319
Views
30
CrossRef citations to date
0
Altmetric
Section B

A new method based on legendre polynomials for solution of system of fractional order partial differential equations

&
Pages 2554-2567 | Received 20 Aug 2013, Accepted 19 Dec 2013, Published online: 26 Mar 2014

References

  • A. Arikoglu and I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Sol. Fract. (2006). 10.1016/j.chaos.2006.09.004.
  • V.S. Erturk and S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math. 215 (2008), pp. 142–151. doi: 10.1016/j.cam.2007.03.029
  • R. Gorenflo, F. Mainardi, E. Scalas, and M. Raberto, Fractional calculus and continuous time finance III, The diffusion limit, Math Finance (2000), pp. 171–180.
  • R. Hilfer, Applications of Fractional Calculus in Physics, World Scientifc Publishing Company, Singapore, 2000.
  • R.A. Khan and M. Rehman, Existence of multiple positive solutions for a general system of fractional differential equations, Commun. Appl. Nonlinear Anal. 18 (2011), pp. 25–35.
  • R.A. Khan, M. Rehman, and N. Asif, Three point boundary value problems for nonlinear fractional differential equations, Acta. Math. Scientia 31B4 (2011), pp. 1–10.
  • A.A. Kilbas, H.M. Srivastava, and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam, 2006.
  • Y.L. Li, Solving a nonlinear fractional differential equation using Chebyshev wavelets, Nonlinear Sci. Numer. Simul. 15 (2010), pp. 2284–2292. doi: 10.1016/j.cnsns.2009.09.020
  • F. Liu, V. Anh, and I. Turner, Numerical solution of the space fractional Fokker–Planck equation, J. Comp. Appl. Math. 66 (2005), pp. 209–219.
  • K. Maleknedjad, M. Shahrezaee, and H. Khatami, Numerical solution of integral equation system of the second kind by Block-Pulse function, Appl. Math. Comp. 166 (2005), pp. 15–24. doi: 10.1016/j.amc.2004.04.118
  • R. Metzler and J. Klafter, The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Reports 339(1) (2000), pp. 1–77. doi: 10.1016/S0370-1573(00)00070-3
  • R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A: Stat. Mech. Appl. 278 (2005), pp. 107–125. doi: 10.1016/S0378-4371(99)00503-8
  • S. Nemati and Y. Ordokhani, Legendre expansion methods for the numerical solution of nonlinear 2D Fredholm integral equations of the second kinds, J. Appl. Math. Informatics 31 (2013), pp. 609–621. doi: 10.14317/jami.2013.609
  • K.B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Soft. 41 (2010), pp. 9–12. doi: 10.1016/j.advengsoft.2008.12.012
  • P.N. Paraskevopolus, P.D. Saparis, and S.G. Mouroutsos, The fourier series operational matrix of integration, Int. J. Syst. Sci. 16 (1985), pp. 171–176. doi: 10.1080/00207728508926663
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diedo, 1999.
  • M. Razzaghi and S. Yousefi, The legender wavelets operational matrix of integration, Int. J. Syst. Sci. 32 (2001), pp. 495–502. doi: 10.1080/00207720120227
  • M. Razzaghi and S. Yousefi, Sine-Cosine wavelets operational matrix of integration and its application in the calculus of variation, Int. J. Syst. Sci. 33 (2002), pp. 805–810. doi: 10.1080/00207720210161768
  • M. Rehman and R.A. Khan, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations, Appl. Math. Lett. 23 (2010), pp. 1038–1044. doi: 10.1016/j.aml.2010.04.033
  • M. Rehman and R.A. Khan, A note on boundary value problems for a coupled system of fractional differential equations, Comput. Math. Appl. 61 (2011), pp. 2630–2637. doi: 10.1016/j.camwa.2011.03.009
  • M. Rehman and R.A. Khan, The legendre wavelet method for solving fractional differential equation, Commun. Nonlin. Sci. Numer. Simul. 10 (2011). 1016/j.cnsns2011.01.014.
  • M. Rehman, R.A. Khan, and J. Henderson, Existence and uniqueness of solutions for nonlinear fractional differential equations with integral boundary conditions, Fract. Dyn. Syst. 1 (2011), pp. 29–43.
  • G. Richard and P.R.R. Sarma, Reduced order model for induction motors with two rotor circuits, IEEE Trans. Energy Conv. 9(4) (1994), pp. 673–678. doi: 10.1109/60.368342
  • A. Saadatmandi and M. Deghan, Numerical solution of the a mathematical formation in tumer angionesis via tau method, Commun. Numer. Methods Eng. 24 (2008), pp. 1467–1474. doi: 10.1002/cnm.1045
  • A. Saadatmandi and M. Deghan, A new operational matrix for solving fractional-order differential equation, Comp. Math. Appl. 59 (2010), pp. 1326–1336. doi: 10.1016/j.camwa.2009.07.006
  • Y. Wang and Q. Fan, The second kind Chebyshev wavelet method for solving fractional differential equation, Appl. Math. Comput. 218 (2012), pp. 85–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.