72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characteristics and sedimentary evolution of late Ediacaran-early Cambrian microbial carbonates, chert, and phosphorite in South China

ORCID Icon, , , , &
Received 13 Dec 2023, Accepted 02 Jun 2024, Published online: 12 Jun 2024

References

  • Adachi, M., Yamamoto, K., and Sugisaki, R., 1986, Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity: Sedimentary Geology, v. 47, no. 1–2, p. 125–148. doi: 10.1016/0037-0738(86)90075-8
  • Bai, C., Yu, B., Liu, H., Xie, Z., Han, S., Zhang, L., Ye, R., and Ge, J., 2018, The genesis and evolution of carbonate minerals in shale oil formations from Dongying depression, Bohai Bay Basin, China: International Journal of Coal Geology, v. 189, p. 8–26. doi: 10.1016/j.coal.2018.02.008
  • Bau, M., 1991, Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium: Chemical Geology, v. 93, no. 3–4, p. 219–230. doi: 10.1016/0009-2541(91)90115-8
  • Bosence, D., Gibbons, K., Le Heron, D.P., Morgan, W.A., Pritchard, T., and Vining, B.A., 2015, Microbial carbonates in space and time: Introduction, in Bosence, D.W.J., Gibbons, K.A., LeHeron, D.P., Morgan, W.A., Pritchard, T., and Vining, B.A., eds. Microbial carbonates in space and time: Implications for global exploration and production, Bath, Geological Soc Publishing House, pp. 1–15.
  • Boström, K., Joensuu, O., Valdés, S., and Riera, M., 1972, Geochemical history of South Atlantic Ocean sediments since Late Cretaceous: Marine Geology, v. 12, no. 2, p. 85–121. doi: 10.1016/0025-3227(72)90023-0
  • Boström, K., and Peterson, M.N.A., 1969, The origin of aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise: Marine Geology, v. 7, no. 5, p. 427–447. doi: 10.1016/0025-3227(69)90016-4
  • Burne, R.V., and Moore, L.S., 1987, Microbialites: Organosedimentary Deposits of Benthic Microbial Communities: Palaios, v. 2, no. 3, p. 241–254. doi: 10.2307/3514674
  • Chen, D., Wang, J., Qing, H., Yan, D., and Li, R., 2009, Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints: Chemical Geology, v. 258, no. 3–4, p. 168–181. doi: 10.1016/j.chemgeo.2008.10.016
  • Craig, J., Biffi, U., Galimberti, R.F., Ghori, K.A.R., Gorter, J.D., Hakhoo, N., Le Heron, D.P., Thurow, J., and Vecoli, M., 2013, The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks: Marine and Petroleum Geology, v. 40, p. 1–47. doi: 10.1016/j.marpetgeo.2012.09.011
  • Cui, H., Xiao, S.H., Cai, Y.P., Peek, S., Plummer, R.E., and Kaufman, A.J., 2019, Sedimentology and chemostratigraphy of the terminal Ediacaran Dengying Formation at the Gaojiashan section, South China: Geological Magazine, v. 156, no. 11, p. 1924–1948. doi: 10.1017/S0016756819000293
  • Cui, H., Xiao, S., Zhou, C., Peng, Y., Kaufman, A.J., and Plummer, R.E., 2016, Phosphogenesis associated with the Shuram Excursion: Petrographic and geochemical observations from the Ediacaran Doushantuo Formation of South China: Sedimentary Geology, v. 341, p. 134–146. doi: 10.1016/j.sedgeo.2016.05.008
  • Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., 1992, Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes: Geochimica Et Cosmochimica Acta, v. 56, no. 3, p. 1317–1329. doi: 10.1016/0016-7037(92)90064-P
  • Ding, Y., Chen, D., Zhou, X., Guo, C., Huang, T., Zhang, G., and Brasier, A., 2019, Cavity-filling dolomite speleothems and submarine cements in the Ediacaran Dengying microbialites, South China: Responses to high-frequency sea-level fluctuations in an ‘aragonite–dolomite sea’: Sedimentology, v. 66, no. 6, p. 2511–2537. doi: 10.1111/sed.12605
  • Dupraz, C., Reid, R.P., Braissant, O., Decho, A.W., Norman, R.S., and Visscher, P.T., 2009, Processes of carbonate precipitation in modern microbial mats: Earth-Science Reviews, v. 96, no. 3, p. 141–162. doi: 10.1016/j.earscirev.2008.10.005
  • Erwin, D.H., Laflamme, M., Tweedt, S.M., Sperling, E.A., Pisani, D., and Peterson, K.J., 2011, The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals: Science, v. 334, no. 6059, p. 1091–1097. doi: 10.1126/science.1206375
  • Fan, H., Wen, H., Zhu, X., Hu, R., and Tian, S., 2013, Hydrothermal activity during Ediacaran–Cambrian transition: Silicon isotopic evidence: Precambrian Research, v. 224, p. 23–35. doi: 10.1016/j.precamres.2012.09.004
  • Flügel, E., 2004. Microfacies of Carbonate Rocks: Springer.
  • Gao, Y., Zhang, X., Zhang, G., Chen, K., and Shen, Y., 2018, Ediacaran negative C-isotopic excursions associated with phosphogenic events: Evidence from South China: Precambrian Research, v. 307, p. 218–228. doi: 10.1016/j.precamres.2018.01.014
  • Goldberg, T., Strauss, H., Guo, Q., and Liu, C., 2007, Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, no. 1–2, p. 175–193. doi: 10.1016/j.palaeo.2007.03.015
  • Grotzinger, J., and Al-Rawahi, Z., 2014, Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran–Cambrian Ara Group, Sultante of Om: AAPG Bulletin, v. 98, no. 8, p. 1453–1494. doi: 10.1306/02271412063
  • Hecht, L., Freiberger, R., Gilg, H.A., Grundmann, G., and Kostitsyn, Y.A., 1999, Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany): Chemical Geology, v. 155, no. 1–2, p. 115–130. doi: 10.1016/S0009-2541(98)00144-2
  • Hofmann, A., 2005, The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archaean times: Precambrian Research, v. 143, no. 1–4, p. 23–49. doi: 10.1016/j.precamres.2005.09.005
  • Huang, J., Liu, J., Zhang, Y., Chang, H., Shen, Y., Huang, F., and Qin, L., 2018, Cr isotopic composition of the Laobao cherts during the Ediacaran–Cambrian transition in South China: Chemical Geology, v. 482, p. 121–130. doi: 10.1016/j.chemgeo.2018.02.011
  • Hu, M., Gao, D., Wei, G., Yang, W., Xie, W., and Wang, X., 2019, Sequence stratigraphy and facies architecture of a mound-shoal-dominated dolomite reservoir in the late E diacaran D engying F ormation, central S ichuan B asin, SW C hina: Geological Journal, v. 54, no. 3, p. 1653–1671. doi: 10.1002/gj.3261
  • James, N.P., and Jones, B., 2016, Origin of Carbonate Sedimentary Rocks: John Wiley & Sons.
  • Jiang, G.Q., Kennedy, M.J., Christie-Blick, N., Wu, H.C., and Zhang, S.H., 2006, Stratigraphy, sedimentary structures, and textures of the late neoproterozoic doushantuo cap carbonate in south China: Journal of Sedimentary Research, v. 76, no. 7, p. 978–995. doi: 10.2110/jsr.2006.086
  • Jiang, G., Shi, X., Zhang, S., Wang, Y., and Xiao, S., 2011, Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551Ma) in South China: Gondwana Research, v. 19, no. 4, p. 831–849. doi: 10.1016/j.gr.2011.01.006
  • Jiang, G., Wang, X., Shi, X., Xiao, S., Zhang, S., and Dong, J., 2012, The origin of decoupled carbonate and organic carbon isotope signatures in the early Cambrian (ca. 542–520Ma) Yangtze platform: Earth and Planetary Science Letters, v. 317-318, p. 96–110. doi: 10.1016/j.epsl.2011.11.018
  • Kato, Y., Nakao, K., and Isozaki, Y., 2002, Geochemistry of Late Permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change: Chemical Geology, v. 182, no. 1, p. 15–34. doi: 10.1016/S0009-2541(01)00273-X
  • Kaufman, A.J., Jacobsen, S.B., and Knoll, A.H., 1993, The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate: Earth and Planetary Science Letters, v. 120, no. 3–4, p. 409–430. doi: 10.1016/0012-821X(93)90254-7
  • Li, K., Gong, B., Zhang, X., Jiang, H., Fan, J., and Tan, Y., 2023, A comparison of hydrothermal events and petroleum migration between Ediacaran and lower Cambrian carbonates: Central Sichuan Basin: Marine and Petroleum Geology, v. 150, p. 106130. doi: 10.1016/j.marpetgeo.2023.106130
  • Li, Y.Q., He, D.F., Li, D., Li, S.J., Wo, Y.J., Li, C.X., and Huang, H.Y., 2019, Ediacaran (Sinian) palaeogeographic reconstruction of the Upper Yangtze area, China, and its tectonic implications: International Geology Review, v. 25, no. 12, p. 1485–1509. doi: 10.1080/00206814.2019.1655670
  • Li, Y., Jiang, H.-X., Wu, Y.-S., Pan, W.-Q., Zhang, B.-S., Sun, C.-H., and Yang, G., 2021, Macro- and microfeatures of Early Cambrian dolomitic microbialites from Tarim Basin, China: Journal of Palaeogeography, v. 10, no. 1, p. 3. doi: 10.1186/s42501-020-00082-w
  • Li, P.W., Luo, P., Song, J.M., Jin, T.F., and Wang, G.Q., 2015, Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian-Lower Cambrian in the northwestern margin of Tarim Basin: Acta Petrolei Sinica, v. 36, no. 9, p. 1074–1089. in Chinese with English abstract.
  • Li, F.-B., Teng, F.-Z., Chen, J.-T., Huang, K.-J., Wang, S.-J., Lang, X.-G., Ma, H.-R., Peng, Y.-B., and Shen, B., 2016, Constraining ribbon rock dolomitization by Mg isotopes: Implications for the ‘dolomite problem: Chemical Geology, v. 445, p. 208–220. doi: 10.1016/j.chemgeo.2016.06.003
  • Liu, K., and Liu, J., 2023, Application of basin modeling method coupling sedimentary filling evolution with petroleum in simulating ultra-deep oil-gas accumulation: A case study of Sinian Dengying Formation in central Sichuan Basin: Acta Petrolei Sinica, v. 44, p. 1445–1458. in Chinese with English abstract.
  • Liu, J., Liu, K., Li, C., and Liu, W., 2020, Tectono-sedimentary evolution of the Late Ediacaran to early Cambrian trough in central Sichuan Basin, China: New insights from 3D stratigraphic forward modelling: Precambrian Research, v. 350, p. 105826. doi: 10.1016/j.precamres.2020.105826
  • Ma, L.F., 2002, Geological atlas of china. in Chinese.
  • Machel, G.H., 2004, Concepts and models of dolomitization: A critical reappraisal: Geological Society of London Special Publications, v. 235, no. 1, p. 7–63. doi: 10.1144/GSL.SP.2004.235.01.02
  • Ma, Y.Q., Lin, L., Pang, Y.C., Fu, X.G., and Li, X.L., 2008, Organic geochemistry of dolomite from the Cambrian Maidiping Formation in Emei, Sichuan, China: Journal of Chengdu University of Technology (Science and Technology Edition), v. 35, no. 3, p. 242–247. in Chinese with English abstract.
  • Maliva, R.G., Knoll, A.H., and Simonson, B.M., 2005, Secular change in the Precambrian silica cycle: Insights from chert petrology: Geological Society of America Bulletin, v. 117, no. 7, p. 835–845. doi: 10.1130/B25555.1
  • Marshall, C.R., 2006, Explaining the Cambrian “explosion” of animals: Annual Review of Earth and Planetary Sciences, v. 34, no. 1, p. 355–384. doi: 10.1146/annurev.earth.33.031504.103001
  • Mazumdar, A., and Strauss, H., 2006, Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur-Ganganagar Basin, India): Constraints on intrabasinal correlation and global sulfur cycle: Precambrian Research, v. 149, no. 3–4, p. 217–230. doi: 10.1016/j.precamres.2006.06.008
  • Mei, M., Latif, K., Mei, C., Gao, J., and Meng, Q., 2019, Thrombolitic clots dominated by filamentous cyanobacteria and crusts of radio-fibrous calcite in the Furongian Changshan Formation, North China: Sedimentary Geology, v. 395, p. 105540. doi: 10.1016/j.sedgeo.2019.105540
  • Meyer, M., Xiao, S., Gill, B.C., Schiffbauer, J.D., Chen, Z., Zhou, C., and Yuan, X., 2014, Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 396, p. 62–74. doi: 10.1016/j.palaeo.2013.12.026
  • Mukherjee, I., and Large, R.R., 2020, Co-evolution of trace elements and life in Precambrian oceans: The pyrite edition: Geology, v. 48, no. 10, p. 1018–1022. doi: 10.1130/G47890.1
  • Murphy, M.A., and Sumner, D.Y., 2008, Variations in Neoarchean microbialite morphologies: Clues to controls on microbialite morphologies through time: Sedimentology, v. 55, no. 5, p. 1189–1202. doi: 10.1111/j.1365-3091.2007.00942.x
  • Murray, R.W., Buchholtz Ten Brink, M.R., Gerlach, D.C., Price Russ, G., and Jones, D.L., 1992, Rare earth, major, and trace element composition of Monterey and DSDP chert and associated host sediment: Assessing the influence of chemical fractionation during diagenesis: Geochimica et Cosmochimica Acta, v. 56, no. 7, p. 2657–2671. doi: 10.1016/0016-7037(92)90351-I
  • Murray, R.W., Buchholtz ten Brink, M.R., Gerlach, D.C., Russ, G.P., and Jones, D.L., 1992, Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record: Geochimica et Cosmochimica Acta, v. 56, no. 5, p. 1897–1913. doi: 10.1016/0016-7037(92)90319-E
  • Nishizawa, M., Tsuchiya, Y., Du, W., Sawaki, Y., Matsui, Y., Wang, Y., Han, J., and Komiya, T., 2019, Shift in limiting nutrients in the late Ediacaran–early Cambrian marine systems of South China: Palaeogeography: Palaeoclimatology, Palaeoecology, v. 530, p. 281–299. doi: 10.1016/j.palaeo.2019.05.036
  • Nutman, A.P., Bennett, V.C., Friend, C.R.L., Van Kranendonk, M.J., and Chivas, A.R., 2016, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures: Nature, v. 537, no. 7621, p. 535–538. doi: 10.1038/nature19355
  • Olden, L.J., Barham, M., Cunneen, J., Olierook, H.K.H., Suosaari, E., and Smith, G.C., 2022, Mid-Phanerozoic microbialite forms and associated facies in the northern Perth Basin, Western Australia, and their relationship to the end-Permian mass extinction: Australian Journal of Earth Sciences, v. 69, no. 4, p. 473–496. doi: 10.1080/08120099.2022.1995044
  • Padel, M., Álvaro, J.J., Casas, J.M., Clausen, S., Poujol, M., and Sánchez-García, T., 2018, Cadomian volcanosedimentary complexes across the Ediacaran–Cambrian transition of the Eastern Pyrenees, southwestern Europe: International Journal of Earth Sciences, v. 107, no. 5, p. 1579–1601. doi: 10.1007/s00531-017-1559-5
  • Papineau, D., 2010, Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites: Astrobiology, v. 10, no. 2, p. 165–181. doi: 10.1089/ast.2009.0360
  • Papineau, D., She, Z., and Dodd, M.S., 2017, Chemically-oscillating reactions during the diagenetic oxidation of organic matter and in the formation of granules in late Palaeoproterozoic chert from Lake Superior: Chemical Geology, v. 470, p. 33–54. doi: 10.1016/j.chemgeo.2017.08.021
  • Pelechaty, S.M., Kaufman, A.J., and Grotzinger, J.P., 1996, Evaluation of delta C-13 chemostratigraphy for intrabasinal correlation: Vendian strata of northeast Siberia: Geological Society of America Bulletin, v. 108, no. 8, p. 992–1003. doi: 10.1130/0016-7606(1996)108<0992:EOCCFI>2.3.CO;2
  • Pufahl, P.K., and Groat, L.A., 2017, Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper: Economic Geology, v. 112, no. 3, p. 483–516. doi: 10.2113/econgeo.112.3.483
  • Pufahl, P.K., and Hiatt, E.E., 2012, Oxygenation of the Earth’s atmosphere–ocean system: A review of physical and chemical sedimentologic responses: Marine and Petroleum Geology, v. 32, no. 1, p. 1–20. doi: 10.1016/j.marpetgeo.2011.12.002
  • Riding, R., 2000, Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms: Sedimentology, v. 47, no. s1, p. 179–214. doi: 10.1046/j.1365-3091.2000.00003.x
  • Riding, R., 2002, Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories: Earth-Science Reviews, v. 58, no. 1–2, p. 163–231. doi: 10.1016/S0012-8252(01)00089-7
  • Riding, R., and Virgone, A., 2020, Hybrid Carbonates: In situ abiotic, microbial and skeletal co-precipitates: Earth-Science Reviews, v. 208, p. 103300. doi: 10.1016/j.earscirev.2020.103300
  • Roberts, J.A., Kenward, P.A., Fowle, D.A., Goldstein, R.H., Gonzalez, L.A., and Moore, D.S., 2013, Surface chemistry allows for abiotic precipitation of dolomite at low temperature: Proceedings of the National Academy of Sciences of the United States of America, v. 110, no. 36, p. 14540–14545. doi: 10.1073/pnas.1305403110
  • Sadd, J.L., 1991, Tectonic influences on carbonate deposition and diagenesis, buckhorn asphalt, deese group (desmoinesian), Arbuckle Mountains, Oklahoma: Journal of Sedimentary Petrology, v. 61, p. 28–42. doi: 10.1306/D426767C-2B26-11D7-8648000102C1865D
  • Schröder, S., Grotzinger, J.P., Amthor, J.E., and Matter, A., 2005, Carbonate deposition and hydrocarbon reservoir development at the Precambrian–Cambrian boundary: The Ara Group in South Oman: Sedimentary Geology, v. 180, no. 1–2, p. 1–28. doi: 10.1016/j.sedgeo.2005.07.002
  • Song, J.M., Liu, S.G., Qing, H.R., Jansa, L., Li, Z.W., Luo, P., Yang, D., Sun, W., Peng, H.L., and Lin, T., 2018, The depositional evolution, reservoir characteristics, and controlling factors of microbial carbonates of Dengying Formation in upper Neoprotozoic, Sichuan Basin, Southwest China: Energy Exploration & Exploitation, v. 36, no. 4, p. 591–619. doi: 10.1177/0144598717743995
  • Soudry, D., NAthan, Y., and Ehrlich, S., 2013, Geochemical diagenetic trends during phosphorite formation – economic implications: The case of the Negev Campanian phosphorites, Southern Israel: Sedimentology, v. 60, no. 3, p. 800–819. doi: 10.1111/j.1365-3091.2012.01361.x
  • Tang, P., Chen, D., Wang, Y., Ding, Y., El-Shafeiy, M., and Yang, B., 2022, Diagenesis of microbialite-dominated carbonates in the Upper Ediacaran Qigebrak Formation, NW Tarim Basin, China: Implications for reservoir development: Marine and Petroleum Geology, v. 136, p. 105476. doi: 10.1016/j.marpetgeo.2021.105476
  • Tan, Q., Shi, Z., Hu, X., Wang, Y., Tian, Y., and Wang, C., 2018, Diagenesis of microbialites in the lower Cambrian Qingxudong Formation, South China: Implications for the origin of porosity in deep microbial carbonates: Journal of Natural Gas Science and Engineering, v. 51, p. 166–182. doi: 10.1016/j.jngse.2017.12.031
  • Tenhave, T., and Heijnen, W., 1985, Cathodoluminescence activation and zonation in carbonate rocks – an experimental approach: Geol Mijnb, v. 64, p. 297–310.
  • Wang, D.A., and Chen, R.J., 1995, Geochemically genetic criteria of silicolites in Yaluzangbu Suture Belt and their geological significance: Acta Sedimentologica Sinica, v. 13, no. 1, p. 27–31. (in Chinese with English abstract).
  • Wang, J., Chen, D., Wang, D., Yan, D., Zhou, X., and Wang, Q., 2012, Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran–Cambrian transition: Sedimentology, v. 59, no. 3, p. 809–829. doi: 10.1111/j.1365-3091.2011.01280.x
  • Wang, J., Chen, D., Yan, D., Wei, H., and Xiang, L., 2012, Evolution from an anoxic to oxic deep ocean during the Ediacaran–Cambrian transition and implications for bioradiation: Chemical Geology, v. 306-307, p. 129–138. doi: 10.1016/j.chemgeo.2012.03.005
  • Wang, J., and Li, Z.-X., 2003, History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up: Precambrian Research, v. 122, no. 1–4, p. 141–158. doi: 10.1016/S0301-9268(02)00209-7
  • Wang, D., Ling, H.F., Struck, U., Zhu, X.K., Zhu, M.Y., He, T.C., Yang, B., Gamper, A., and Shields, G.A., 2018, Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition: Nature Communications, v. 9, no. 1, p. 8. doi: 10.1038/s41467-018-04980-5
  • Wang, W., Zhou, C., Yuan, X., Chen, Z., and Xiao, S., 2012, A pronounced negative δ13C excursion in an Ediacaran succession of western Yangtze Platform: A possible equivalent to the Shuram event and its implication for chemostratigraphic correlation in South China: Gondwana Research, v. 22, no. 3–4, p. 1091–1101. doi: 10.1016/j.gr.2012.02.017
  • Wei, W., Frei, R., Gilleaudeau, G.J., Li, D., Wei, G.-Y., Chen, X., and Ling, H.-F., 2018, Oxygenation variations in the atmosphere and shallow seawaters of the Yangtze Platform during the Ediacaran Period: Clues from Cr-isotope and Ce-anomaly in carbonates: Precambrian Research, v. 313, p. 78–90. doi: 10.1016/j.precamres.2018.05.009
  • Wen, L., Yang, Y., You, C., Zhang, X., Peng, H., Wang, W., Luo, B., and Luo, W., 2016, Characteristics of Dengying Fm sedimentary sequence in the central-western Sichuan Basin and their controlling effect on gas accumulation: Natural Gas Industry, v. 36, no. 7, p. 8–17. In Chinese with English abstract.
  • Yamamoto, K., 1987, Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes: Sedimentary Geology, v. 52, no. 1–2, p. 65–108. doi: 10.1016/0037-0738(87)90017-0
  • Yang, F., Bao, Z.D., Zhang, D.M., Jia, X., and Xiao, J., 2017, Carbonate secondary porosity development in a polyphase paleokarst from Precambrian system: Upper Sinian examples, North Tarim basin, northwest China: Carbonates and Evaporites, v. 32, no. 2, p. 243–256. doi: 10.1007/s13146-017-0336-7
  • Yang, S., Chen, H.D., Zhong, Y.J., Zhu, X.M., Chen, A.Q., Wen, H.G., Xu, S.L., and Wu, C.S., 2017, Microbolite of Late Sinian and its response for Tongwan Movement episode I in Southwest Sichuan, China: Acta Petrologica Et Mineralogica, v. 33, p. 1148–1158. in Chinese with English abstract.
  • You, X., Sun, S., Zhu, J., Li, Q., Hu, W., and Dong, H., 2013, Microbially mediated dolomite in Cambrian stromatolites from the Tarim Basin, north-west China: Implications for the role of organic substrate on dolomite precipitation: Terra Nova, v. 25, no. 5, p. 387–395. doi: 10.1111/ter.12048
  • Yu, B., Dong, H., Widom, E., Chen, J., and Lin, C., 2009, Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history: Journal of Asian Earth Sciences, v. 34, no. 3, p. 418–436. doi: 10.1016/j.jseaes.2008.07.003
  • Zhang, Y., Du, Y., Xu, Y., Yu, W., Huang, H., and Jiao, L., 2015, Geochemical characteristics of siliceous rocks during the transition from sinian (Ediacaran) to Cambrian in central Hunan and its implication for genesis and sedimentary environment: Geological Review, v. 61, no. 3, p. 499–510. in Chinese with English abstract.
  • Zhang, F., Xu, H., Konishi, H., Kemp, J.M., Roden, E.E., and Shen, Z., 2012, Dissolved sulfide-catalyzed precipitation of disordered dolomite: Implications for the formation mechanism of sedimentary dolomite: Geochimica Et Cosmochimica Acta, v. 97, p. 148–165. doi: 10.1016/j.gca.2012.09.008
  • Zi, J., Jia, D., Wei, G., Yang, Z., Zhang, Y., Hu, J., and Shen, S., 2017, LA-ICP-MS U-Pb Zircon Ages of Volcaniclastic Beds of the Third Member of the Sinian (Ediacaran) Dengying Formation in Leshan, Sichuan, and a Discussion on the Rift Evolution in the Basin: Geological Review, v. 63, no. 4, p. 1040–1049. in Chinese with English abstract.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.