10.13140/RG.2.2.30497.51043.
  • Cothren, H.R., Farrell, F.A., Dehler, C.M., Schmitz, M.D., and Schmitz, M.D., 2022, Novel age constraints for the onset of the Steptoean Positive Isotopic Carbon Excursion (SPICE) and the late Cambrian time scale using high-precision U-Pb detrital zircon ages: Geology, v. 50, p. 1415‒1420. doi:10.1130/G50434.1.
  • Dattalo, P., 2008, Determining sample size, balancing power, precision, and practicality: New York, New York, Oxford University Press, Inc, 167 p.
  • DeGraaff-Surpless, K., Mahoney, J.B., Wooden, J.L., and McWilliams, M.O., 2003, Lithofacies control in detrital zircon provenance studies: Insights from the cretaceous Methow basin, Southern Canadian Cordillera: Geological Society of America Bulletin, v. 115, no. 8, p. 899–915. doi:10.1130/B25267.1.
  • Dennison, J.M., 1962, Graphical aids for determining reliability of sample means and an adequate sample size: Journal of Sedimentary Petrology, v. 32, p. 743–750. doi:10.1306/74D70D58-2B21-11D7-8648000102C1865D.
  • Dobbs, S.C., Malkowski, M.A., Schwartz, T.M., Sickmann, Z.T., and Graham, S.A., 2022, Depositional controls on detrital zircon provenance: An example from upper cretaceous strata, Southern Patagonia: Frontiers in Earth Science, v. 10, p. 1–25. doi:10.3389/feart.2022.824930.
  • Dodson, M.H., Compton, W., Williams, I.S., and Wilson, J.F., 1988, A search for ancient detrital zircons in Zimbabwean sediments: Journal of the Geological Society, v. 145, p. 977–983. doi:10.1144/gsjgs.145.6.0977.
  • Domeier, M., Magni, V., Hounslow, M.W., and Torsvik, T.H., 2018, Episodic zircon age spectra mimic fluctuations in subduction: Scientific Reports, v. 8, p. 1–9. doi:10.1038/s41598-018-35040-z.
  • Domènech, M., Stokli, D.F., and Teixell, A., 2018, Detrital zircon U-Pb provenance and paleogeography of Triassic rift basins in the Marrakech High Atlas: Terra Nova, v. 30, p. 310–318. doi:10.1111/ter.12340.
  • Dominy, S.C., O’Connor, L., Glass, H.J., Purevgerel, S., and Xie, Y., 2018, Towards representative metallurgical sampling and gold recovery testwork programmes: Minerals, v. 8, p. 1–47. doi:10.3390/min8050193.
  • Dröllner, M., Barham, M., and Kirkland, C.L., 2023, Reorganization of continent-scale sediment routing based on detrital zircon and rutile multi-proxy analysis: Basin Research, v. 35, p. 363–386. doi:10.1111/bre.12715.
  • Dryden, A.L., Jr., 1931, Accuracy in percentage representation of heavy mineral frequencies: Proceedings of the National Academy of Sciences, v. 17, p. 233–238.
  • Edwards, M.G., 2014, Meta-Data-Analysis, in Michalos, A.C. ed., Encyclopedia of quality of life and well-being: Research, Dordrecht, Springer. doi:10.1007/978-94-007-0753-5_3376.
  • Elling, F.J., Spiegel, C., Estrada, S., Davis, D.W., Reinhardt, L., Henjes-Kunst, F., Allgroggen, F., Dohrmann, P., Piepepjohn, K., and Lisker, F., 2016, Origin of bentonites and detrital zircons of the Basilka Formation, Svalbard: Frontiers in Earth Science, v. 4, p. 1–23. doi:10.3389/feart.2016.00073.
  • Esbensena, K.H., and Wagner, C., 2015, Theory of sampling (TOS)- the missing link before analysis: Spectroscopy Europe World: v. 26, p. 1–3.
  • Esbesena, K.H., and Wagner, C., 2015, Composite sampling I: The fundamental sampling principle: Spectroscopy Europe World: v. 27, p. 1–4. https://www.spectroscopyeurope.com/sampling/composite-sampling-i-fundamental-sampling-principle.
  • Evans, M.J., and Rosenthal, J.S., 2009, Probability and statistics: The science of uncertainty: Second New York, New York, W. H. Freeman & Co. Ltd, 659 p.
  • Fedo, C.M., Sircombe, K.N., and Rainbird, R.H., 2003, Detrital zircon analysis of the sedimentary record, in Hanchar, J.M., and Hoskin, P.W.O. eds., Zircon: Reviews in mineralogy and geochemistry: Vol. 53, p. 277‒303. doi:10.2113/0530277.
  • Fosgate, G.T., 2009, Practical sample size calculations for surveillance and diagnostic investigations: Journal of Veterinary Diagnostic Investigation, v. 21, no. 1, p. 3‒14. doi:10.1177/104063870902100102.
  • Foulkes, A.S., Balasubramanian, R., Quian, J., and Reilly, M.P., 2020, Non-random sampling leads to biased estimates of transcriptome association: Scientific Reports, v. 10, p. 1‒9. doi:10.1038/s41598-020-62575-x.
  • Fox, N., Hunn, A., and Mathers, N., 2007, Sampling and sample size calculation: Yorkshire & the Humber, the NIHR RDS for the East Midlands: p. 41.
  • Gärtner, A., Hofman, M., Zieger, J., Sagawe, A., Krause, R., Stutzriemer, M., Gesang, S., Gerdes, A., Marko, L., Lana, C., and Linnemann, U., 2022, Implications for sedimentary transport processes in southwestern Africa: A combined zircon morphology and age study including extensive geochronology databases: International Journal of Earth Sciences, v. 111, p. 767‒788. doi:10.1007/s00531-021-02146-1.
  • Gehrels, G.E., 2000, Introduction to detrital zircon studies of Paleozoic and Triassic strata in western Nevada and northern California, in Soreghan, M.J., and Gehrels, G.E. eds., Paleozoic and Triassic paleogeography and tectonics of western Nevada and northern California: Boulder, Colorado, Geological Society of America Special Paper, v. 347, p. 1‒17. doi:10.1130/0-8137-2347-7.1.
  • Gehrels, G.E., 2012, Detrital zircon U-Pb geochronology: Current methods, in Busby, C., and Azor, A. eds., Tectonics of Sedimentary basins: Blackwell Publishing Company, p. 47‒64. doi:10.1002/9781444347166.ch2.
  • Gehrels, G.E., 2014, Detrital zircon U-Pb geochronology applied to tectonics: Annual Review of Earth and Planetary Sciences, v. 42, p. 127‒149. doi:10.1146/annurev-earth-050212-124012.
  • Gehrels, G., Rusmore, M., Woodsworth, G., Crawford, M., Andronicos, C., Hollister, L., Patchett, J., Ducea, M., Butler, R., Klepeis, K., Davidson, C., Friedman, R., Haggart, J., Mahoney, B., Crawford, W., Pearson, D., and Girard, J., 2009, U-Th-Pb geochronology of the Coast Mountains batholith in north-coastal British Columbia: Constraints on age and tectonic evolution: Geological Society of America Bulletin, v. 121, p. 1341–1361. doi:10.1130/B26404.1.
  • Gehrels, G.E., Valencia, V.A., and Pullen, A., 2006, Detrital zircon geochronology by laser-ablation multicllector ICPMS at the Arizona Laserchron Center, in Olszweski, T. ed., Geochronology: Emerging opportunities, paleontological society papers: Philadelphia, Pennsylvania, The Paleontological Society, v. 12, p. 67–72.
  • Gehrels, G.E., Valencia, V.A., and Ruiz, J., 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector-inductively coupled plasma-mass spectrometry: Geochemistry, Geophysics, Geosystems, v. 9, p. 1‒13. doi:10.1029/2007GC001805.
  • Gibson, T.M., Faehnrich, K., Busch, J.F., McClelland, W.C., Schmitz, M.D., and Strauss, J.V., 2021, A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America: Geology, v. 49, p. 545‒550. doi:10.1130/G48336.1.
  • Gilmullina, A., Klausen, T.G., Doré, A.G., Sirevaag, H., Suslova, A., and Eide, C.H., 2022, Arctic sediment routing during the Triassic: Sinking the Arctic Atlantis: Journal of the Geological Society, v. 180, p. 1‒16. doi:10.1144/jgs2022-018.
  • Gong, D.-X., Wu, C.-H., Zou, H., Zhou, X., Zhou, Y., Tan, H.-Q., and Yue, X.-Y., 2021, Provenance analysis of Late Triassic turbidites in the eastern Songpan-Ganzi flysch complex: Sedimentary record of tectonic evolution of the eastern paleo-Tethys Ocean: Marine and Petroleum Geology, v. 126, p. 1‒18. doi:10.1016/j.marpetgeo.2021.104927.
  • Gooley, J.T., and Nieminski, N.M., 2022, Detrital zircon provenance of the Cretaceous–Neogene East Coast Basin reveals changing tectonic conditions and drainage reorganization along the Pacific margin of Zealandia: Geosphere, v. 18, p. 616–646. doi:10.1130/GES02404.1.
  • Grauert, B., Hanny, R., and Soptrajanova, G., 1973, Age and origin of detrital zircons from the pre-Permian basement of the Bohemian Massif and the Alps: Contributions to Mineralogy and Petrology, v. 40, p. 105‒130. doi:10.1007/BF00378169.
  • Griffiths, J.C., 1962, Statistical methods in sedimentary petrography, in Milner, H.B., Ward, A.M., and Higam, F. eds., Sedimentary petrography, v. 1, methods in sedimentary petrography: New York, New York, Macmillan. p. 565‒617.
  • Griffiths, J.C., 1967, Scientific method in analysis of sediments: New York, New York, McGraw-Hill Book Company, 508 p.
  • Griffiths, J.C., and Ondrick, C.W., 1968, Sampling a geologic population: State geological survey, the university of Kansas, Lawrence: Computer Contribution, v. 30, p. 53.
  • Gy, P.M., 1979, Sampling of particulate materials, theory and practice: Amsterdam: The Netherlands Elsevier Scientific Publishing Company, 431 p.
  • Hall, T.H., Herron, T.L., and Pierce, B.J., 2006, How reliable is haphazard sampling?: The CPA Journal, v. 76, p. 26‒27.
  • Hall, T.H., Higson, A.W., Pierce, B.J., Price, K.H., and Skousen, C.J., 2013, Haphazard sampling: Selection bias and the estimation consequences of these biases: Current Issues in Auditing, v. 7, p. 16‒22. doi:10.2308/ciia-50568.
  • Hanson, A.E.H., Gordon, S.M., Ashley, K.T., Miller, R.B., and Langdon-Lassagne, E., 2021, Multiple sediment incorporation events in a continental magmatic arc: Insight from the metasedimentary rocks of the northern North Cascades: Washington (USA), Geosphere, v. 18, 298–326 p. doi:10.1130/GES02425.1.
  • Hart, S.R., and Davis, G.L., 1969, Zircon U-Pb and whole-rock Rb-Sr ages and early crustal development near Rainy Lake, Ontario: Geological Society of America Bulletin, v. 80, no. 4, p. 595–616. doi:10.1130/0016-7606(1969)80[595:ZUAWRA]2.0.CO;2.
  • Hawkesworth, C., Cawood, P., Kemp, T., Storey, C., and Dhuime, B., 2009, Geochemistry: A matter of preservation: Science: Advanced Materials and Devices, v. 323, p. 49–50. doi:10.1126/science.1168549.
  • Henderson, R.A., and Fergusson, C.L., 2019, Growth and provenance of a Paleozoic subduction complex in the Broken River Province, Mossman Orogen: Evidence from detrital zircon ages: Australian Journal of Earth Sciences, v. 66, p. 607‒624. doi:10.1080/08120099.2019.1572033.
  • Hietpas, J., Samson, S., Moecher, D., and Chakraborty, S., 2011, Enhancing tectonic and provenance information from detrital zircon studies: Assessing terrane-scale sampling and grain-size characterization: Journal of the Geological Society, London, v. 168, p. 309‒318. doi:10.1144/0016-76492009-163.
  • Hirschauer, N., Grüner, S., Mußhoff, O., Becker, C., and Jantsch A., 2020, Can p-values be meaningfully interpreted without random sampling?: Statistics Surveys, v. 14, p. 71‒91. doi:10.1214/20-SS129.
  • Holmes, T.H., 2003, Ten Categories of statistical errors–a guide for research in endocrinology and metabolism: American Journal of Physiological-Endocrinology and Metabolism, v. 286, p. E495–E501. doi:10.1152/ajpendo.00484.2003.
  • Howarth, R.J., 1998, Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results: American Journal of Science, v. 298, no. 7, p. 594–607. doi:10.2475/ajs.298.7.594.
  • Hults, C.P., Wilson, F.H., Donelick, R.A., and O’Sullivan, P.B., 2013, Two flysch belts having distinctly different provenance suggest no stratigraphic link between the Wrangellia composite terrane and the paleo-Alaskan margin: Lithosphere, v. 5, p. 575‒594. doi:10.1130/L310.1.
  • Hurley, P.J., 2008, A concise introduction to logic: Eleventh Boston, Massachusetts, Wadsworth Cengage Learning, 707 p.
  • Hurtado, J.M., Jr., Young, K., Bleacher, J.E., Garry, W.B., and Rice, J.W., Jr., 2013, Field geologic observation and sample collection strategies for planetary surface exploration: Insights from the 2010 Desert RATS geologist crewmembers: Acta Astronautica, v. 90, p. 344‒355. doi:10.1016/j.actaastro.2011.10.015.
  • Ibañez-Mejia, M., Pullen, A., Pepper, M., Urbani, F., Ghoshal, G., and Ibañez-Mejia, J.C., 2018, Use and abuse of detrital zircon U-Pb geochronology‒A case from the Rio Orinoco delta, eastern Venezuela: Geology, v. 46, p. 1019‒1022. doi:10.1130/G45596.1.
  • Infante-Rivard, C., and Cusson, A., 2018, Reflection on modern methods: Selection bias–a review of recent developments: International Journal of Epidemiology, p. 1714–1722. doi:10.1093/ije/dyy138.
  • Ingersoll, R.V., Bullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., and Sares, S.W., 1984, The effect of grain size on detrital modes: A test of the Gazzi-Dickinson point-counting method: Journal of Sedimentary Research, v. 54, p. 103–116. doi:10.1306/212F83B9-2B24-11D7-8648000102C1865D.
  • Ingersoll, R.V., Grove, M., Jacobson, C.E., Kimbrough, D.L., and Hoyt, J.F., 2013, Detrital zircon indicates no drainage link between southern California rivers and the Colorado Plateau from mid-cretaceous through Pliocene: Geology, v. 41, p. 311–314. doi:10.1130/G33807.1.
  • Jaworska, N., and Chupetlovska‐Anastasova, A., 2009, A review of multidimensional scaling (MDS) and its utility in various psychological domains: Tutorials in Quantitative Methods for Psychology, v. 5, p. 1‒10. doi:10.20982/tqmp.05.1.p001.
  • Johnson, T.E., Kirkland, C.L., Viete, D.R., Fischer, S., Reddy, S.M., Evans, N.J., and McDonald, B.J., 2017, Zircon geochronology reveals polyphase magmatism and crustal anatexis in the Buchan Block, NE Scotland: Implications for the Grampian Orogeny: Geoscience Frontiers, v. 8, p. 1469‒1478. doi:10.1016/j.gsf.2017.02.002.
  • Kaplan, R.M., Chambers, D.A., and Glasgow, R.E., 2014, Big data and large sample size: A cautionary note on the potential for bias: Clinical and Translational Science, v. 7, p. 343–346. doi:10.1111/cts.12178.
  • Kish, L., 1957, Confidence intervals for clustered samples: American Sociological Review, v. 22, no. 2, p. 154–165. doi:10.2307/2088852.
  • Kish, L., 2004, Statistical design for research: Hoboken, New Kersey: John Wiley & Sons, Inc, 267 p.
  • Koch, G.S., and Link, R.F., 1970-1971, Statistical analysis of geological data, two volumes bound as one: New York, New York, Dover Publications Inc, 375 p. and 438 p p.
  • Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G.E., Gerdes, A., Horstwood, M.S.A., Sircombe, K.N., Sylvester, P.J., Tiepolo, M., Whitehouse, M.J., and Woodhead, J.D., 2013, U-Pb detrital zircon analysis–results of an inter-laboratory comparison: Geostandards and Geoanalytical Research, v. 37, p. 243–259. doi:10.1111/j.1751-908x.2013.00245.x.
  • Kozak, M., 2008, Finite and infinite populations in biological statistics: Should we distinguish them?: Journal of American Science, v. 4, p. 59–62.
  • Krumbein, W.C., 1960, Some problems in applying statistics to geology: Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 9, p. 82–91. doi:10.2307/2985430.
  • Krumbein, W.C., 1961, The “geological population” as a framework for analyzing numerical data in geology: Geological Journal, v. 2, p. 341‒368. doi:10.1002/gj.3350020305.
  • Krumbein, W.C., and Slack, H.A., 1956, Relative efficiency of beach sampling methods: Beach erosion board, corps of engineers: Technical Memorandum, no. 90, p. 58.
  • Kukull, W.A., and Ganguli, M., 2012, Generalizability: The trees, the forest, and the low-hanging fruit: Neurology, v. 78, p. 1886–1891. doi:10.1212/WNL.0b013e318258f812.
  • LaMaskin, T.A., 2012, Detrital zircon facies of Cordilleran terranes in western North America: GSA Today: A Publication of the Geological Society of America, v. 22, p. 4–11. doi:10.1130/GSATG142A.1.
  • LaMaskin, T.A., Rivas, J.A., Barbeau, D.L., Schwartz, J.J., Russell, J.A., and Chapman, A.D., 2022, A crucial geologic test of Late Jurassic exotic collision versus endemic re-accretion in the Klamath Mountains Province, western United States, with implications for the assembly of western North America: Geological Society of America, v. 134, p. 965–988. doi:10.1130/B35981.1.
  • Laskowski, A.K., DeCelles, P.G., and Gehrels, G.E., 2013, Detrital zircon geochronology of Cordilleran retroarc foreland basin strata, western North America: Tectonics, v. 32, p. 1–22. doi:10.1002/tect.20065.
  • Lawrence, R.L., Cox, R., Mapes, R., and Coleman, D.S., 2011, Hydrodynamic fractionation of zircon age populations: Geological Society of America Bulletin, v. 123, p. 295–305. doi:10.1130/B30151.1.
  • Lee, A.S., and Baskerville, R.L., 2003, Generalizing generalizability in information systems research: Information Systems Research, v. 14, p. 221–243. doi:10.1287/isre.14.3.221.16560.
  • Link, P.K., Fanning, C.M., and Beranek, L.P., 2005, Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode: Sedimentary Geology, v. 182, p. 101–142. doi:10.1016/j.sedgeo.2005.07.012.
  • Lohr, S., 2022, Sampling, design and analysis: Third Boca Raton, Florida, CRC Press, 650 p.
  • Lowey, G.W., 2023, The good, the bad, and the ugly: Analysis of three arguments in the ongoing debate concerning the polarity of Mesozoic arcs along the western margin of North America: Geological Society of America Bulletin, doi:10.1130/B36706.1.
  • Mahan, S.A., Rittenour, T.M., Nelson, M.S., Ataee, N., Brown, N., DeWitt, R., Durcan, J., Evans, M., Feathers, J., Frouin, M., Guérin, G., Heydari, M., Huot, S., Jain, M., Keen-Zebert, A., Li, B., López, G.I., Neudorf, C., Porat, N., Rodrigues, K., Sawakuchi, A.O., Spencer, J.Q.G., and Thomsen, K., 2022, Guide for interpreting and reporting luminescence dating results: Geological Society of America Bulletin, v. 135, p. 1480–1502. doi:10.1130/B36404.1.
  • Malusà, M.G., Carter, A., Limoncelli, M., Villa, I.M., and Garzanti, E., 2013, Bias in detrital zircon geochronology and thermochronometry: Chemical Geology, v. 359, p. 90–107. doi:10.1016/j.chemgeo.2013.09.016.
  • Malusà, M.G., Resentini, A., and Garzanti, E., 2016, Hydraulic sorting and mineral fertility bias in detrital geochronology: Gondwana Research, v. 31, p. 1–19. doi:10.1016/j.gr.2015.09.002.
  • Markwitz, V., Kirkland, C.L., and Gesser, K., 2020, Provenance bias between detrital zircons from sandstones and river sands: A quantification approach using 3-D grain shape, composition and age: Geoscience Frontiers, v. 11, p. 835‒842. doi:10.1016/j.gsf.2019.09.002.
  • Martínez-Mesa, J., González-Chica, D.A., Duquia, R.P., Bonamigo, R.R., and Bastos, J.L., 2016, Sampling: How to select participants in my research study?: Anais Brasileiros de Dermatologia, v. 91, p. 326‒30. doi:10.1590/abd1806-4841.20165254.
  • Mathur, M.B., and VanderWeele, T.J., 2022, Methods to address confounding and other biases in meta-analyses: Review and recommendations: Annual Review of Public Health, v. 43, p. 19–35. doi:10.1146/annurev-publhealth-051920-114020.
  • McLelland, J.M., Bickford, M.E., Hill, B.M., Clechenko, C.C., Valley, J.W., and Hamilton, M.A., 2004, Direct dating of Adirondack massif anorthosite by U-Pb SHRIMP analysis of igneous zircon: Implications for AMCG complexes: Geological Society of America Bulletin, v. 116, no. 11–12, p. 1299–1317. doi:10.1130/B25482.1.
  • McLennan, S.M., Bock, B., Compston, W., Hemming, S.R., and McDaniel, D.K., 2001, Detrital zircon geochronology of Taconian and Acadian foreland sedimentary rocks in New England: Journal of Sedimentary Research, v. 71, p. 305–317. doi:10.1306/072600710305.
  • Memon, M.A., Ting, H., Cheah, J.-H., Thurasamy, R., Chuah, F., and Cham, T.H., 2020, Sample size for survey research: Review and recommendations: Journal of Applied Structural Equation Modeling, v. 4, p. 1–20. doi:10.47263/JASEM.4(2)01.
  • Merle, R.E., Nemchin, A.A., Whitehouse, M.J., Pidgeon, R.T., Grange, M.L., Snape, J.F., and Thiessen, F., 2017, Origin and transport of lunar breccia 14311: Meteoritics & Planetary Science, v. 52, p. 842–858. doi:10.1111/maps.12835.
  • Miall, A.D., 2022, Stratigraphy: A modern synthesis: Second Cham, Switzerland, Springer Nature Switzerland AG, 518 p.
  • Miller, E.L., Toro, J., Gehrels, G., Amato, J.M., Prokopiev, A., Tuchkova, M.I., Akinin, V.V., Dumitru, T.A., Moore, T.E., and Cecile, M.P., 2006, New insights into Arctic paleogeography and tectonics from U-Pb detrital zircon geochronology: Tectonics, v. 25, p. 1–19. doi:10.1029/2005TC001830.
  • Moecher, D.P., and Samson, S.D., 2006, Differential zircon fertility of source terranes and natural bias in the detrital record: Implications for sedimentary provenance analysis: Earth and Planetary Science Letters, v. 247, p. 252–266. doi:10.1016/j.epsl.2006.04.035.
  • Moore, T.E., O’Sullivan, P.B., Potter, C.J., and Donelick, R.A., 2015, Provenance and detrital zircon geochronologic evolution of lower Brookian foreland basin deposits of the western Brooks Range, Alaska, and implications for early Brookian tectonism: Geological Society of America Bulletin, v. 11, p. 93–122. doi:10.1130/GES01043.1.
  • Nanjundeswaraswamy, T.S., and Divakar, S., 2021, Determination of sample size and sampling methods in applied research: Proceedings of Engineering Sciences, v. 3, p. 25–32, 10.24874/PES03.01.003.
  • Napier-Munn, T.J., Whiten, W.J., and Faramarzi, F., 2020, Bias in manual sampling of rock particles: Minerals Engineering, v. 153, p. 1–10. doi:10.1016/j.mineng.2020.106260.
  • Neyman, J., 1934, On two different aspects of the representative method: The method of stratified sampling and the method of purposive sampling: Journal of the Royal Statistical Society, v. 97, p. 558–625. doi:10.2307/2342192.
  • Nilsen, O., Corfu, F., and Roberts, D., 2007, Silurian gabbro-diorite-trondhjemite plutons in the Trondheim Nappe Complex, Caledonides, Norway: Petrology and U-Pb geochronology: Norwegian Journal of Geology, v. 87, p. 329–343.
  • Nugraha, A.M.S., and Hall, R., 2022, Neogene sediment provenance and paleogeography of SE Sulawesi: Indonesia, Basin Research, v. 34, 1714–1730 p. doi:10.1111/bre.12682.
  • Olierook, H.K.H., Barham, M., Kirkland, C.L., Hollis, J., and Vass, A., 2020, Zircon fingerprint of the Neoproterozoic North Atlantic: Perspectives from East Greenland: Precambrian Research, v. 342, p. 1–30. doi:10.1016/j.precamres.2020.105653.
  • Omona, J., 2013, Sampling in qualitative research: Improving the quality of research outcomes in higher education: Makerere Journal of Higher Education, v. 4, p. 169–185. doi:10.4314/majohe.v4i2.4.
  • Ortega-Flores, B., Solari, L.A., and Martini, M., 2021, Multidimensional Scaling (MDS): A quantitative approximation of zircon ages to sedimentary provenance with some examples from Mexico: Journal of South American Earth Sciences, v. 110, p. 1–13. doi:10.1016/j.jsames.2021.103347.
  • Osorio-Granada, E., Restrepo-Moreno, S.A., Muñoz-Valencia, J.A., Trejos-Tamayo, R.A., Pardo-Trujillo, A., and Barbosa-Espitia, A.A., 2017, Detrital zircon typology and U/Pb geochronology for the Miocene Ladrilleros-Juancho sedimentary sequence, Equatorial Pacific (Columbia): New constraints on provenance and paleogeography in northwestern South America: Geologica Acta, v. 15, p. 201–215. doi:10.1344/GeologicaActa2017.15.3.4.
  • Otto, G.H., 1938, The sedimentation unit and its use in field sampling: The Journal of Geology, v. 46, no. 4, p. 569–582. doi:10.1086/624659.
  • Palaniswamy, U.R., and Palaniswamy, K.M., 2006, Handbook of statistics for teaching and research in plant and crop science: Binghamton, New York, The Haworth Press, Inc, 652 p.
  • Patton, M.Q., 2002, Qualitative research and evaluation methods: Third Thousands Oak, California, SAGE Publications, Inc, 598 p.
  • Peacock, D.C.P., Sanderson, D.J., Barsteen, E., Rotevatn, A., and Storstein, T.H., 2019, Causes of bias and uncertainty in fracture network analysis: Norwegian Journal of Geology, v. 99, p. 113–128. doi:10.17850/njg99-1-06.
  • Petersen, L., Dahl, C.K., and Esbensen, K.H., 2004, Representative mass reduction in sampling—a critical survey of techniques and hardware: Chemometrics and Intelligent Laboratory Systems, v. 74, p. 95–114. doi:10.1016/j.chemolab.2004.03.020.
  • Petersen, L., Minkkinen, P., and Esbensen, K.H., 2005, Representative sampling for reliable data analysis: Theory of sampling: Chemometrics and Intelligent Laboratory Systems, v. 77, p. 261–277. doi:10.1016/j.chemolab.2004.09.013.
  • Pettijohn, F.J., 1975, Sedimentary rocks: Third New York, Harper &, Row Publishers, Inc, 628 p.
  • Pettijohn, F.J., Potter, P.E., and Siever, R., 1972, Sand and Sandstone: New York, Springer Verlag, 618. doi:10.1007/978-1-4615-9974-6.
  • Pitard, F.F., 2019, Theory of sampling and sampling practice: Third Boca Raton, Florida, Taylor & Francis Group, 693 p. doi:10.1201/9781351105934.
  • Polit, D.F., and Beck, C.T., 2010, Generalization in quantitative and qualitative research: Myths and strategies: International Journal of Nursing Studies, v. 47, p. 1451–1458. doi:10.1016/j.ijnurstu.2010.06.004.
  • Powerman, V.I., Buyantuev, M.D., and Ivanov, A.V., 2021, A review of detrital zircon data treatment, and launch of a new tool ‘Dezirteer’ along with the suggested universal workflow: Chemical Geology, v. 583, p. 1–17. doi:10.1016/j.chemgeo.2021.120437.
  • Puetz, S.J., and Condie, K.C., 2019, Time series analysis of mantle cycles, Part I: Periodicities and correlations among seven global isotopic databases: Geoscience Frontiers, v. 10, p. 1305–1326. doi:10.1016/j.gsf.2019.04.002.
  • Puetz, S.J., Spencer, C.J., and Ganade, C.E., 2021, Analyses from a validated global UPb detrital zircon database: Enhanced methods for filtering discordant U-Pb zircon analyses and optimizing crystallization age estimates: Earth-Science Reviews, v. 220, p. 1–17. doi:10.1016/j.earscirev.2021.103745.
  • Pullen, A., Ibanez-Mejia, M., Gehrels, G.E., Ibanez-Mejia, J.C., and Pecha, M., 2014, What happens when n=1000? Creating large-n geochronological datasets with LA-ICP-MS for geologic investigations: Journal of Analytical Atomic Spectrometry, v. 29, p. 971–980. doi:10.1039/C4JA00024B.
  • Rinke-Hardekopf, L., Dashtgard, S.E., Huang, C., and Gibson, H.D., 2021, Application of grouped detrital zircon analysis to determine provenance and closely approximate true depositional age: Early cretaceous McMurray-clearwater succession, Canada: Geoscience Frontiers, v. 12, p. 877–892. doi:10.1016/j.gsf.2020.11.016.
  • Rittenhouse, G., 1943, Transportation and deposition of heavy minerals: Geological Society of America Bulletin, v. 54, no. 12, p. 1725‒1780. doi:10.1130/GSAB-54-1725.
  • Roberts, N.M.W., and Spencer, C.J., 2015, The zircon archive of continent formation through time, in Roberts, N.M.W., Van Kranendonk, M., Parman, S., Shirley, S., and Clift, P.D. eds., Continent formation through time: Geological society: London, Special Publications, v. 389, p. 197–225. doi:10.1144/SP389.14.
  • Rodríguez, N., Díaz-Alvardo, J., Fernández, C., Fuentes, P., Breitkreutz, C., and Tassinardi, C.C.G., 2019, The significance of U-Pb zircon ages in zoned plutons–the case of the Flamenco pluton, Coastal Celso Range batholith, northern Chile: Geoscience Frontiers, v. 10, p. 1073–1099. doi:10.1016/j.gsf.2018.06.003.
  • Rombouts, L., 1995, Sampling and statistical evaluation of diamond deposits: Journal of Geochemical Exploration, v. 53, no. 1–3, p. 351–367. doi:10.1016/0375-6742(94)00013-2.
  • Ross, G.M., and Parrish, R.R., 1991, Detrital zircon geochronology of metasedimentary rocks in the southern Omineca Belt, Canadian Cordillera: Canadian Journal of Earth Sciences, v. 28, p. 1254–1270. doi:10.1139/e91-112.
  • Sampling methodology for performance audits-a practical guide, 2021: Ottawa, Ontario, Canadian Audit and Accountability Foundation, 67 p.
  • Satkoski, A.M., Wilkinson, B.H., Hietpas, J., and Samson, S.D., 2013, Likeness among detrital zircon populations—An approach to comparison of age frequency data in time and space: Geological Society of America Bulletin, v. 125, p. 1783–1799. doi:10.1130/B30888.1.
  • Saylor, J.E., and Sundell, K.E., 2016, Quantifying comparison of large detrital geochronology data sets: Geosphere, v. 12, p. 203–220. doi:10.1130/GES01237.1.
  • Schoene, B., Schaltegger, U., Brack, P., Latkoczy, C., Stracke, A., and Günther, D., 2012, Rates of magma differentiation and emplacement in ballooning pluton recorded by U-Pb TIMS-TEA, Adamello batholith, Italy: Earth and Planetary Science Letters, v. 335-336, p. 162–173. doi:10.1016/j.epsl.2012.08.019.
  • Schwartz, T.M., Surpless, K.D., Colgan, J.P., Johnstone, S.A., and Holm-Denoma, C.S., 2021, Detrital zircon record of magmatism and sediment dispersal across the North American Cordilleran arc system (28–48°N: Earth Science Reviews, v. 220, p. 1–35. doi:10.1016/j.earscirev.2021.103734.
  • Seraine, M., Campos, J.E.G., Martins-Ferreira, M.A.C., de Alvarenga, C.J.S., Chemale, F., Angelo, T.V., and Spencer, C., 2021, Multi-dimensional scaling of detrital zircon geochronology constrains basin evolution of the late Mesoproterozoic Paranoá group: central Brazil, Precambrian Research, v. 365, 1–11 p. doi:10.1016/j.precamres.2021.106381.
  • Shao, L., Cao, L., Pang, X., Jiang, T., Qiao, P., and Zhao, M., 2016, Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China sea: Geochemistry, Geophysics, Geosystems, v. 17, p. 255–269. doi:10.1002/2015GC006113.
  • Šimundić, A.-M., 2013, Bias in research: Biochemia Medica, v. 23, p. 12–15. doi:10.11613/BM.2013.003.
  • Singh, A.S., and Masuku, M.B., 2014, Sampling techniques and determination of sample size in applied statistics research: An overview: International Journal of Economics, Commerce and Management, v. 11, p. 1–22.
  • Sircombe, K., 2014, Uranium-Lead, Detrital Zircon, in Rink, W.K., and Thompson, J.W. eds., Encyclopedia of scientific dating methods: Dordrecht, Netherland, Springer Science+Business Media, p. 1–21. doi:10.1007/978-94-007-6326-5_63-1.
  • Sircombe, K.N., and Hazelton, M.L., 2004, Comparison of detrital zircon age distributions by kernel functional estimation: Sedimentary Geology, v. 171, p. 91–111. doi:10.1016/j.sedgeo.2004.05.012.
  • Slagstad, T., and Kirkland, C.L., 2017, The use of detrital zircon data in terrane analysis: A nonunique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides: Lithosphere, v. 9, no. 6, p. 1002–1011. doi:10.1130/L663.1.
  • Sláma, J., and Košler, J., 2012, Effects of sampling and mineral separation on accuracy of detrital zircon studies: Geochemistry, Geophysics, Geosystems, v. 13, p. 1–17. doi:10.1029/2012GC004106.
  • Spencer, C.J., and Kirkland, C.L., 2016, Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach: Lithosphere, v. 8, p. 29–37. doi:10.1130/L479.1.
  • Steinmetz, R., 1962, Sampling and size distribution of quartzose pebbles from three New Jersey gravels: The Journal of Geology, v. 70, no. 1, p. 56–73. http://www.jstor.org/stable/30071548.
  • Sundell, K.E., Gehrels, G.E., and Pecha, M.E., 2020, Rapid U-Pb geochronology by laser ablation multi-collector ICP-MS: Geostandards and Geoanalytical Research, v. 45, p. 37–57. doi:10.1111/ggr.12355.
  • Sundell, K.E., and Saylor, J.E., 2021, Two-dimensional quantitative comparison of density distributions in detrital geochronology and geochemistry: Geochemistry, Geophysics, Geosystems, v. 22, p. 1–25. doi:10.1029/2020GC009559.
  • Taherdoost, H., 2016, Sampling methods in research methodology: How to choose a sampling technique for research: International Journal of Academic Research in Management, v. 5, p. 18–27. doi:10.2139/ssrn.3205035.
  • Thomas, W.A., 2011, Detrital-zircon geochronology and sedimentary provenance: Lithosphere, v. 3, p. 304–308. doi:10.1130/RF.L001.1.
  • Tversky, A., and Kahneman, D., 1971, Belief in the law of small numbers: Psychological Bulletin, v. 76, no. 2, p. 105–110. doi:10.1037/h0031322.
  • Tye, A.R., Wolf, A.S., and Niemi, N.A., 2019, Bayesian population correlation: A probabilistic approach to inferring and comparing population distributions for detrital zircon ages: Chemical Geology, v. 518, p. 67–78. doi:10.1016/j.chemgeo.2019.03.039.
  • van der Plas, L., and Tobi, A.C., 1965, A chart for judging the reliability of point counting results: American Journal of Science, v. 263, no. 1, p. 87–90. doi:10.2475/ajs.263.1.87.
  • Vermeesch, P., 2004, How many grains are needed for a provenance study?: Earth and Planetary Science Letters, v. 224, p. 441–451. doi:10.1016/j.epsl.2004.05.037.
  • Vermeesch, P., 2005, Detrital zircons as tracers of sedimentary provenance: Limiting conditions from statistics and numerical simulation: Chemical Geology, v. 216, p. 249–270. doi:10.1016/j.chemgeo.2004.11.013.
  • Vermeesch, P., 2012, On the visualization of detrital age distributions: Chemical Geology v. 312–313, p. 190–194, 10.1016/j.chemgeo.2012.04.021.
  • Vermeesch, P., 2013, Multi-sample comparison of detrital age distributions: Chemical Geology, v. 341, p. 140–146. doi:10.1016/j.chemgeo.2013.01.010.
  • Vermeesch, P., 2018a, Dissimilarity measures in detrital geochronology: Earth Science Reviews, v. 178, p. 310–321. doi:10.1016/j.earscirev.2017.11.027.
  • Vermeesch, P., 2018b, Statistical models for point-counting data: Earth and Planetary Science Letters, v. 501, p. 112–118. doi:10.1016/j.epsl.2018.08.019.
  • Vermeesch, P., and Garzanti, E., 2015, Making geological sense of ‘Big Data’ in sedimentary provenance analysis: Chemical Geology, v. 409, p. 20–27. doi:10.1016/j.chemgeo.2015.05.004.
  • Violato, C., 1991, Determination of sample size during ongoing sampling: Environmetrics, v. 2, no. 1, p. 107–116. doi:10.1002/env.3770020109.
  • Voice, P.J., Kowaleski, M., and Eriksson, K.A., 2011, Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains: The Journal of Geology, v. 119, p. 109–126. doi:10.1086/658295.
  • von Eynatten, H., and Dunkl, I., 2012, Assessing the sediment factory: The role of single grain analysis: Earth-Science Reviews, v. 115, p. 97–120. doi:10.1016/j.earscirev.2012.08.001.
  • Weislogel, A.L., Graham, S.A., Chang, E.Z., Wooden, J.L., and Gehrels, G.E., 2010, Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: Record of collisional tectonics, erosional exhumation, and sediment production: Geological Society of America Bulletin, v. 122, p. 2041–2062. doi:10.1130/B26606.1.
  • Weltje, G.J., 2002, Quantitative analysis of detrital modes: Statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology: Earth-Science Reviews, v. 57, p. 211–253. doi:10.1016/S0012-8252(01)00076-9.
  • Weltje, G.J., and von Eynatten, H., 2004, Quantitative provenance analysis of sediments: Review and outlook: Sedimentary Geology, v. 17, p. 1–11. doi:10.1016/j.sedgeo.2004.05.007.
  • Whitten, E.H.T., 2000, Variability of igneous rocks and its significance: Proceedings of the Geologists’ Association, v. 111, p. 1–15, 10.1016/S0016-7878(00)80033-4.
  • Wissink, G.K., Wilkinson, B.H., and Hoke, G.D., 2018, Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings: Lithosphere, v. 10, p. 478–491. doi:10.1130/L700.1.
  • Yates, F., 1935, Some examples of biased sampling: Annals of Human Eugenics, v. 6, p. 202–213. doi:10.1111/j.1469-1809.1935.tb02228.x.
  • Zhang, H., Lu, H., He, J., Xie, W., Wang, H., Zhang, H., Breecker, D., Bird, A., Stevens, T., Nie, J., and Li, G., 2022, Large-number detrital zircon U-Pb ages reveal global cooling caused the formation of the Chinese Loess Plateau during Late Miocene: Science Advances, v. 8, p. 1–13. doi:10.1126/sciadv.abq2007.
  • Zhu, B., and Zeng, Z., 2022, Detrital zircon provenance in the sediments in the Southern Okinawa Trough: Journal of Marine Science and Engineering, v. 10, p. 1–14. doi:10.3390/jmse10020142.
  • Zieger, J., Hofmann, M., Gärtner, A., Gerdes, A., Marko, L., Linnemann, U., and Taylor, K., 2022, Tracing southern Gondwana sedimentary paths: A case study of northern Namibian late Paleozoic sedimentary rocks: Sedimentology, v. 69, p. 1738–1768. doi:10.1111/sed.12971.
  • Zutterkirch, I., Kirkland, C.I., Barham, M., and Elders, C., 2022, Thin-section detrital zircon geochronology mitigates bias in provenance investigations: Journal of the Geological Society, v. 179, p. 1–12. doi:10.1144/jgs2021-070.
  • Zvereva, E.L., and Kozlov, M.V., 2021, Biases in ecological research: Attitudes of scientists and ways of control: Scientific Reports, v. 11, p. 1–9. doi:10.1038/s41598-020-80677-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.