327
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geochemical constraints on the provenance and tectonic setting of metasedimentary rocks from the South Delhi Supergroup, NW India: implications for tectonic evolution of western margin of the Aravalli orogen

ORCID Icon, , , & ORCID Icon
Pages 1280-1301 | Received 28 Dec 2022, Accepted 25 Mar 2023, Published online: 07 Jul 2023

References

  • Ahmad, T., Dragusanu, C., and Tanaka, T., 2008, Provenance of Proterozoic Basal Aravalli mafic volcanic rocks from Rajasthan, northwestern India: Nd isotopes evidence for enriched mantle reservoirs: Precambrian Research, v. 162, p. 150–159. doi:10.1016/j.precamres.2007.07.011.
  • Ahmad, T., and Tarney, J., 1994, Geochemistry and petrogenesis of late Archean Aravalli volcanics, basement enclaves and granitoids, Rajasthan: Precambrian Research, v. 65, p. 1–23. doi:10.1016/0301-9268(94)90097-3.
  • Armstrong-Altrin, J.S., Botello, A.V., Villanueva, S.F., and Soto, L.A., 2019, Geochemistry of surface sediments from the northwestern Gulf of Mexico: Implications for provenance and heavy metal contamination: Geological Quarterly, v. 63, p. 522–538. doi:10.7306/gq.1484.
  • Armstrong-Altrin, J.S., Lee, Y.I., Kasper-Zubillaga, J.J., and Trejo-Ramírez, E., 2017, Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: Implications for palaeoweathering, provenance and tectonic setting: Geological Journal, v. 52, p. 559–582. doi:10.1002/gj.2792.
  • Bhatia, M.R., 1983, Plate tectonics and geochemical composition of sandstones: The Journal of Geology, v. 91, p. 611–627. doi:10.1086/628815.
  • Bhatia, M.R., 1985, Rare earth element geochemistry of Australian Palaeozoic greywacke and mud rocks: Provenance and tectonic control: Sedimentary Geology, v. 45, p. 97–113. doi:10.1016/0037-0738(85)90025-9.
  • Bhatia, M.R., and Crook, K.A.W., 1986, Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins: Contributions to Mineralogy and Petrology, v. 92, p. 181–193. doi:10.1007/bf00375292.
  • Bhowmik, S.K., Dasgupta, S., Baruah, S., and Kalita, D., 2018, Thermal history of a Late Mesoproterozoic paired metamorphic belt (?) during Rodinia assembly: New insights from medium-pressure granulites from the Aravalli-Delhi Mobile Belt, northwestern India: Geoscience Frontiers, v. 9, p. 335–354. doi:10.1016/j.gsf.2017.07.002.
  • Cawood, P.A., Hawkesworth, C.J., and Dhuime, B., 2012, Detrital zircon record and tectonic setting: Geology, v. 40, p. 875–878. doi:10.1130/G32945.1.
  • Chatterjee, S.M., Roy Choudhury, M., Das, S., and Roy, A., 2017, Significance and dynamics of the Neoproterozoic (810 Ma) Phulad Shear Zone, Rajasthan, NW India: Tectonics, v. 36, p. 1432–1454. doi:10.1002/2017TC004554.
  • Chatterjee, S.M., Sarkar, A.K., Roy, A., and Manna, A., 2020, Mid-Neoproterozoic tectonics of northwestern India: Evidence of stitching pluton along 810 Ma Phulad Shear Zone: Tectonics, v. 39, p. e2019TC005902. doi:10.1029/2019TC005902.
  • Condie, K.C., 1993, Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales: Chemical Geology, v. 104, p. 1–37. doi:10.1016/0009-2541(93)90140-E.
  • Cox, R., Lowe, D.R., and Cullers, R.L., 1995, The influence of sedimentary recycling and basement composition on evolution of mudrock chemistry in the southwestern United States: Geochimica et Cosmochimica Acta, v. 59, p. 2919–2940. doi:10.1016/0016-7037(95)00185-9.
  • Cullers, R.L., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies: Lithos, v. 51, p. 181–203. doi:10.1016/S0024-4937(99)00063-8.
  • Cullers, R.L., Basu, A., and Suttner, L.J., 1988, Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root Batholith, Montana, U.S.A: Chemical Geology, v. 70, p. 335–348. doi:10.1016/0009-2541(88)90123-4.
  • Cullers, R.L., and Podkovyrov, V.N., 2000, Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling: Precambrian Research, v. 104, p. 77–93. doi:10.1016/S0301-9268(00)00090-5.
  • Deb, M., Thorpe, R.I., Krstic, D., Corfu, F., and Davis, D.W., 2001, Zircon U-Pb and galena Pb isotope evidence for an approximate 1.0 Ga terrane constituting the western margin of the Aravalli-Delhi orogenic belt, northwestern India: Precambrian Research, v. 108, p. 195–213. doi:10.1016/S0301-9268(01)00134-6.
  • Dharma Rao, C.V., Santosh, M., Kim, S.W., and Li, S., 2013, Arc magmatism in the Delhi Fold Belt: SHRIMP U-Pb zircon ages of granitoids and implications for Neoproterozoic convergent margin tectonics in NW India: Journal of Asian Earth Sciences, v. 78, p. 83–99. doi:10.1016/j.jseaes.2012.09.007.
  • Dickinson, W.R., 1985, Interpreting provenance relations from detrital modes of sandstone, in Zuffa, G.G., ed., Provenance of arenites: Springer, Dordrecht, Springer Netherlands, v. 148, p. 333–361. doi:10.1007/978-94-017-2809-6_15.
  • Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., 1983, Provenance of North American Phanerozoic sandstones in relation to tectonic settings: Geological Society of American Bulletin, v. 94, p. 222–235. doi:10.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2.
  • D’Souza, J., Prabhakar, N., Xu, Y., Sharma, K.K., and Sheth, H., 2019, Mesoarchean to Neoproterozoic (3.2-0.8 Ga) crustal growth and reworking in the Aravalli craton, northwestern India: Insights from the Pur-Banera supracrustal belt: Precambrian Research, v. 332, p. 105383. doi:10.1016/j.precamres.2019.105383.
  • Dutta, R., Bhu, H., Purohit, R., and Sharma, K.K., 2021, Geology of granitoids of Pindwara-Abu Road belt from Mesoproterozoic Delhi Supergroup: Tectonic implications: Journal of Earth System Sciences, v. 130, p. 1–17. doi:10.1007/s12040-021-01607-0.
  • Fatima, S., and Khan, M.S., 2012, Petrographic and geochemical characteristics of Mesoproterozoic Kumbhalgarh clastic rocks, NW Indian shield: Implications for provenance, tectonic setting, and crustal evolution: International Geology Review, v. 54, p. 1113–1144. doi:10.1080/00206814.2011.623032.
  • Fedo, C.M., Nesbitt, H.W., and Young, G.M., 1995, Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance: Geology, v. 23, p. 921–924. doi:10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2.
  • Floyd, P.A., and Leveridge, B.E., 1987, Tectonic environment of the Devonian Gramscatho basin, south Cornwall: Framework mode and geochemical evidence from turbiditic sandstones: Journal of the Geological Society of London, v. 144, p. 531–542. doi:10.1144/gsjgs.144.4.0531.
  • Gangopadhyay, P.K., and Lahiri, A., 1990, Structural characteristics of the rocks of the Delhi Supergroup with special reference to interference patterns: An appraisal with some examples from central Rajasthan: Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, v. 99, p. 309–320. doi:10.1007/bf02839397.
  • Gangopadhyay, A., and Mukhopadhyay, D., 1987, Structural geometry of the Delhi Supergroup near Sendra -an example of the impress of granite diapirism on tectonic structures, in Saha, A.K., ed., Geological evolution of Peninsular India, Recent Researches in Geology: Delhi, Hindustan Publishing Company, v. 13, p. 45–60.
  • Garzanti, E., 2017, The maturity myth in sedimentology and provenance analysis: Journal of Sedimentary Research, v. 87, p. 353–365. doi:10.2110/jsr.2017.17.
  • Garzanti, E., Padoan, M., Setti, M., Najman, Y., Peruta, L., and Villa, I.M., 2013, Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds: Geochemistry, Geophysics, Geosystems, v. 14, p. 292–316. doi:10.1002/ggge.20060.
  • Garzanti, E., and Resentini, A., 2016, Provenance control on chemical indices of weathering (Taiwan river sands): Sedimentary Geology, v. 336, p. 81–95. doi:10.1016/j.sedgeo.2015.06.013.
  • Garzanti, E., Vermeesch, P., Padoan, M., Resentini, A., Vezzoli, G., and Ando, S., 2014, Provenance of passive-margin sand (Southern Africa): The Journal of Geology, v. 122, p. 17–42. doi:10.1086/674803.
  • Guo, Y., Yang, S., Li, C., Bi, L., and Zhao, Y., 2017, Sediment recycling and indication of weathering proxies: Acta Geochimica, v. 36, p. 498–501. doi:10.1007/s11631-017-0218-7.
  • Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqballudin,Prasad, B., Sahai, T.N., Sharma, S.B., 1980, Lithostratigraphic map of Aravalli region, southern Rajasthan and northeastern Gujarat, Scale 1: 1000000, Geological Survey of India, Kolkata .
  • Gupta, S.N., Arora, Y.K., Mathur, R.K., Iqbaluddin,Prasad, B., Sahai, T.N., Sharma, S.B., 1997, The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat: Memoirs of the Geological Survey of India, v. 123, p. 262.
  • Gupta, P., Mukhopadhyay, K., Fareeduddin, M.S., and Reddy S., 1995, Stratigraphy and structure of Delhi Supergroup of rocks in central part of Aravalli Range: Records of the Geological Survey of India, v. 120, p. 12–26.
  • Harnois, L., 1988, The CIW index: A new chemical index of weathering: Sedimentary Geology, v. 55, p. 319–322. doi:10.1016/0037-0738(88)90137-6.
  • Hayashi, K., Fujisawa, H., Holland, H., and Ohmoto, H., 1997, Geochemistry of ̴ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada: Geochimica et Cosmochimica Acta, v. 61, p. 4115–4137. doi:10.1016/s0016-7037(97)00214-7.
  • Heron, A.M., 1953, Geology of central Rajputana: Memoir of Geological Survey of India, v. 79, p. 389.
  • Herron, M.M., 1988, Geochemical classification of terrigenous sands and shales from core or log data: Journal of Sedimentary Research, v. 58, p. 820–829. doi:10.1306/212F8E77-2B24-11D7-8648000102C1865D.
  • Hoffman, E.L., 1992, Instrumental neutron activation in geoanalysis: Journal of Geochemical Exploration, v. 44, p. 297–319. doi:10.1016/0375-6742(92)90053-B.
  • Howard, J.L., 2005, The quartzite problem revisited: The Journal of Geology, v. 113, p. 707–713. doi:10.1086/449328.
  • Kaur, P., Chaudhri, N., and Eliyas, N., 2019b, Origin of trondhjemite and albitite at the expense of A-type granite, Aravalli orogen, India: Evidence from new metasomatic replacement fronts: Geoscience Frontiers, v. 10, p. 1891–1913. doi:10.1016/j.gsf.2018.09.019.
  • Kaur, P., Chaudhri, N., and Hofmann, A.W., 2015, New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India: International Geology Review, v. 57, p. 1660–1685. doi:10.1080/00206814.2014.1000394.
  • Kaur, P., Chaudhri, N., Hofmann, A.W., Raczek, I., Okrusch, M., Skora, S., and Baumgartner, L.P., 2012, Two-stage, extreme albitization of A-type granites from Rajasthan, NW India: Journal of Petrology, v. 53, p. 919–948. doi:10.1093/petrology/egs003.
  • Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A.W., and Okrusch, M., 2011, Zircon ages of late Paleoproterozoic (ca. 1.72-1.70 Ga) extension-related granitoids in NE Rajasthan, India: Regional and tectonic significance: Gondwana Research, v. 19, p. 1040–1053. doi:10.1016/j.gr.2010.09.009.
  • Kaur, P., Zeh, A., and Chaudhri, N., 2017a, Paleoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole rock geochemistry: Journal of Asian Earth Sciences, v. 136, p. 68–88. doi:10.1016/j.jseaes.2017.01.024.
  • Kaur, P., Zeh, A., and Chaudhri, N., 2019a, Archean crustal evolution of the Aravalli Banded Gneissic Complex, NW India: Constraints from zircon U-Pb ages, Lu-Hf isotope systematics, and whole-rock geochemistry of granitoids: Precambrian Research, v. 327, p. 81–102. doi:10.1016/j.precamres.2019.03.004.
  • Kaur, P., Zeh, A., and Chaudhri, N., 2021, Archean to Proterozoic (3535-900 Ma) crustal evolution of the central Aravalli Banded Gneissic Complex, NW India: New constraints from zircon U-Pb-Hf isotopes and geochemistry: Precambrian Research, v. 359, p. 106179. doi:10.1016/j.precamres.2021.106179.
  • Kaur, P., Zeh, A., Chaudhri, N., and Dutta, P., 2022, Detrital zircon U-Pb-Hf isotope record of conglomerates in the southern Aravalli orogen, NW India: Implications for stratigraphy, provenance and Archean to Paleoproterozoic crustal evolution: Precambrian Research, v. 379, p. 106800. doi:10.1016/j.precamres.2022.106800.
  • Kaur, P., Zeh, A., Chaudhri, N., and Eliyas, N., 2017b, Two distinct sources of 1.73-1.70 Ga A-type granites from the northern Aravalli orogen, NW India: Constraints from in-situ zircon U-Pb ages and Lu-Hf isotopes: Gondwana Research, v. 49, p. 164–181. doi:10.1016/j.gr.2017.05.012.
  • Kaur, P., Zeh, A., Chaudhri, N., Mahisha,Tiwana, J.K., Dutta, P., 2023, Stenian sediments (< 1065 Ma) and Tonian A- and I-type magamatism (1000-970 Ma) along the western margin of the central Aravalli orogen, NW India: Petrographic and geodynamic implications: Gondwana Research, v. 117, p. 23–40. doi:10.1016/j.gr.2023.01.006.
  • Kaur, P., Zeh, A., Chaudhri, N., and Tiwana, J.K., 2020, First evidence of late Paleoproterozoic/early Mesoproterozoic sediment deposition and magmatism in the central Aravalli orogen (NW India): The Journal of Geology, v. 128, p. 109–129. doi:10.1086/707235.
  • Khan, M.S., Smith, T.E., Raza, M., and Huang, J., 2005, Geology, geochemistry and tectonic significance of mafic-ultramafic rocks of Mesoproterozoic Phulad Ophiolite Suite of South Delhi Fold Belt, NW Indian Shield: Gondwana Research, v. 8, p. 553–566. doi:10.1016/S1342-937X(05)71155-2.
  • McDaniel, D.K., and McLennan, S.M., 1991, Provenance characterization of an altered sandstone using combined petrographical and geochemical evidence: Geological Society of America Abstracts with Programs, v. 23, p. A108.
  • McDonough, W.F., and Sun, S.-S., 1995, The composition of the Earth: Chemical Geology, v. 120, p. 223–253. doi:10.1016/0009-2541(94)00140-4.
  • McKenzie, N.R., Hughes, N.C., Myrow, P.M., Banerjee, D.M., Deb, M., and Planavsky, N.J., 2013, New age constraints for the Proterozoic Aravalli-Delhi successions of India and their implications: Precambrian Research, v. 238, p. 120–128. doi:10.1016/j.precamres.2013.10.006.
  • McLennan, S.M., 1989, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, in Lipin, B.R., and Mckay, G.A., eds., Geochemistry and mineralogy of rare earth elements: Berlin, Boston, De Gruyter, p. 169–200. doi:10.1515/9781501509032-010.
  • McLennan, S.M., Hemmings, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance and tectonics. in Johnsson, M.J., and Basu, A., eds., Processes controlling the composition of clastic sediemnts: Geological Society of America Special Papers 284, p. 21–40. doi:10.1130/SPE284-p21.
  • McLennan, S.M., and Taylor, S.R., 1991, Sedimentary rocks and crustal evolution: Tectonic setting and secular trends: The Journal of Geology, v. 99, p. 1–21. doi:10.1086/629470.
  • Meert, J.G., Pandit, M.K., and Kamenov, G.D., 2013, Further geochronological and paleomagnetic constraints on Malani (and pre-Malani) magmatism in NW India: Tectonophysics, v. 608, p. 1254–1267. doi:10.1016/j.tecto.2013.06.019.
  • Nesbitt, H.W., and Young, G.M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, p. 715–717. doi:10.1038/299715a0.
  • Nesbitt, H.W., and Young, G.M., 1984, Prediction of some weathering trend of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica et Cosmochimica Acta, v. 48, p. 1523–1534. doi:10.1016/0016-7037(84)90408-3.
  • Nesbitt, H.W., and Young, G.M., 1989, Formation and diagenesis of weathering profiles: The Journal of Geology, v. 97, p. 129–147. doi:10.1086/629290.
  • Pandit, M.K., Carter, L.M., Ashwal, L.D., Tucker, R.D., Torsvik, T.H., Jamtveit, B., and Bhushan, S.K., 2003, Age, petrogenesis and significance of 1 Ga granitoids and related rocks from the Sendra area, Aravalli Craton: NW India: Journal of Asian Earth Sciences, v. 22, p. 363–381. doi:10.1016/S1367-9120(03)00070-1.
  • Parker, A., 1970, An index of weathering for silicate rocks: Geological Magazine, v. 107, p. 501–504. doi:10.1017/S0016756800058581.
  • Passchier, C.W., and Trouw, R.A.J., 2005, Microtectonics: Berlin Heidelberg New York, Springer, 366 p.
  • Pourmand, A., Dauphas, N., and Ireland, T.J., 2012, A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising Cl-chondrite and Post-Archean Australian shale (PAAS) abundances: Chemical Geology, v. 291, p. 38–54. doi:10.1016/j.chemgeo.2011.08.011.
  • Rollinson, H., and Pease, V., 2021, Using geochemical data: To understand geological processes: Cambridge University press, 346 p.
  • Rosen, O.M., Fettes, D., and Desmons, J., 2005, Chemical and mineral compositions of metacarbonate rocks under regional metamorphism conditions and guidelines on rock classification: Russian Geology and Geophysics, v. 46, p. 351–360.
  • Roser, B.P., and Korsch, R.J., 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio: The Journal of Geology, v. 94, p. 635–650. doi:10.1086/629071.
  • Roser, B.P., and Korsch, R.J., 1988, Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major element data: Chemical Geology, v. 67, p. 119–139. doi:10.1016/0009-2541(88)90010-1.
  • Roy, A.B., and Jakhar, S.R., 2002, Geology of Rajasthan (northwest India) Precambrian to Recent: Jodhpur, Scientific Publishers, 421 p.
  • Singh, Y.K., De Waele, B., Karmarkar, S., Sarkar, S., and Biswal, T.K., 2010, Tectonic setting of the Balaram-Kui-Surpagla-Kengora granulites of the South Delhi Terrane of the Aravalli Mobile Belt, NW India and its implication on correlation with the East African Orogen in the Gondwana assembly: Precambrian Research, v. 183, p. 669–688. doi:10.1016/j.precamres.2010.08.005.
  • Singh, S., Waele, B.D., Shukla, A., Umasankar, B.H., and Biswal, T.K., 2021, Tectonic fabric, geochemistry, and zircon-monazite geochronology as proxies to date an orogeny: Example of South Delhi orogeny, NW India and implications for East Gondwana tectonics: Frontiers in Earth Science, v. 8, p. 594355. doi:10.3389/feart.2020.594355.
  • Sinha-Roy, S., Malhotra, G., and Mohanty, M., 1998, Geological Society of India, Bangalore, p. 278.
  • Sinha-Roy, S., and Mohanty, M., 1988, Blueschist facies metamorphism in the ophiolite melange of the late Proterozoic Delhi Fold Belt, Rajasthan, India: Precambrian Research, v. 42, p. 97–105. doi:10.1016/0301-9268(88)90012-5.
  • Taylor, S.R., and McLennan, S.M., 1985, The continental crust: its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks: Oxford, England, Blackwell Scientific, 312 p.
  • Taylor, S.R., and McLennan, S.M., 1995, The geochemical evolution of the continental crust: Reviews of Geophysics, v. 33, p. 241–265. doi:10.1029/95RG00262.
  • Tiwana, J.K., Kaur, P., and Chaudhri, N., 2022, Association of A- and I-type granitoids in the central Aravalli orogen, Rajasthan: Implications for the Neoproterozoic tectonic evolution of north-west India: Geological Journal, v. 57, p. 3267–3291. doi:10.1002/gj.4473.
  • Tobisch, O.T., Collerson, K.D., Bhattacharyya, T., and Mukhopadhyay, D., 1994, Structural relationships and Sr-Nd isotope systematics of polymetamorphic granitic gneisses and granitic rocks from central Rajasthan, India: Implications for the evolution of the Aravalli craton: Precambrian Research, v. 65, p. 319–339. doi:10.1016/0301-9268(94)90111-2.
  • Van de Kamp, P.C., and Leake, B.E., 1985, Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin: Earth and Environmental Science Transactions of the Royal Society of Edinburg, v. 76, p. 411–449. doi:10.1017/S0263593300010646.
  • Verma, S.P., and Armstrong-Altrin, J.S., 2013, New multidimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins: Chemical Geology, v. 355, p. 117–133. doi:10.1016/j.chemgeo.2013.07.014.
  • Verma, S.P., and Armstrong-Altrin, J.S., 2016, Geochemical distribution of siliciclastic sediments from active and passive margin settings: Sedimentary Geology, v. 332, p. 1–12. doi:10.1016/j.sedgeo.2015.11.011.
  • Volpe, A.M., and Macdougall, J.D., 1990, Geochemistry and isotopic characteristics of mafic (Phulad Ophiolite) and related rocks in the Delhi Supergroup, Rajasthan, India: Implications for rifting in the Proterozoic: Precambrian Research, v. v. 48, p. p. 167–191. doi:10.1016/0301-9268(90)90061-T.
  • Wang, W., Cawood, P.A., Pandit, M.K., Xia, X.P., and Zhao, J.H., 2018, Coupled Precambrian crustal evolution and supercontinent cycles: Insights from in-situ U-Pb, O- and Hf-isotopes in detrital zircon: NW India: American Journal of Science, v. 318, p. 989–1017. doi:10.2475/10.2018.01.
  • Wang, W., Cawood, P.A., Pandit, M.K., Zhou, M.F., and Chen, W.T., 2017, Zircon U-Pb age and Hf isotope evidence for an Eoarchaean crustal remnant and episodic crustal reworking in response to supercontinent cycles in NW India: Journal of the Geological Society, v. 174, p. 759–772. doi:10.1144/jgs2016-080.
  • Wang, W., Cawood, P.A., Pandit, M.K., Zhou, M.F., and Zhao, J.H., 2019, Evolving passive- and active-margin tectonics of the Paleoproterozoic Aravalli Basin, NW India: Geological Society of America Bulletin, v. 131, p. 426–443. doi:10.1130/B35027.1.
  • Wang, W., and Zhou, M.F., 2013, Petrological and geochemical constraints on provenance, paleoweathering, and tectonic setting of the Neoproterozoic sedimentary basin in the eastern Jiangnan orogen: South China: Journal of Sedimentary Research, v. 83, p. 975–994. doi:10.2110/jsr.2013.74.
  • Whitney, D.L., and Evans, B.W., 2010, Abbreviations for names of rock-forming minerals: American Mineralogist, v. 95, p. 185–187. doi:10.2138/am.2010.3371.
  • Zhang, J., Pandit, M.K., Chen, W.T., and Wang, W., 2022, Tonian and Cryogenian – early Cambrian sedimentation in NW India: Implications on the transition from Rodinia to Gondwana: Journal of Asian Earth Sciences, v. 229, p. 105171. doi:10.1016/j.jseaes.2022.105171.
  • Zhao, J.H., Pandit, M.K., Wang, W., and Xia, X.P., 2018, Neoproterozoic tectonothermal evolution of NW India: Evidence from geochemistry and geochronology of granitoids: Lithos, v. 316-317, p. p. 330–346. doi:10.1016/j.lithos.2018.07.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.