198
Views
12
CrossRef citations to date
0
Altmetric
Section A

The combined impact of external computers and network topology on the spread of computer viruses

, , &
Pages 2491-2506 | Received 11 May 2013, Accepted 23 Jan 2014, Published online: 27 Mar 2014

REFERENCES

  • R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1) (2002), pp. 47–97. doi: 10.1103/RevModPhys.74.47
  • M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys. Rev. Lett. 92 (2004), Article ID 178701, 4pp. doi: 10.1103/PhysRevLett.92.178701
  • L. Billings, W.M. Spears, and I.B. Schwartz, A unified prediction of computer virus spread in connected networks, Phys. Lett. A 297(3–4) (2002), pp. 261–266. doi: 10.1016/S0375-9601(02)00152-4
  • M. Boguñá, R. Pastor-Satorras, and A. Vespignani, Absence of epidemic threshold in scale-free networks with degree correlations, Phys. Rev. Lett. 90(2) (2003), Article ID 028701, 4pp. doi: 10.1103/PhysRevLett.90.028701
  • C. Castellano and R. Pastor-Satorras, Thresholds for epidemic spreading in networks, Phys. Rev. Lett. 105(21) (2010), Article ID 218701, 4pp. doi: 10.1103/PhysRevLett.105.218701
  • L.-C. Chen and K.M. Carley, The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Trans. Syst. Man Cybern. B, Cybern. 34(2) (2004), pp. 823–833. doi: 10.1109/TSMCB.2003.817098
  • F. Cohen, Computer viruses: Theory and experiments, Comput. Secur. 6(1) (1987), pp. 22–35. doi: 10.1016/0167-4048(87)90122-2
  • Z. Dezsö and A.-L. Barabási, Halting viruses in scale-free networks, Phys. Rev. E 65(5) (2002), Article ID 055103, 4pp. doi: 10.1103/PhysRevE.65.055103
  • T. Dong, X. Liao, and H. Li, Stability and Hopf bifurcation in a computer virus model with multistate antivirus, Abstr. Appl. Anal. 2012 (2012), Article ID 841987, 16pp.
  • A. d'Onofrio, A note on the global behavior of the network-based SIS epidemic model, Nonlinear Anal. RWA 9(4) (2008), pp. 1567–1572. doi: 10.1016/j.nonrwa.2007.04.001
  • M. Draief, A. Ganesh, and L. Massouilié, Thresholds for virus spread on networks, Ann. Appl. Probab. 18(2) (2008), pp. 359–378. doi: 10.1214/07-AAP470
  • M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the Internet topology, ACM SIGCOMM Comput. Commun. Rev. 29(4) (1999), pp. 251–262. doi: 10.1145/316194.316229
  • L. Feng, X. Liao, H. Li, and Q. Han, Hopf bifurcation analysis of a delayed viral infection model in computer networks, Math. Comput. Modelling 56(7–8) (2012), pp. 167–179. doi: 10.1016/j.mcm.2011.12.010
  • X. Fu, M. Small, D.M. Walker, and H. Zhang, Epidemic dynamics on scale-free networks with piecewise linear infectivity and immunization, Phys. Rev. E 77 (2008), Article ID 036113, 8pp. doi: 10.1103/PhysRevE.77.036113
  • C. Gan, X. Yang, W. Liu, and Q. Zhu, A propagation model of computer virus with nonlinear vaccination probability, Commun. Nonlinear Sci. Numer. Simul. 19(1) (2014), pp. 92–100. doi: 10.1016/j.cnsns.2013.06.018
  • C. Gan, X. Yang, Q. Zhu, J. Jin, and L. He, The spread of computer virus under the effect of external computers, Nonlinear Dyn. 73(3) (2013), pp. 1615–1620. doi: 10.1007/s11071-013-0889-5
  • C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, Propagation of computer virus under human intervention: A dynamical model, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 106950, 8pp.
  • C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate, Appl. Math. Comput. 222(1) (2013), pp. 265–274. doi: 10.1016/j.amc.2013.07.055
  • C. Griffin and R. Brooks, A note on the spread of worms in scale-free networks, IEEE Trans. Syst. Man Cybern. B Cybern. 36(1) (2006), pp. 198–202. doi: 10.1109/TSMCB.2005.854498
  • X. Han and Q. Tan, Dynamical behavior of computer virus on Internet, Appl. Math. Comput. 217(6) (2010), pp. 2520–2526. doi: 10.1016/j.amc.2010.07.064
  • J.M. Heffernan, R.J. Smith, and L.M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface 2(4) (2005), pp. 281–293. doi: 10.1098/rsif.2005.0042
  • M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, J. Saramäki, Small but slow world: How network topology and burstiness slow down spreading, Phys. Rev. E 83(2) (2011), Article ID 025102, 4pp. doi: 10.1103/PhysRevE.83.025102
  • J.O. Kephart and S.R. White, Directed-graph epidemiological models of computer viruses, Proceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, 1991, pp. 343–359.
  • J.O. Kephart and S.R. White, Measuring and modeling computer virus prevalence, Proceedings of the 1993 IEEE Symposium on Security and Privacy, Oakland, CA, 1993, pp. 2–15.
  • A. Lajmanovich and J.A. Yorke, A deterministic model for gonorrhea in anonhomogenous population, Math. Biosci. 28(3–4) (1976), pp. 221–236. doi: 10.1016/0025-5564(76)90125-5
  • A.L. Lloyd and R.M. May, How viruses spread among computers and people, Science 292(5520) (2001), pp. 1316–1317. doi: 10.1126/science.1061076
  • B.K. Mishra and N. Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl. Math. Comput. 190(2) (2007), pp. 1207–1212. doi: 10.1016/j.amc.2007.02.004
  • B.K. Mishra and S.K. Pandey, Dynamic model of worms with vertical transmission in computer network, Appl. Math. Comput. 217(21) (2011), pp. 8438–8446. doi: 10.1016/j.amc.2011.03.041
  • B.K. Mishra and D.K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput. 188(2) (2007), pp. 1476–1482. doi: 10.1016/j.amc.2006.11.012
  • B.K. Mishra and D.K. Saini, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Model. 34(3) (2010), pp. 710–715. doi: 10.1016/j.apm.2009.06.011
  • Y. Moreno, R. Pastor-Satorras, and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B 26(4) (2002), pp. 521–529.
  • W.H. Murray, The application of epidemiology to computer viruses, Comput. Secur. 7(2) (1988), pp. 130–150. doi: 10.1016/0167-4048(88)90327-6
  • R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14) (2001), pp. 3200–3203. doi: 10.1103/PhysRevLett.86.3200
  • R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E 63(6) (2001), Article ID 066117, 8pp. doi: 10.1103/PhysRevE.63.066117
  • R. Pastor-Satorras and A. Vespignani, Immunization of complex networks, Phys. Rev. E 65(3) (2002), Article ID 036104, 8pp.
  • J.R.C. Piqueira and V.O. Araujo, A modified epidemiological model for computer viruses, Appl. Math. Comput. 213(2) (2009), pp. 355–360. doi: 10.1016/j.amc.2009.03.023
  • J.R.C. Piqueira, A.A. de Vasconcelos, C.E.C.J. Gabriel, and V.O. Araujo, Dynamic models for computer viruses, Comput. Secur. 27(7–8) (2008), pp. 355–359. doi: 10.1016/j.cose.2008.07.006
  • J. Ren, X. Yang, Q. Zhu, L.X. Yang, and C. Zhang, A novel computer virus model and its dynamics, Nonliear Anal. RWA 13(1) (2012), pp. 376–384. doi: 10.1016/j.nonrwa.2011.07.048
  • J. Ren, X. Yang, L.-X. Yang, Y. Xu, and F. Yang, A delayed computer virus propagation model and its dynamics, Chaos Solitons Fractals 45(1) (2012), pp. 74–79. doi: 10.1016/j.chaos.2011.10.003
  • H.J. Shi, Z.S. Duan, and G.R. Chen, An SIS model with infective medium on complex networks, Phys. A 387(8–9) (2008), pp. 2133–2144. doi: 10.1016/j.physa.2007.11.048
  • P. Szor, The Art of Computer Virus Research and Defense, Addison-Wesley Professional, Boston, MA, 2005.
  • H.R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math. 24 (1994), pp. 351–380. doi: 10.1216/rmjm/1181072470
  • O.A. Toutonji, S.-M. Yoo, and M. Park, Stability analysis of VEISV propagation modeling for network worm attack, Appl. Math. Model. 36(6) (2012), pp. 2751–2761. doi: 10.1016/j.apm.2011.09.058
  • P. Van Mieghem, J. Omic, and R. Kooij, Virus spread in networks, IEEE/ACM Trans. Netw. 17(1) (2009), pp. 1–14. doi: 10.1109/TNET.2008.925623
  • L.S. Wen and J. Zhong, Global asymptotic stability and a property of the SIS model on bipartite networks, Nonlinear Anal. RWA 13(2) (2012), pp. 967–976. doi: 10.1016/j.nonrwa.2011.09.003
  • J.C. Wierman and D.J. Marchette, Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction, Comput. Statist. Data Anal. 45(1) (2004), pp. 3–23. doi: 10.1016/S0167-9473(03)00113-0
  • L.-X. Yang and X. Yang, The spread of computer viruses under the influence of removable storage devices, Appl. Math. Comput. 219(8) (2012), pp. 3914–3922. doi: 10.1016/j.amc.2012.10.027
  • L.-X. Yang and X. Yang, A new epidemic model of computer viruses, Commun. Nonlinear Sci. Numer. Simulat. 19(6) (2014), pp. 1935–1944. doi: 10.1016/j.cnsns.2013.09.038
  • L.-X. Yang and X. Yang, The spread of computer viruses over a reduced scale-free network, Phys. A. 396(1) (2014), pp. 173–184. doi: 10.1016/j.physa.2013.11.026
  • L.-X. Yang, X. Yang, L. Wen, and J. Liu, Propagation behavior of virus codes in the situation that infected computers are connected to the Internet with positive probability, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 693695, 13pp.
  • L.-X. Yang, X. Yang, L. Wen, and J. Liu, A novel computer virus propagation model and its dynamics, Int. J. Comput. Math. 89(17) (2012), pp. 2307–2314. doi: 10.1080/00207160.2012.715388
  • L.-X. Yang, X. Yang, Q. Zhu, and L. Wen, A computer virus model with graded cure rates, Nonlinear Anal. RWA 14(1) (2013), pp. 414–422. doi: 10.1016/j.nonrwa.2012.07.005
  • L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, Epidemics of computer viruses: A complex-network approach, Appl. Math. Comput. 219(16) (2013), pp. 8705–8717. doi: 10.1016/j.amc.2013.02.031
  • L.-X. Yang and X. Yang, The effect of infected external computers on the spread of viruses: A compartment modeling study, Phys. A 392(24) (2013), pp. 6523–6535. doi: 10.1016/j.physa.2013.08.024
  • M. Yang, G.R. Chen, and X.C. Fu, A modified SIS model with an infective medium on complex networks and its global stability, Phys. A 390(12) (2011), pp. 2408–2413. doi: 10.1016/j.physa.2011.02.007
  • X. Yang and L.-X. Yang, Towards the epidemiological modeling of computer viruses, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 259671, 11pp.
  • X. Yang, B.K. Mishra, and Y. Liu, Computer viruses: Theory, model, and methods, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 473508, 2pp.
  • M. Youssef and C. Scoglio, An individual-based approach to SIR epidemics in contact networks, J. Theor. Biol. 283(1) (2011), pp. 136–144. doi: 10.1016/j.jtbi.2011.05.029
  • H. Yuan and G. Chen, Network virus-epidemic model with the point-to-group information propagation, Appl. Math. Comput. 206(1) (2008), pp. 357–367. doi: 10.1016/j.amc.2008.09.025
  • H. Yuan, G. Chen, J. Wu, and H. Xiong, Towards controlling virus propagation in information systems with point-to-group information sharing, Decis. Supp. Syst. 48(1) (2009), pp. 57–68. doi: 10.1016/j.dss.2009.05.014
  • C. Zhang, Y. Zhao, Y. Wu, and S. Deng, A stochastic dynamic model of computer viruses, Discrete Dyn. Nat. Soc. 2012 (2012), Article ID 264874, 6pp.
  • T. Zhou, J.G. Liu, W.J. Bai, G.R. Chen, and B.H. Wang, Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity, Phys. Rev. E 74 (2006), Article ID 056109, 16pp.
  • G.H. Zhu, X.C. Fu, and G.R. Chen, Global attractivity of a network-based epidemic SIS model with nonlinear infectivity, Commun. Nonlinear Sci. Numer. Simul. 17(6) (2012), pp. 2588–2594. doi: 10.1016/j.cnsns.2011.08.039
  • Q. Zhu, X. Yang, and J. Ren, Modeling and analysis of the spread of computer virus, Commun. Nonlinear Sci. Numer. Simul. 17(12) (2012), pp. 5117–5124. doi: 10.1016/j.cnsns.2012.05.030
  • Q. Zhu, X. Yang, L.-X. Yang, and C. Zhang, Optimal control of computer virus under a delayed model, Appl. Math. Comput. 218(23) (2012), pp. 11613–11619. doi: 10.1016/j.amc.2012.04.092
  • Q. Zhu, X. Yang, L.-X. Yang, and X. Zhang, A mixing propagation model of computer viruses and countermeasures, Nonlinear Dyn. 73(3) (2013), pp. 1433–1441. doi: 10.1007/s11071-013-0874-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.