128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cadomian Iron ore bodies in the Bafq-Saghand metallogenic province, Iran: genetic constraints from field observations and laser ablation ICP-MS mineral studies

&
Pages 1144-1164 | Received 12 Apr 2023, Accepted 14 Jul 2023, Published online: 23 Jul 2023

References

  • Aftabi, A., and Mohseni, S., 2019, Comment on “Combined igneous and hydrothermal source for the Kiruna type Bafq magnetite-apatite deposits in Central Iran; trace element and oxygen isotope studies of magnetite”- a discussion: Ore Geology Reviews, v. 125, p. 103113. doi:10.1016/j.oregeorev.2019.103113.
  • Aftabi, A., Mohseni, S., Babeki, A., and Azaraein, H., 2009, Fluid inclusion and stable isotope study of the Esfordy apatite–magnetite deposit, central Iran-a discussion: Economic Geology, v. 104, p. 137–140. doi:10.2113/gsecongeo.104.1.137.
  • Afzali, S., Nezafati, N., and Ghaderi, M., 2016, Fluid inclusion and stable isotope study of the Gazestan magnetite-apatite deposit, Central Iran: Scientific Quarterly Journal of Geosciences, v. 26, p. 35–44. doi:10.22071/gsj.2016.41000.
  • Alavi, M., 1991, Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran: Geological Society of America Bulletin, v. 103, p. 983–992. doi:10.1130/0016-7606.
  • Appel, P.W.U., 1983, Rare earth elements in the early Archaean Isua iron-formation, west Greenland: Precambrian Research, v. 20, p. 243–258. doi:10.1016/0301-9268(83)90075-X.
  • Azizi, H., and Whattam, S.A., 2022, Does neoproterozoic-early Paleozoic (570-530 Ma) basement of Iran belong to the Cadomian orogeny?: Precambrian Research, v. 368, p. 106474. doi:10.1016/j.precamres.2021.106474.
  • Basta, F.F., Maurice, A.E., Fontbote, L., and Favarger, P.Y., 2011, Petrology and geochemistry of the bedded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of neoproterozoic BIF: Precambrian Research, v. 187, no. 3–4, p. 277–292. doi:10.1016/j.precamres.2011.03.011.
  • Belousova, E.A., Griffin, W.L., O´reilly, S.Z., and Fisher, N.I., 2002, Apatite as an indicator mineral for exploration: Trace element compositions and their relationship to host rock type: Journal of Geochemical Exploration, v. 76, p. 45–69. doi:10.1016/S0375-6742(02)00204-2.
  • Bonyadi, Z., Davidson, G.J., Mehrabi, B., Meffre, S., and Ghazban, F., 2011, Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry: Chemical Geology, v. 281, p. 253–269. doi:10.1016/j.chemgeo.2010.12.013.
  • Bookstrom, A.A., 1977, The magnetite deposits of El Romeral, Chile: Economic Geology, v. 72, no. 6, p. 1101–1130. doi:10.2113/gsecongeo.72.6.1101.
  • Bralia, A., Sabatini, G., and Troja, P., 1979, A re-evaluation of the Co/Ni ratio in pyrite as a geochemical tool in ore genesis problems: Mineralium Deposita, v. 14, p. 353–374. doi:10.1007/BF00206365.
  • Byrne, R.H., and Sholkovitz, E.R., 1996, Chapter 158. Marine chemistry and geochemistry of the lanthanides, in Gschneidner, K.A., Jr., and Eyring, L.R. eds., Handbook on the physics and chemistry of rare earths, Vol. 23: Elsevier, pp. 497–593. doi:10.1016/S0168-1273(96)23009-0.
  • Campbell, F.A., and Ethier, V.G., 1984, Nickel and cobalt in pyrrhotite and pyrite from the Faro and Sullivan ore bodies: The Canadian Mineralogist, v. 22, p. 503–506.
  • Cao, M.J., Evans, N.J., Hollings, P., Cooke, D.R., McInnes, B.I.A., and Qin, K.Z., 2021, Apatite texture, composition, and O-Sr-Nd Isotope signatures record magmatic and hydrothermal fluid characteristics at the black mountain porphyry deposit, Philippines: Economic Geology, v. 116, no. 5, p. 1189–1207. doi:10.5382/econgeo.4827.
  • Daliran, F., 1999, REE geochemistry of Bafq apatites, Iran; implication for the genesis of Kiruna-type iron ores, in Stanley, C. ed., Mineralium Deposita, Processes to Processing: Balkema, Rotterdam, p. 631–634.
  • Dare, S.A.S., Barnes, S.-J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C., 2014, Trace elements in magnetite as petrogenetic indicators: Mineral Deposita, v. 49, p. 785–796. doi:10.1007/s00126-014-0529-0.
  • Deymar, S., Yazdi, M., Rezvanianzadeh, M.R., and Behzadi, M., 2018, Alkali metasomatism as a process for Ti-REE-Y-U-Th mineralization in the Saghand Anomaly 5, Central Iran: Insights from geochemical, mineralogical, and stable isotope data: Ore Geology Reviews, v. 93, p. 308–336. doi:10.1016/j.oregeorev.2018.01.008.
  • Dolejs, D., and Zajacz, Z., 2018, in Harlov, D.E. & Aranovich, L. eds., The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle, Springer Nature, pp. 431–543. doi:10.1007/978-3-319-61667-4_7.
  • Förster, H., and Jafarzadeh, A., 1994, The Bafq mining district in central Iran: A highly mineralized infracambrian volcanic field: Economic Geology, v. 89, p. 1697–1721. doi:10.2113/gsecongeo.89.8.1697.
  • Gardner, J.E., and Denis, M.H., 2004, Heterogeneous bubble nucleation on Fe- Ti oxide crystals in high- silica rhyolitic melts: Geochimica et Cosmochimica Acta, v. 68, no. 17, p. 3587–3597. doi:10.1016/j.gca.2004.02.021
  • Haghipour, A., and Pelissier, G., 1977, Geology of the saghand sector, in Haghipour, A., Valeh, N., Pelissier, G., and Davoudzadeh, M. eds., Explanatory text of the ardekan quadrangle map: Tehran, Geological Survey of Iran, v. H8, p. 10–68.
  • Harlov, D.E., and Förster, H.-J., 2003, Fluid induced nucleation of (Y+REE)-phosphate minerals within apatite: Nature and experiment. Part II. Fluorapatite: American Mineralogist, v. 88, p. 1209–1229. doi:10.2138/am-2003-8-905.
  • Harlov, D.E., Wirth, R., and Förster, H.-J., 2005, An experimental study of dissolution-reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite: Contributions to Mineralogy and Petrology, v. 150, p. 268–286. doi:10.1007/s00410-005-0017-8.
  • Hassanzadeh, J., Stockli, D.F., Horton, B.K., Axen, G.J., Stockli, L.D., Grove, M., Schmitt, A.K., and Walker, J.D., 2008, U-Pb zircon geochronology of late Neoproterozoic-early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement: Tectonophysics, v. 451, no. 1–4, p. 71–96. doi:10.1016/j.tecto.2007.11.062.
  • Heidarian, H., Alirezaei, S., and Lentz, D., 2017, Chadormalu Kiruna-type magnetite apatite deposit, Bafq district, Iran: Insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data: Ore Geology Reviews, v. 83, p. 43–62. doi:10.1016/j.oregeorev.2016.11.031.
  • Heidarian, H., Lentz, D., Alirezaei, S., McFarlane, C., and Peighambar, S., 2018, Multiple stage ore formation in the chadormalu Iron Deposit, Bafq Metallogenic Province, central Iran: Evidence from BSE Imaging and Apatite EPMA and LA-ICP-MS U-Pb Geochronology: Minerals, v. 8, no. 3, p. 87. doi:10.3390/min8030087
  • Heidarian, H., Lentz, D., Alirezaei, S., Peighambari, S., and Hall, D., 2016, Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna type Chadormalu magnetite-apatite deposit, Bafq district, Central Iran: Mineralogy and Petrology, v. 110, no. 6, p. 927–942. doi:10.1007/s00710-016-0440-8.
  • Hildebrand, R.S., 1986, Kiruna-type deposits: Their origin and relationship to intermediate subvolcanic plutons in the great bear magmatic zone, Northwest Canada: Economic Geology, v. 81, p. 640–659. doi:10.2113/gsecongeo.81.3.640.
  • Hou, T., Charlier, B., Holtz, F., Veksler, I., Zhang, Z.C., Thomas, R., and Namur, O., 2018, Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits: Nature Communications, v. 9, no. 1. doi:10.1038/s41467-018-03761-4.
  • Hou, T., Charlier, B., Namur, O., Philip, S., Ulrich, S.S., Zhang, Z.C., and Holtz, F., 2017, Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron-fluorine deposit, South Africa: Geochimica et cosmochimica acta, v. 203, p. 303–322. doi:10.1016/j.gca.2017.01.025.
  • Hou, T., Zhang, Z.C., Encarnacion, J., Du, Y.S., Zhao, Z.D., and Liu, J.L., 2010, Geochemistry of late Mesozoic dioritic porphyries associated with Kiruna-style and stratabound carbonate-hosted Zhonggu iron ores, middle–lower Yangtze Valley, Eastern China, Constraints on petrogenesis and iron sources: Lithos, v. 119, no. 3–4, p. 330–344. doi:10.1016/j.lithos.2010.07.009.
  • Hou, T., Zhang, Z.C., Pirajno, F., Santosh, M., Encarnacion, J., Liu, J.L., Zhao, Z.D., and Zhang, L.J., 2014, Geology, tectonic settings and iron ore metallogenesis associated with submarine volcanism in China, an overview: Ore Geology Reviews, v. 57, p. 498–517. doi:10.1016/j.oregeorev.2013.08.007.
  • Hurwitz, S., and Navon, O., 1994, Bubble nucleation in rhyolitic melts: Experiments at high pressure, temperature, and water content: Earth and Planetary Science Letters, v. 122, no. 3–4, p. 267–280. doi:10.1016/0012-821X(94)90001-9
  • Jami, M., 2005, Geology, Geochemistry and Evolution of the Esfordy Phosphate-Iron Deposit, Bafq Area, Central Iran [ Unpublished Ph.D. Thesis]. University of New South Wales, 384p.
  • Jami, M., Dunlop, A.C., and Cohen, D.R., 2007, Fluid inclusion and stable isotope study of Esfordy apatite-magnetite deposit, Central Iran: Economic Geology, v. 102, p. 1111–1125. doi:10.2113/gsecongeo.102.6.1111.
  • Kelly, K.A., and Cottrell, E., 2009, Water and the oxidation state of subduction zone magmas: Science: Advanced Materials and Devices, v. 325, p. 605–607. doi:10.1126/science.1174156.
  • Khoshnoodi, K., Behzadi, M., Gannadi-Maragheh, M., and Yazdi, M., 2017, Alkali metasomatism and Th-REE-mineralization in the choghart deposit, Bafq district, central Iran: Geologia Croatica, v. 70, no. 1, p. 53–69. doi:10.4154/gc.2017.03.
  • Knipping, J.L., Bilenker, L.D., Simon, A.C., Reich, M., Barra, F., Deditius, A.P., Wälle, M., Heinrich, C.A., Holtz, F., and Munizaga, R., 2015, Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic hydrothermal processes: Geochimica et Cosmochimica Acta, v. 171, p. 15–38. doi:10.1016/j.gca.2015.08.010.
  • Liu, Z.F., Shao, Y.J., Zhou, H.D., Liu, N., Huang, K.X., Liu, Q.Q., Zhang, J.D., and Wang, C., 2018, Major and trace element geochemistry of pyrite and pyrrhotite from stratiform and lamellar orebodies: Implications for the ore genesis of the Dongguashan copper (gold) deposit, eastern China: Minerals, v. 8, no. 9, p. 380. doi:10.3390/min8090380
  • Lorca, G., 1990, Geochemical characterization and crystallographic characterization of the pyrite of the Algarrobo y El Romeral yachts, Santiago, Memory to get the title of geologist, University of Chile, Faculty of Physics and Mathematics, Department of Geology.
  • Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J., and Coogan, L.A., 2016, Apatite Trace Element Compositions: A Robust New Tool for Mineral Exploration: Economic Geology, v. 111, p. 1187–1222. doi:10.2113/econgeo.111.5.1187.
  • Martel, C., Pichavant, M., Holtz, F., Scaillet, B., Bourdier, J.-L., and Traineau, H., 1999, Effects of f O2 and H2O on andesite phase relations between 2 and 4 kbar: Advances in Fission-Track Geochronology, v. 104, p. 29453–29470. doi:10.1029/1999JB900191.
  • Martinsson, O., Öberg, E., and Fredriksson, A., 2012, Apatite for extraction-Mineralogy of apatite and REE in the Kiirunavaara Fe-deposit: XXVI International Mineral Processing Congress, New Delhi, India, Sept 24-28, 2012, p. 3287–3297.
  • Mehdipour Ghazi, J., Harris, C., Rahgoshay, M., and Moazzen, M., 2019, Combined igneous and hydrothermal source for the Kiruna-type Bafq magnetite-apatite deposit in central Iran; trace element and oxygen isotope studies of magnetite: Ore Geology Reviews, v. 105, p. 590–604. doi:10.1016/j.oregeorev.2019.01.006.
  • Mehdipour Ghazi, J., and Moazzen, M., 2020, Replay to comment on “combined igneous and hydrothermal source for the Kiruna type Bafq magnetite-apatite deposits in Central Iran; trace element and oxygen isotope studies of magnetite”- a discussion: Ore Geology Reviews, v. 125, p. 103416. doi:10.1016/j.oregeorev.2020.103416.
  • Mehdipour Ghazi, J., Moazzen, M., Rahgoshay, M., and Wilde, S., 2020, Zircon U-Pb-Hf isotopes and whole rock geochemistry of the magmatic rocks from the Posht-E-Badam block: A key to tectonomagmatic evolution of central Iran: Gondwana Research, v. 87, p. 162–187. doi:10.1016/j.gr.2020.06.010.
  • Mei, J.M., 2000, Chemical typomorphic characteristic of pyrites from Zhilingtou gold deposit, Suichang, Zhejiang: Geoscience, v. 14, p. 51–55.
  • Miles, A.J., Graham, C.M., Hawkesworth, C.J., Gillespie, M.R., Hinton, R.W., Bromiley, G.D., and EMMAC, 2014, Apatite: A new redox proxy for silicic magmas?: Geochimica et cosmochimica acta, v. 132, p. 101–119. doi:10.1016/j.gca.2014.01.040.
  • Mirzababaei, G., Yazdi, M., Behzadi, M., and Rezvanianzadeh, M.R., 2021, REE-Th mineralization in the Se-Chahun magnetite-apatite ore deposit, central Iran: Interplay of magmatic and metasomatic processes: Ore Geology Reviews, v. 139, p. A, p.104426. doi:10.1016/j.oregeorev.2021.104426.
  • Moghadam, H.S., Li, X.H., Griffin, W.L., Stern, R.J., Thomsen, T.B., Meinhold, G., Aharipour, R., and O’Reilly, S.Y., 2017, Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology: Lithos, v. 268, p. 87–101. doi:10.1016/j.lithos.2016.09.008.
  • Mokhtari, M.A.A., Zadeh, G.H., and Emami, M.H., 2013, Genesis of iron-apatite ores in Posht-e-Badam block (central Iran) using REE geochemistry: Journal of Earth System Science, v. 122, p. 795–807. doi:10.1007/s12040-013-0313-z.
  • Moon, I., 2018, Reconstruction of the Genesis of Banded Iron Formation in North China Craton: Evidences from Geochemical Studies on the Iron Ore, Related Wall Rock and Magnetite. Unpublished Ph.D. thesis, School of Earth and Environmental Sciences, Seoul National University, 187p.
  • Moore, F., and Modabberi, S., 2003, Origin of Choghart iron oxide deposit, Bafq District, Central Iran: New isotopic and geochemical evidence: Journal of Sciences Islamic Republic of Iran, v. 14, no. 3, p. 259–269.
  • Naslund, H.R., Aguirre, R., Dobbs, F.M., Henriquez, F., and Nyström, J.O., 2000, The origin, emplacement, and eruption of ore magmas: IX Congreso Geologico Chileno: Actas, v. 2, p. 135–139.
  • Naslund, H.R., Henriquez, F., Nyström, J.O., Vivallo, W., and Dobbs, F.M., 2000, Magmatic iron ores and associated mineralization: Examples from the chilean high andes and coastal cordillera, in Porter, T.M. ed., Hydrothermal Iron oxide copper-gold & related deposits: a global perspective, Vol. 2: Adelaide, PGC Publishing. pp. 207–226.
  • Nayebi, N., Esmaeily, D., Chew, D.M., Lehmann, B., and Modabberi, S., 2021, Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit: Ore Geology Reviews, v. 132, p. 104054. doi:10.1016/j.oregeorev.2021.104054.
  • Nyström, J., and Henriquez, E., 1994, Magmatic features of iron ores of the Kiruna type in Chile and Sweden: Ore textures and magnetite geochemistry: Economic Geology, v. 89, p. 820–839. doi:10.2113/gsecongeo.89.4.820.
  • Paton, C., Hellstrom, J.C., Paul, P., Woodhead, J.D., and Hergt, J.M., 2011, Iolite: Freeware for the visualisation and processing of mass spectrometric data: The Journal of Analytical Atomic Spectrometry, v. 26, p. 2508–2518. doi:10.1039/c1ja10172b.
  • Piña, R., Gervilla, F., Barnes, S.-J., Ortega, L., and Lunar, R., 2013, Platinum-group elements-bearing pyrite from the Aguablanca Ni-Cu sulphide deposit (SW Spain): A LA-ICP-MSstudy: European Journal of Mineralogy, v. 25, no. 2, p. 241–252. doi:10.1127/0935-1221/2013/0025-2290.
  • Rajabi, A., Canet, C., Rastad, E., and Alfonso, P., 2015, Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn-Pb deposits of the early Cambrian zarigan-chahmir basin, central Iran: Ore Geology Reviews, v. 64, p. 328–353. doi:10.1016/j.oregeorev.2014.07.013.
  • Ramezani, J., and Tucker, R., 2003, The Saghand region, Central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics: Journal of American Science, v. 303, p. 622–665. doi:10.2475/ajs.303.7.622.
  • Reich, M., Simon, A.C., Barra, F., Palma, G., Hou, T., and Bilenker, L.D., 2022, Formation of iron oxide–apatite deposits: Nature Reviews, v. 3, no. 11, p. 758–775. doi:10.1038/s43017-022-00335-3.
  • Reich, M., Simon, A.C., Deditius, A., Barra, F., Chyssoulius, S., Lagas, G., Tardani, D., Knipping, J., Bilenker, L., Sánchez-Alfaro, P., Roberts, M.P., and Munizaga, R., 2016, Trace element signature of pyrite from the Los Colorados iron oxide- apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide- copper-gold systems?: Economic Geology, v. 111, p. 743–761. doi:10.2113/econgeo.111.3.743.
  • Rojas, P.A., Barra, F., Deditius, A., Reich, M., Simon, A., Roberts, M., and Rojo, M., 2018, New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile: Ore Geology Reviews, v. 93, p. 413–435. doi:10.1016/j.oregeorev.2018.01.003.
  • Rusk, B., Oliver, N., Cleverley, J., Blenkinsop, T., Zhang, D., Williams, P., and Habermann, P., 2010, Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOCG genesis, in Porter, T.M. ed., Hydrothermal Iron oxide copper- gold & related deposits: A global perspective-advances in the understanding of IOCG deposits, Vol. 3: Australia, Global Perspective Series, pp. 201–218.
  • Samani, B.A., 1988, Metallogeny of the Precambrian in Iran: Precambrian Research, v. 39, no. 1–2, p. 85–106. doi:10.1016/0301-9268(88)90053-8
  • Sengör, A.M.C., 1990, A new model for the late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman: Geological Siciety of London Special Publication, v. 49, p. 979–831. doi:10.1144/GSL.SP.1992.049.01.49.
  • Sepidbar, F., Ghorbani, G., Simon, A.C., Ma, J., Palin, R.M., and Homam, S.M., 2022, Formation of the Chah-Gaz iron oxide-apatite ore (IOA) deposit, Bafq District, Iran: Constraints from halogens, trace element concentrations, and Sr-Nd isotopes of fluorapatite: Ore Geology Reviews, v. 140, p. 104599. doi:10.1016/j.oregeorev.2021.104599.
  • Seward, T.M., Williams- Jones, A.E., and Migdisov, A.A., 2014, in eds.in Holland, H., and Turekian, K. eds, Treatise of Geochemistry, Vol. 13: Elsevier, pp. 29–57. doi:10.1016/B978-0-08-095975-7.01102-5
  • Shahraki, K.B., Mehrabi, B., and Masoodi, F., 2016, Mineralization of Iron-Copper-Gold (IOCG) in the Jalal Abad deposit, NW Zarand: Iranian Journal of Crystallography and Mineralogy, v. 24, no. 2, p. 283–296.
  • Shamsi-Pour, R., Khakzad, A., Rasa, I., and Vosoughi Abedini, M., 2008, Mineralogy and fluid inclusion studies of Chador Malu iron ore deposit, Bafq, Central Iran: Research Journal of University of Isfahan, v. 29, p. 129–144 (in Farsi).
  • Sillitoe, R.H., and Burrows, D.R., 2002, New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile: Economic Geology, v. 97, p. 1101–1109. doi:10.2113/gsecongeo.97.5.1101.
  • Stosch, H.-G., Romer, R.L., Daliran, F., and Rhede, D., 2011, Uranium-lead ages of apatite from iron oxide ores of the Bafq District. East-central Iran: Mineralium Deposita, v. 46, p. 9–21. doi:10.1007/s00126-010-0309-4.
  • Sun, S.S., and McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes, in Saunders, A.D., and Norry, M. eds., Magmatism in ocean basins: geological society, Vol. 42: London, Special Publications, pp. 313–345.
  • Taghipour, S., Kananian, A., Harlov, D., and Oberhänsli, R., 2015, Kiruna-type iron oxide apatite deposits, Bafq district, Central Iran: Fluid-aided genesis of fluorapatite monazite- xenotime: The Canadian Mineralogist, v. 53, p. 479–496. doi:10.3749/canmin.4344.
  • Taylor, R.P., and Feyer, B.J., 1983, Rare earth element lithogeochemistry of granitoid mineral deposits: The Canadian Institute of Mining, Metallurgy and Petroleum Bulletin, v. 76, p. 74–84.
  • Torab, F.M., and Lehmann, B., 2007, Magnetite-apatite deposits of the Bafq district, Central Iran: Apatite geochemistry and monazite geochronology: Mineralogical Magazine, v. 71, no. 3, p. 347–363. doi:10.1180/minmag.2007.071.3.347
  • Tornos, F., Velasco, F., and Hanchar, J., 2016, Iron-rich melts, magmatic, magnetite, and superheated magmatic-hydrothermal systems: The El Laco deposit: Chemical Geology, v. 44, p. 427–430. doi:10.1130/G37705.1.
  • Troll, V.R., Weis, F.A., Jonsson, E., Andersson, U.B., Majidi, S.S., Hӧgdahl, K., Harris, C., Millet, M.-A., Chinnasamy, S.S., Kooijman, E., and Nilsson, K., 2019, Global Fe-O isotope correlation reveals magmatic origin of “Kiruna-type” apatite-iron oxide ores: Nature Communications, v. 10, no. 1712, p. 1–12. doi:10.1038/s41467-019-09244-4.
  • Vesali, Y., Esmaeily, D., Moazzen, M., Chiaradia, M., Morishita, T., Soda, Y., and Sheibi, M., 2020, The Paleozoic jalal abad mafic complex (Central Iran): Implications for the petrogenesis: Geochemistry, v. 80, p. 125597. doi:10.1016/j.chemer.2020.125597.
  • Xie, Q.H., Zhang, Z.C., Campos, E., Deng, J., Cheng, Z.G., Fei, X.H., and Ke, S., 2021, Constraints of Fe-O isotopes on the origin of magnetite in the El Laco Kiruna-type iron deposit, Chile: Ore Geology Reviews, 130, p. 103967. doi:10.1016/j.oregeorev.2020.103967.
  • Xie, Q.H., Zhang, Z.C., Hou, T., Cheng, Z.G., Campos, E., Wang, Z.C., and Fei, X.H., 2019, New insights for the formation of Kiruna-type iron deposits by immiscible hydrous Fe-P melt and high-temperature hydrothermal processes: Evidence from El Laco deposit: Economic Geology, v. 114, no. 1, p. 35–46. doi:10.5382/econgeo.2019.4618.
  • Zhang, Z.C., Hou, T., Santosh, M., Li, H.M., Li, J.W., Zhang, Z.H., Song, X.Y., and Wang, M., 2014, Spatio-temporal distribution and tectonic settings of the major iron deposits in China, an overview: Ore Geology Reviews, v. 57, p. 247–263. doi:10.1016/j.oregeorev.2013.08.021.
  • Zhang, Z.C., Li, H.M., Li, J.W., Song, X.Y., Hu, H., Li, L.X., Chai, F.M., Hou, T., and Xu, D.R., 2021, Geological settings and metallogenesis of high-grade iron deposits in China: Science China Earth Sciences, v. 64, no. 5, p. 691–715. doi:10.1007/s11430-020-9735-5
  • Zheng, Y.F., and Simon, K., 1981, Oxygen isotope fractionation in hematite and magnetite: A theoretical calculation and application to geothermometry of metamorphic iron-formations: Europian Journal of Mineralogy, v. 3, p. 877–886. doi:10.1127/ejm/3/5/0877.
  • Ziapour, S., Esmaeily, D., Khoshnoodi, K., Niroomand, S., and Simon, A.C., 2021, Mineralogy, geochemistry, and genesis of the Chahgaz (XIVA Anomaly) Kiruna-type iron oxide-apatite (IOA) deposit, Bafq district, Central Iran: Ore Geology Reviews, v. 128, p. 103924. doi:10.1016/j.oregeorev.2020.103924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.