179
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Geochemistry of the North Gondwana Paleozoic Araba and Naqus formation siliciclastics, Sinai: implications for provenance, paleoweathering, and tectonic setting

&
Received 08 Aug 2023, Accepted 27 Jan 2024, Published online: 04 Feb 2024

References

  • Abdulfarraj, M.R., Alqahtani, F.A., and Wanas, H.A., 2024, Petrography and geochemistry of sandstones of the ash shumaysi formation in the Jeddah-Makkah region, Saudi Arabia: Implications for provenance, tectonic setting, paleoweathering, paleoclimate and paleogeography: Sedimentary Geology, v. 459, p. 106549. 10.1016/j.sedgeo.2023.106549
  • Ahmad, F., Amir, M., Quasim, M.A., Absar, N., and Ahmad, A.H.M., 2022, Petrography and geochemistry of the middle jurassic fort member sandstone, Jaisalmer formation, Western India: Implications for weathering, provenance, and tectonic setting: Geological Journal, v. 57, no. 5, p. 1741–175810.1002/gj.4372
  • Akarish, A.M., and El-Gohary, A.M., 2008, Petrography and geochemistry of lower paleozoic sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting: Journal of African Earth Sciences, v. 52, no. 1–2, p. 43–5410.1016/j.jafrearsci.2008.04.002
  • Akinyemi, S.A., Adebayo, O.F., Madukwe, H.Y., Aturamu, A.O., OlaOlorun, O.A., Gitari, W.M., Momoh, A., and Ojo, A.O., 2018, Geochemistry of Ahoko claystone-shale sequence, south eastern Bida Basin, Nigeria: Implications for tectonic setting, provenance and source area weathering: Transactions of the Royal Society of South Africa, v. 73, no. 2, p. 158–171. 10.1080/0035919X.2017.1405853
  • Ali, K.A., Moghazi, A.K.M., Maurice, A.E., Omar, S.A., Wang, Q., Wilde, S.A., Moussa, E.M., Manton, W.I., and Stern, R.J., 2012, Composition, age, and origin of the ~620 ma humr akarim and humrat mukbid A-type granites: No evidence for pre-neoproterozoic basement in the Eastern Desert, Egypt: International Journal of Earth Sciences, v. 101, no. 7, p. 1705–172210.1007/s00531-012-0759-2
  • Armstrong-Altrin, J.S., 2015, Evaluation of two multi-dimensional discrimination diagrams from beach and deep sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks: International Geology Review, v. 57, p. 1446–1461.
  • Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P., and Ramasamy, S., 2004, Geochemistry of sandstones from the upper miocene kudankulam formation, southern India: Implications for provenance, weathering and tectonic setting: Journal of Sedimentary Research, v. 72, no. 2, p. 285–29710.1306/082803740285
  • Armstrong-Altrin, J.S., and Machain-Castillo, M.L., 2016, Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico: Journal of South American Earth Sciences, v. 71, p. 182–200.
  • Armstrong-Altrin, J.S., Ramos-Vázquez, M.A., Hermenegildo-Ruiz, N.Y., and Madhavaraju, J., 2021, Microtexture and U–pb geochronology of detrital zircon grains in the Chachalacas beach, Veracruz State, Gulf of Mexico: Geological Journal, v. 56, no. 5, p. 2418–243810.1002/gj.3984
  • Armstrong-Altrin, J.S., and Verma, S.P., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of neogene sediments from known tectonic settings: Sedimentary Geology, v. 177, no. 1–2, p. 115–12910.1016/j.sedgeo.2005.02.004
  • Avigad, D., Kolodner, K., Mcwilliams, M., Persing, H., and Weissbrod, T., 2003, Origin of northern gondwana cambrian sandstone revealed by detrital zircon SHRIMP dating: Geology, v. 31, no. 3, p. 227–23010.1130/0091-7613(2003)031<0227:OONGCS>2.0.CO;2
  • Avigad, D., Morag, N., Abbo, A., and Gerdes, A., 2017, Detrital rutile U-Pb perspective on the origin of the great cambro-ordovician sandstone of North Gondwana and its linkage to orogeny: Gondwana Research, v. 5, p. 17–29. 10.1016/j.gr.2017.07.001
  • Avigad, D., Sandler, A., Kolodner, K., Stern, T.J., McWilliams, M., Miller, N., and Beyth, M., 2005, Mass-production of cambro–ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications: Earth and Planetary Science Letters, v. 240, no. 3–4, p. 818–82610.1016/j.epsl.2005.09.021
  • Bassis, A., Hinderer, M., and Meinhold, G., 2016, Petrography and geochemistry of palaeozoic quartz-rich sandstones from Saudi Arabia: Implications for provenance and chemostratigraphy: Arabian Journal of Geosciences, v. 9, no. 5, p. 400. 10.1007/s12517-016-2412-z
  • Bauluz, B., Mayayo, M.J., Fernandez-Nieto, C., and Gonzalez-Lopez, J.M., 2000, Geochemistry of Precambrian and Paleozoic siliciclastic rocks from the Iberian Range (NE Spain): Implications for source-area weathering, sorting, provenance, and tectonic setting: Chemical Geology, v. 168, no. 1–2, p. 135–15010.1016/S0009-2541(00)00192-3
  • Bea, F., Montero, P., Anbar, M.A., and Talavera, C., 2011, SHRIMP dating and Nd isotope geology of the Archean terranes of the Uweinat-Kamil inlier, Egypt–Sudan–Libya: Precambrian Research, v. 189, no. 3–4, p. 328–34610.1016/j.precamres.2011.07.017
  • Bela, V.A., Bessa, A.Z.E., Ngueutchoua, G., Kamani, F.A., Abioui, M., Janpou, A.K., Zebaze, M.L.N., Tsanga, A.D., and ArmstrongAltrin, J.S., 2022, Petrography and geochemistry of beach sediments along the central coast of Cameroon: Constraints on paleoweathering, provenance, and tectonic setting: Arabian Journal of Geosciences, v. 15, no. 9, p. 855. 10.1007/s12517-022-10114-5
  • Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I.I., 2002, Igneous zircon: Trace element composition as an indicator of source rock type: Contributions to Mineralogy and Petrology, v. 143, p. 602–622. 10.1007/s00410-002-0364-7
  • Bhatia, M.R., 1983, Plate tectonics and geochemical composition of sandstones: The Journal of Geology, v. 91, no. 6, p. 611–62710.1086/628815
  • Bock, B., Mclennan, S.M., and Hanson, G.N., 1998, Geochemistry and provenance of the middle ordovician Austin Glen member (normanskill formation) and the Taconian orogeny in New England: Sedimentology, v. 45, no. 4, p. 635–65510.1046/j.1365-3091.1998.00168.x
  • Bomou, B., Adatte, T., Tantawy, A.A., Mort, H., Fleitmann, D., Huang, Y., and Follmi, K.B., 2013, The expression of the Cenomanian–Turonian oceanic anoxic event in Tibet: Palaeogeography Palaeoclimatology Palaeoecology, v. 369, p. 466–481. 10.1016/j.palaeo.2012.11.011
  • Bosworth, W., 1995, A high-strain rift model for the southern gulf of Suez (Egypt): Geological Society, London, Special Publications, v. 80, no. 1, p. 75–10210.1144/GSL.SP.1995.080.01.04
  • Bracciali, L., Marroni, M., Pandolfi, L., and Rocchi, S., 2007, Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and northern Apennines): From source areas to configuration of margins, in Arribas, J., Critelli, S., and Johnsson, M. J., eds., Sedimentary provenance and Petrogenesis: Perspectives from petrography and geochemistry: Geological Society of America Special Paper 420, pp. 73–93. 10.1130/2006.2420(06)
  • Chen, L., Zhang, B., Jiang, S., Chen, X., Zhang, G., Zhang, J., Wei, W., Lu, Y., Chen, P., Lin, W., and Li, Z., 2022, Provenance, source weathering, and tectonic setting of the lower Cambrian Shuijingtuo Formation in the middle Yangtze area, China: Marine and Petroleum Geology, v. 139, p. 105584. 10.1016/j.marpetgeo.2022.105584
  • Cocks, L.R.M., and Torsvik, T.H., 2021, Ordovician palaeogeography and climate change: Gondwana Research, v. 100, p. 53–72. 10.1016/j.gr.2020.09.008
  • Condie, K.C., Dengate, J., and Cullers, R.L., 1995, Behaviour of rare earth elements in a paleoweathering profile on granodiorite in the front range, Colorado, USA: Geochimica et cosmochimica acta, v. 59, no. 2, p. 279–29410.1016/0016-7037(94)00280-Y
  • Cox, R., Lowe, D.R., and Cullers, R.L., 1995, The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the south-western United States: Geochimica et Cosmochimica Acta, v. 59, no. 14, p. 2919–294010.1016/0016-7037(95)00185-9
  • Crook, K.A.W., 1974, Lithogenesis and Geotectonics: The significance of compositional variation in flyscharenites (greywackes): Society of Economic Paleontologists and Mineralogists Special Publications, v. 19, p. 304–310.
  • Cullers, R.L., 1995, The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A: Chemical Geology, v. 123, no. 1–4, p. 107–13110.1016/0009-2541(95)00050-V
  • Cullers, R.L., 2000, The geochemistry of shales, siltstones and sandstones of Pennsylvanian–permian age, Colorado, USA: Implications for provenance and metamorphic studies: Lithos, v. 51, no. 3, p. 181–20310.1016/S0024-4937(99)00063-8
  • Cullers, R.L., 2002, Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA: Chemical Geology, v. 191, no. 4, p. 305–32710.1016/S0009-2541(02)00133-X
  • Cullers, R.L., and Graf, J.L., 1984, Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks ore deposits, in Henderson, P., ed., Rare earth element geochemistry. Developments in geochemistry 2: Amsterdam, Elsevier, pp. 275–316.
  • Dickinson, W.R., Beard, L.S., Brakenridge, G.R., Erjavec, J.L., Ferguson, R.C., Inman, K.F., Knepp, R.A., Lindberg, F.A., and Ryberg, P.T., 1983, Provenance of North American phanerozoic sandstones in relation to tectonic setting: Geological Society of America Bulletin, v. 94, no. 2, p. 222–23510.1130/0016-7606(1983)94<222:PONAPS>2.0.CO;2
  • Dickinson, W.R., and Suczek, C.A., 1979, Plate tectonics and sandstone compositions: AAPG Bulletin, v. 63, p. 2164–2182. 10.1306/2F9188FB-16CE-11D7-8645000102C1865D
  • El-Bialy, M.Z., 2013, Geochemistry of the Neoproterozoic metasediments of Malhaq and um zariq formations, Kid Metamorphic Complex, sinai, Egypt: Implications for source-area weathering, provenance, recycling, and depositional tectonic setting: Lithos, v. 175–176, p. 68–86. 10.1016/j.lithos.2013.05.002
  • El-Bialy, M.Z., Eliwa, H.A., Mahdy, N.M., Murata, M., El-Gameel, K.H., Sehsah, H., Omar, M., Kato, Y., Fujinaga, K., Andresen, A., and Thomsen, T.B., 2020, U-Pb zircon geochronology and geochemical constraints on the Ediacaran continental arc and post- collision granites of Wadi Hawashiya, North Eastern Desert, Egypt: Insights into the ∼600 ma crust-forming event in the northernmost part of Arabian-Nubian Shield: Precambrian Research, v. 345, p. 105777. 10.1016/j.precamres.2020.105777
  • El-Bialy, M.Z., 2020, Precambrian basement complex of Egypt. in Hamimi, Z., El- Barkooky, A., Martínez Frías, J., Fritz, H. and Abd El-Rahman, Y., The geology of Egypt, regional geology reviews: Switzerland, Springer Nature, pp. 37–79. 10.1007/978-3-030-15265-9_2
  • El-Bialy, M.Z., and Hassen, I.S., 2012, The late Ediacaran (580–590 ma) onset of anorogenic alkaline magmatism in the arabian–Nubian Shield: Katherina A-type rhyolites of Gabal Ma’ain, Sinai: Precambrian Research, v. 216, p. 1–22. 10.1016/j.precamres.2012.06.004
  • El-Bialy, M.Z., and Shata, A.E., 2018, Geochemistry, petrogenesis and radioactive mineralization of two coeval Neoproterozoic post-collisional calc-alkaline and alkaline granitoid suites from Sinai Arabian Nubian Shield: Chemie der Erde – Geochemistry, v. 78, no. 1, p. 15–3910.1016/j.chemer.2017.12.001
  • El-Bialy, M.Z., and Streck, M.J., 2009, Late Neoproterozoic alkaline magmatismin the Arabian–Nubian Shield: the postcollisional A-type granite of Sahara–Umm Adawi pluton, Sinai, Egypt: Arabian Journal of Geosciences, v. 2, no. 2, p. 151–17410.1007/s12517-008-0025-x
  • El-Bialy, M.Z., Zoheir, B.A., Koutsovitis, P., Feigenson, M., and Omar, M.M., 2023, The anorogenic late Ediacaran granite-rhyolite porphyries of Gabal Abu Durba, Sinai: Termination of magmatism in the Neoproterozoic Arabian-Nubian shield crust: International Geology Review, v. 65, no. 6, p. 843–882. 10.1080/00206814.2022.2079009
  • Fedo, C.M., Nesbitt, H.M., and Young, G.M., 1995, Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance: Geology, v. 23, no. 10, p. 921–92410.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
  • Feng, R., and Kerrich, R., 1990, Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstones belt, Canada: Implications for provenance and tectonic setting: Geochimica et Cosmocbimica Acta, v. 54, no. 4, p. 1061–108110.1016/0016-7037(90)90439-R
  • Feteha, B.F.E., Lentz, D.R., El Bouseily, A.M., Khalil, K.I., Khamis, H.A., and Moghazi, A.M., 2022, Petrogenesis of neoproterozoic Mo-bearing A-type granites in the Gattar area, northern Eastern desert, Egypt: Implications for magmatic evolution and mineralization processes: Ore Geology Reviews, v. 148, no. 2022, p. 105007. 10.1016/j.oregeorev.2022.105007
  • Floyd, P.A., Winchester, J.A., and Park, R.G., 1989, Geochemistry and tectonic setting of Lewisian clastic metasediments from the early Proterozoic Loch Maree Group of Gairloch, NW Scotland: Precambrian Research, v. 45, no. 1–3, p. 203–21410.1016/0301-9268(89)90040-5
  • Fralick, P.W., and Kronberg, B.I., 1997, Geochemical discrimination of clastic sedimentary rock sources: Sedimentary Geology, v. 113, no. 1–2, p. 111–12410.1016/S0037-0738(97)00049-3
  • Gamaleldien, H., Li, Z.-X., Abu Anbar, M., Murphy, J.B., Evans, N.J., and Xia, X.-P., 2022, Formation of juvenile continental crust in northern Nubian Shield: New evidence from granitic zircon U-Pb-Hf-O isotopes: Precambrian Research, v. 379, p. 106791. 10.1016/j.precamres.2022.106791
  • Gao, S., and Wedepohl, K.H., 1995, The negative Eu anomaly in Archaean sedimentary rocks: Implications for decomposition, age and importance of their granitic sources: Earth and Planetary Science Letters, v. 133, no. 1–2, p. 81–9410.1016/0012-821X(95)00077-P
  • Garcia, D., Fonteilles, M., and Moutte, J., 1994, Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites: The Journal of Geology, v. 102, no. 4, p. 411–42210.1086/629683
  • Garfunkel, Z., 2002, Early Paleozoic sediments of NE Africa and Arabia: Products of continental-scale erosion, sediment transport, and deposition: Israel Journal of Earth Science, v. 51, no. 3–4, p. 135–15610.1560/WE3P-3EX8-X2L2-RMFG
  • Garfunkel, Z., and Bartov, Y., 1977, The tectonics of the suez rift: Geological Survey of Israel Bulletin, v. 71, p. 44.
  • Garzanti, E., 2017, The maturity myth in sedimentology and provenance analysis: Journal of Sedimentary Research, v. 87, no. 4, p. 353–36510.2110/jsr.2017.17
  • Garzanti, E., 2019, Petrographic classification of sand and sandstone: Earth Science Review, v. 192, p. 545–563. 10.1016/j.earscirev.2018.12.014
  • Garzanti, E., Ando, S., Limonta, M., Fielding, L., and Najman, Y., 2018, Diagenetic control on mineralogical suites in sand, silt, and mud (Cenozoic Nile Delta): implications for provenance reconstructions: Earth Science Review, v. 185, p. 122–139. 10.1016/j.earscirev.2018.05.010
  • Garzanti, E., Andò, S., and Vezzoli, G., 2009, Grain-size dependence of sediment composition and environmental bias in provenance studies: Earth and Planetary Science Letters, v. 277, no. 3–4, p. 422–43210.1016/j.epsl.2008.11.007
  • Ghienne, J.F., Boumendjel, K., Paris, F., Videt, B., Racheboeuf, P., and Salem, H.A., 2007, The cambrian-ordovician succession in the ougarta range (western Algeria, North Africa) and interference of the late ordovician glaciation on the development of the lower palaeozoic transgression on northern Gondwana: Bulletin of Geosciences, v. 82, p. 183–214. 10.3140/bull.geosci.2007.03.183
  • Giere, R., Rumble, D., Gunther, D., Connolly, J., and Caddick, M.J., 2011, Correlation of growth and breakdown of major and accessory minerals in metapelites from Campolungo, Central Alps: Journal of Petrology, v. 52, no. 12, p. 2293–233410.1093/petrology/egr043
  • Girty, G.H., Hanson, A.D., Knaack, C., and Johnson, D., 1994, Provenance determined by REE, Th, and Sc analyses of metasedimentary rocks, Boyden Cave roof pendant, central Sierra Nevada, California: Journal of Sedimentary Research, v. 64, p. 68–73. 10.1306/D4267F4B-2B26-11D7-8648000102C1865D
  • Gürsu, S., Köksal, S., Möller, A., Kamenov, G.D., Göncüoglu, M.C., Hefferan, K., Mueller, P.A., and Kozlu, H., 2022, Combined U-Pb ages and Lu-hf systematics of detrital zircons from early cambrian gondwanan siliciclastic rocks in S Turkey: Provenance and correlations with coeval successions in peri-gondwanan terranes: Gondwana Research, v. 107, p. 423–450. 10.1016/j.gr.2022.04.010
  • Harnois, L., 1988, The CIW index: A new chemical index of weathering: Sedimentary Geology, v. 55, no. 3–4, p. 319–32210.1016/0037-0738(88)90137-6
  • Hayashi, K., Hiroyuki, F., Heinrich, H.D., and Ohmoto, H., 1997, Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada: Geochimica et Cosmochimica Acta, v. 61, no. 19, p. 4115–413710.1016/S0016-7037(97)00214-7
  • Herron, M.M., 1988, Geochemical classification of Terrigenous Sands and shales from core or log data: SEPM Journal of Sedimentary Research, v. 58, p. 820–829. 10.1306/212F8E77-2B24-11D7-8648000102C1865D
  • Hoskin, P.W.O., and Ireland, T.R., 2000, Rare earth element chemistry of zircon and its use as a provenance indicator: Geology, v. 28, no. 7, p. 627–63010.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
  • Issawi, B., 1996, Tectono-sedimentary synthesis of the Paleozoic basins in Egypt: Proceedings 13th Petroleum Conference, Cairo, v. 1, no. 2, p. 1–23.
  • Issawi, B., El-Hinnawi, M., Francis, M., and Mazhar, A., 1999, The phanerozoic of Egypt: A geodynamic approach: Egyptian Geoilogical Survey, p. 462.
  • Issawi, B., El-Hinnawi, N., Khawaga, L., Labib, S., and Anani, N., 1981, Contributions to the geology of Wadi Feiran area, Sinai, Egypt, Geological Survey of Egypt, Internal Report, Cairo, 48 pp.
  • Issawi, B., Hassan, M., and Attia, S., 1978, Geology of Abu Tartur Plateau, Western Desert, Egypt: Annals of the Geological Survey of Egypt, v. 8, p. 91–127.
  • Issawi, B., and Jux, U., 1982, Contributions to the stratigraphy of the Palaeozoic rocks in Egypt: Geological Survey of Egypt, Cairo, p. 28 p.
  • Johnson, P.R., Andresen, A., Collins, A.S., Fowler, A.R., Fritz, H., Ghebreab, W., Kusky, T., and Stern, R.J., 2011, Late Cryogenian–Ediacaran history of the arabian–nubian shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern east African Orogen: Journal of African Earth Sciences, v. 61, no. 3, p. 167–23210.1016/j.jafrearsci.2011.07.003
  • Johnson, P.R., and Woldehaimanot, B., 2003, Development of the Arabian-Nubian Shield: Perspectives on accretion and deformation in the northern east African Orogen and the assembly of Gondwana, in Yoshida, M., Windley, B.F., and Dasgupta, S., eds., Proterozoic east gondwana: Super Continent Assembly and break-up, Volume 206: Geological Society of London Special Publications, pp. 289–325.
  • Keeley, M.L., 1994, Phanerozoic evolution of the basins of Northern Egypt and adjacent areas: Geologische Rundschau, v. 83, no. 4, p. 728–74210.1007/BF00251071
  • Kelemen, P.B., Yogodzinski, G.M., and Scholl, D.W., 2003, Along strike variation in lavas of the Aleutian Island Arc: Implications for the genesis of high Mg# andesite and the continental crust, in Eiler, J., ed., Inside the subduction factory. In: Geophysical monograph, 138: Washington, DC, American Geophy. Uni, pp. 223–276.
  • Klitzsch, E., 1983, Paleozoic formations and a Carboniferous glaciation from the Gilf Kebir-Abu Ras area in southwestern Egypt: Journal of African Earth Sciences (1983), v. 1, no. 1, p. 17–1910.1016/0899-5362(83)90027-1
  • Kocsis, A.T., and Scotese, C.R., 2021, Mapping paleocoastlines and continental flooding during the phanerozoic: Earth Science Review, v. 213, p. 103463. 10.1016/j.earscirev.2020.103463
  • Kolodner, K., Avigad, D., McWilliams, M., Wooden, J.L., Weissbrod, T., and Feinstein, S., 2006, Provenance of north Gondwana Cambrian–Ordovician sandstone: U–Pb SHRIMP dating of detrital zircons from Israel and Jordan: Geological Magazine, v. 143, no. 3, p. 367–39110.1017/S0016756805001640
  • Lewin, A., Meinhold, G., Hinderer, M., Dawit, E.L., Bussert, R., and Berndt, J., 2020, Provenance of Ordovician–Silurian and Carboniferous–Permian glaciogenic successions in Ethiopia revealed by detrital zircon U–Pb geochronology: Journal of the Geological Society, v. 177, no. 1, p. 141–15210.1144/jgs2019-027
  • Lin, N.H., Guo, Y., Wai, S.N., Tamehe, L.S., Wu, Z., Naing, N.M., and Zhang, J., 2019, Sedimentology and geochemistry of middle eocene-lower oligocene sandstones from the western Salin sub-basin, the central Myanmar basin: Implications for provenance, source area weathering, paleo-oxidation and paleo-tectonic setting: Journal of Asian Earth Sciences, v. 173, p. 314–335. 10.1016/j.jseaes.2019.01.030
  • López de Luchi, M.G., Cerredo, M.E., Siegesmund, S., Steenken, A., and Wemmer, K., 2003, Provenance and tectonic setting of the protoliths of the metamorphic complexes of Sierra de San Luis: Revista de la Asociación Geológica Argentina, v. 58, p. 525–540.
  • Löwen, K., Meinhold, G., and Güngör, T., 2018, Provenance and tectonic setting of carboniferous–triassic sandstones from the Karaburun Peninsula, western Turkey: A multimethod approach with implications for the palaeotethys evolution: Sedimentary Geology, v. 375, p. 232–255. 10.1016/j.sedgeo.2017.11.006
  • Mansour, S., Hasebe, N., Meert, J.G., Tamura, A., Khalaf, F.I., and El-Shafei, M.K., 2022, Evolution of the Arabian-Nubian Shield in Gabal Samra area, Sinai; implications from zircon U–pb geochronology: Journal of African Earth Sciences, v. 192, p. 104538. 10.1016/j.jafrearsci.2022.104538
  • Mansour, S., Hasebe, N., and Tamoura, A., 2023, Erosional reservoir for the northern segment of the Arabian-Nubian shield: Constrains from U-Pb geochronology of the lower palaeozoic succession, North Eastern Desert Egypt: Precambrian Research, v. 388, p. 107017. 10.1016/j.precamres.2023.107017
  • Massoud, U., Santos, F., El Qady, G., Atya, M., and Soliman, M., 2010, Identification of the shallow subsurface succession and investigation of the seawater invasion to the quaternary aquifer at the northern part of El Qaa plain, southern sinai, Egypt by transient electromagnetic data: Geophysical Prospecting, v. 58, no. 2, p. 267–27710.1111/j.1365-2478.2009.00804.x
  • McDonough, W.F., and Sun, S., 1995, The composition of the earth: Chemical Geology, v. 120, no. 3–4, p. 223–25310.1016/0009-2541(94)00140-4
  • McLennan, S.M., Hemming, S., McDaniel, D.K., and Hanson, G.N., 1993, Geochemical approaches to sedimentation, provenance and tectonics, in Johnsson, M.J., and Basu, A., eds., Processes controlling the Composition of Clastic Sediments: Geological Society of America, Special Paper 285, pp. 21–40.
  • McLennan, S.M., Taylor, S.R., McCulloch, M.T., and Maynard, J.B., 1990, Geochemical and Nd–sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations: Geochimica et Cosmochimica Acta, v. 54, no. 7, p. 2015–205010.1016/0016-7037(90)90269-Q
  • Meinhold, G., Bassis, A., Hinderer, M., Lewin, A., and Berndt, J., 2021, Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia: Geological Magazine, v. 158, no. 3, p. 442–458. 10.1017/S0016756820000576
  • Mendes, A.C., da Silva, E.F., Fonseca, A.I.T., Nogueira, A.C.R., da Silva, T.F., Do Nascimento, J.S.S., Igreja, H.F.E., and Somerville, I., 2020, Provenance of upper pennsylvanian siliciclastic‐ carbonate deposits from the Monte Alegre and Itaituba formations, North Brazil: An integrated study of sandstone petrography, heavy mineral analysis and garnet geochemistry: Geological Journal, v. 55, no. 6, p. 4398–441410.1002/gj.3676
  • Middelburg, J.J., van der Weijden, C.H., and Woittiez, J.R.W., 1988, Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks: Chemical Geology, v. 68, no. 3–4, p. 253–27310.1016/0009-2541(88)90025-3
  • Mongelli, G., Critelli, S., Perri, F., Sonnino, M., and Perrone, V., 2006, Sedimentary recycling, provenance and paleoweathering from chemistry and mineralogy of Mesozoic continental redbed mudrocks, Peloritani Mountains, Southern Italy: Geochemical Journal, v. 40, no. 2, p. 197–20910.2343/geochemj.40.197
  • Morag, N., Avigad, D., Gerdes, A., Belousova, E., and Harlavan, Y., 2011, Detrital zircon Hf isotopic composition indicates long-distance transport of North Gondwana Cambrian–Ordovician sandstones: Geology, v. 39, no. 10, p. 955–95810.1130/G32184.1
  • Morgan, P., 1990, Egypt in the framework of global tectonics, in Said, R., ed., The geologyof Egypt: Rotterdam, Balkema, pp. 91–111.
  • Moustafa, A.R., and Khalil, M.H., 1987, The Durba-Araba fault, Southwest Sinai: Egyptian Journal of Geology, v. 31, p. 1–13.
  • Nesbitt, H.W., and Young, G.M., 1982, Early proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, no. 5885, p. 715–71710.1038/299715a0
  • Nesbitt, H.W., and Young, G.M., 1984, Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations: Geochimica at Cosmochimica Acta, v. 48, no. 7, p. 1523–153410.1016/0016-7037(84)90408-3
  • Nesbitt, H.W., and Young, G.M., 1989, Formation and diagenesis of weathering profiles: The Journal of Geology, v. 97, no. 2, p. 129–14710.1086/629290
  • Nyakairu, G.W., and Koeberl, C., 2001, Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda: Geochemical Journal, v. 35, no. 1, p. 13–2810.2343/geochemj.35.13
  • Oinam, M., Rajkumar, H.S., Soibam, I., Oinam, N., and Heni, E., 2022, Sedimentary petrography and ichnology of the barail groupalong the Old Cachar road, Manipur, India: Arabian Journal of Geosciences, v. 15, no. 8, p. 706. 10.1007/s12517-022-09895-6
  • Omara, S., 1972, An early cambrian outcrop in southwestern sinai, Egypt: Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, v. 5, p. 306–314.
  • Omara, S., and Conil, R., 1965, Lower carboniferous foraminifera from southwestern sinai, Egypt: Annals of Geological Society of Belgique, v. 5, p. B221–B242.
  • Pearce, J.A., and Peate, D.W., 1995, Tectonic implications of the composition of volcanic arc magmas: Annual Review of Earth and Planetary Sciences, v. 23, no. 1, p. 251–28510.1146/annurev.ea.23.050195.001343
  • Perri, F., 2020, Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview: Palaeogeography Palaeoclimatology Palaeoecology, v. 556, p. 109873. 10.1016/j.palaeo.2020.109873
  • Poursoltani, M.R., 2020, Architectural analysis of an early cambrian braided-river system on the north Gondwana margin: The lower sandstone of the Lalun Formation in the Shirgesht area, central Iran: Journal of African Earth Sciences, v. 171, p. 103935. 10.1016/j.jafrearsci.2020.103935
  • Powell, J.H., Abed, A.M., and Le Nindre, Y.-M., 2014, Cambrian stratigraphy of Jordan: GeoArabia - Middle East Petroleum Geosciences, v. 19, no. 3, p. 81–13410.2113/geoarabia190381
  • Roser, B.P., Cooper, R.A., Nathan, S., and Tulloch, A.J., 1996, Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand: New Zealand Journal of Geology and Geophysics, v. 39, no. 1, p. 1–1610.1080/00288306.1996.9514690
  • Roser, B.P., and Korsch, R.J., 1986, Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio: The Journal of Geology, v. 94, no. 5, p. 635–65010.1086/629071
  • Roser, B.P., and Korsch, R.J., 1988, Provenance signatures of sandstone–mudstone suite determined using discrimination function analysis of major-element data: Chemical Geology, v. 67, no. 1–2, p. 119–13910.1016/0009-2541(88)90010-1
  • Roser, B.P., and Korsch, R.J., 1999, Geochemical characterization, evolution and source of a mesozoic accretionary wedge: The Torlesse terrane, New Zealand: Geological Magazine, v. 136, no. 5, p. 493–51210.1017/S0016756899003003
  • Rudnick, R.L., and Gao, S., 2003, The composition of the continental crust, in Rudnick, R.L., ed., The crust: Oxford, Elsevier- Pergamon, pp. 1–64.
  • Said, R., 1971, Explanatory note to accompany the geological map of Egypt. Geological survey of Egypt: Internal Report, v. 56, p. 123.
  • Said, R., 1990, The geology of Egypt: Balkema, Rotterdam/Brookfield, p. 734 p.
  • Said, M., and El-Kelany, A., 1989, The lithostratigraphy of southeastern sinai: Annals of the Geological Survey of Egypt, v. 16, p. 215–221.
  • Saleh, G.M., Khaleal, F.M., and Lasheen, E.R., 2022, Geochemistry and paleoweathering of metasediments and pyritebearing quartzite during the Neoproterozoic Era, Wadi IbibWadi Suwawrib, South Eastern Desert, Egypt: Arabian Journal of Geosciences, v. 15, no. 1, p. 51. 10.1007/s12517-021-09141-5
  • Samuel, M.D., Moussa, H.E., and Azer, M.K., 2001, Geochemistry and petrogenesis of Iqna Shara volcanic rocks, central Sinai, Egypt: Egyptian Journal of Geology, v. 45, p. 921–940.
  • Schwab, F.L., 1975, Framework mineralogy and chemical composition of continental margin-type sandstone: Geology, v. 3, no. 9, p. 487–49010.1130/0091-7613(1975)3<487:FMACCO>2.0.CO;2
  • Scotese, C.R., Song, H., Mills, B.J.W., and van der Meer, D.G., 2021, Phanerozoic paleotemperatures: The earth’s changing climate during the last 540 million years: Earth Science Review, v. 215, p. 103503. 10.1016/j.earscirev.2021.103503
  • Senalp, M., and Tetiker, S., 2022, Late Paleozoic (Late Carboniferous-Early Permian) glaciogenic sandstone reservoirs on the Arabian Peninsula: Arabian Journal of Geosciences, v. 32, no. 5, p. 44210.1007/s12517-022-09467-8
  • Shata, A.E., 2002, Geological and geochemical studies on uranium and thorium of the selected exposures of basal sandstone in southern Sinai, Egypt ( Ph. D. Thesis). Mansoura University, Mansoura, 186 pp.
  • Shata, A.E., 2004, Rare earth elements and uranium mobilization in the radioactive cambro-ordovician sandstones of Ras Millan area, south Sinai, Proceedings of 7th Conference on. Geology of Sinai for Development. Ismailia, Egypt, pp. 181–197.
  • Sneh, A., Ibrahim, K., Bartov, Y., Rabb’a, I., Weissbrod, T., Tarawneh, K., and An Rosensaft, M., 1998, Geological map of the Dead Sea Rift along Wadi Araba, 1: 250.000 in: Compilation of Earth Science Data, Dead Sea-Wadi Araba. Geological survey of Israel and Natural Resources Authority, Jordan.
  • Suttner, L.J., and Dutta, P.K., 1986, Alluvial sandstone composition and paleoclimate I Framework Mineralogy: Journal of Sedimentary Research, v. 56, p. 329–345. 10.1306/212F8909-2B24-11D7-8648000102C1865D
  • Tawfik, H.A., Ghandour, I.M., Maejima, W., and Abdel-Hameed, A.T., 2010, Reservoir heterogeneity in the Cambrian sandstones: A case study from the araba formation, Gulf of Suez Region Egypt: Journal of Geosciences, v. 53, p. 1–29.
  • Tawfik, H.A., Ghandour, I.M., Maejima, W., and Abdel-Hameed, A.T., 2011, Petrography and geochemistry of the lower paleozoic araba formation, northern Eastern Desert, Egypt: Implications for provenance, tectonic setting and weathering signature: Journal of Geosciences, v. 54, p. 1–16.
  • Tawfik, H.A., Ghandour, I.M., Maejima, W., Armstrong‐Altrin, J.S., and Abdel‐Hameed, A.T., 2015, Petrography and geochemistry of the siliciclastic araba formation (Cambrian), east sinai, Egypt: Implications for provenance, tectonic setting and source weathering: Geological Magazine, v. 154, no. 1, p. 1–2310.1017/S0016756815000771
  • Taylor, S.R., and McLennan, S.M., 1985, The continental crust: its composition and evolution, Oxford, Blackwell, 312 pp.
  • Torsvik, T.H., 2019, Earth history: A journey in space and time from top to base: Tectonophysics, v. 760, p. 297–313. 10.1016/j.tecto.2018.09.009
  • Torsvik, T.H., and Cocks, L.R.M., 2017, Earth History and Palaeogeography. Cambridge, Cambridge University Press, 317 pp.
  • van de Kamp, P.C., and James, R.S., 2022, Origin and provenance of Archean Keewaywin Formation clastic rocks at Sandy Lake, NW Ontario, Canada: Constraints on Archean weathering and depositional processes: Precambrian Research, v. 378, p. 106607. 10.1016/j.precamres.2022.106607
  • Verma, S.P., and Armstrong-Altrin, J.S., 2013, New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins: Chemical Geology, v. 355, p. 117–133. 10.1016/j.chemgeo.2013.07.014
  • Verma, S.P., and Armstrong-Altrin, J.S., 2016, Geochemical discrimination of siliciclastic sediments from active and passive margin settings: Sedimentary Geology, v. 332, p. 1–12. 10.1016/j.sedgeo.2015.11.011
  • von Eynatten, H., Tolosana-Delgado, R., and Karius, V., 2012, Sediment generation in modern glacial settings: Grain-size and source-rock control on sediment composition: Sedimentary Geology, v. 280, p. 80–92. 10.1016/j.sedgeo.2012.03.008
  • Wanas, H.A., 2011, The lower paleozoic rock units in Egypt: An overview: Geoscience Frontiers, v. 2, no. 4, p. 491–50710.1016/j.gsf.2011.06.004
  • Wang, Z., Li, W., Wang, J., Wei, H., Fu, X., Song, C., and Zhan, W., 2022, Depositional age, provenance, and palaeoenvironment of the lower permian mudstones in the Qiangtang Basin, Tibet: Evidence from geochronology and geochemistry: Geological Journal, v. 57, no. 4, p. 1709–172310.1002/gj.4370
  • Weissbrod, T., 1969, The Paleozoic of Israel and adjacent countries: Bulletin of Geological Survey of Israel, v. 48, p. 32.
  • Weissbrod, T., 2003, Middle to Late Cambrian vertical movements in Sinai and the Eastern Desert of Egypt: Lithostratigraphic consequences: Israel Journal of Earth Science, v. 52, no. 2, p. 98–11110.1560/R1WU-TB9J-UF4G-H3NH
  • Weltje, G.J., Meijer, X.D., and de Boer, P.L., 1998, Stratigraphic inversion of siliciclastic basin fills: A note on the distinction between supply signals resulting from tectonic and climatic forcing: Basin Research, v. 10, no. 1, p. 129–15310.1046/j.1365-2117.1998.00057.x
  • Zaheri, M., Rafiei, B., and Alipoor, A., 2021, Petrography and geochemistry of the Neogene continental redbeds in the Eshtehard area, Alborz Province, Iran: Insights into tectonic setting, provenance and paleoclimate. Arabian Journal of Geosciences 14, 1946. 10.1007/s12517-021-08236-3.
  • Zoheir, B., Zeh, A., El-Bialy, M., Ragab, A., Deshesh, F., and Steele-MacInnis, M., 2021, Hybrid granite magmatism during orogenic collapse in the Eastern Desert of Egypt: Inferences from whole-rock geochemistry and zircon U–pb–hf isotopes: Precambrian Research, v. 354, p. 106044. 10.1016/j.precamres.2020.106044
  • Zoleikhaei, Y., Mulder, J.A., and Cawood, P.A., 2021, Integrated detrital rutile and zircon provenance reveals multiple sources for Cambrian sandstones in North Gondwana: Earth Science Review, v. 213, p. 103462. 10.1016/j.earscirev.2020.103462
  • Zou, S.H., Wu, C.J., Xu, D.R., Shan, Q., Zhang, X.W., Hollings, P., and Hou, M.Z., 2016, Provenance and depositional setting of Lower Silurian siliciclastic rocks on Hainan Island, South China: Implications for a passive margin environment of South China in Gondwana: Journal of Asian Earth Sciences, v. 123, p. 243–262. 10.1016/j.jseaes.2016.04.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.