360
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

A unified difference-spectral method for time–space fractional diffusion equations

&
Pages 1172-1184 | Received 03 Sep 2015, Accepted 21 Feb 2016, Published online: 20 May 2016

References

  • O.P. Agrawal, Response of a diffusion–wave system subjected to deterministic and stochastic fields, Z. Angew. Math. Mech. 83(4) (2003), pp. 265–274. doi: 10.1002/zamm.200310033
  • T.S. Aleroev, H.T. Aleroeva, J.F. Huang, N.M. Nie, Y.F. Tang, and S.Y. Zhang, Features of inflow of a liquid to a chink in the cracked deformable layer, Int. J. Model. Simul. Scient. Comput. 1(3) (2010), pp. 333–347. doi: 10.1142/S1793962310000195
  • R. Askey, Inequalities via fractional integration, Fract. Cal. Appl.: Proc. Int. Conf. Univ. New Haven 457(1) (1975), pp. 106–115.
  • P. Becker-Kern, M.M. Meerschaert, and H.P. Scheffler, Limit theorem for continuous-time random walks with two time scales, J. Appl. Probab. 41 (2004), pp. 455–466. doi: 10.1239/jap/1082999078
  • A.H. Bhrawy and M.A. Abdelkawy, A fully spectral collocation approximation for multi-dimensional fractional Schröinger equations, J. Comput. Phys. 294 (2015), pp. 462–483. doi: 10.1016/j.jcp.2015.03.063
  • A.H. Bhrawy, E.H. Doha, D. Baleanud, and S.S. Ezz-Eldien, A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion–wave equations, J. Comput. Phys. 293 (2015), pp. 142–156. doi: 10.1016/j.jcp.2014.03.039
  • A.H. Bhrawy and M.A. Zaky, A method based on the Jacobi tau approximation for solving multi-term time–space fractional partial differential equations, J. Comput. Phys. 281 (2015), pp. 876–895. doi: 10.1016/j.jcp.2014.10.060
  • A.H. Bhrawy and M.A. Zaky, Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation, Nonlinear Dyn. 80 (2015), pp. 101–116. doi: 10.1007/s11071-014-1854-7
  • A.H. Bhrawy, M.A. Zaky, and R.A. Van Gorder, A space–time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion–wave equation, Numer. Algor. 71 (2016), pp. 151–180. doi: 10.1007/s11075-015-9990-9
  • W.P. Bu, Y.F. Tang, Y.C. Wu, and J.Y. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations, J. Comput. Phys. 293 (2015), pp. 264–279. doi: 10.1016/j.jcp.2014.06.031
  • K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, 2010.
  • J. Dison and S. Mekee, Weakly singular discrete Gronwall inequalities, Z. Angew. Math. Mech. 66 (1986), pp. 535–544. doi: 10.1002/zamm.19860661107
  • M. Garg and P. Manohar, Matrix method for numerical solution of space–time fractional diffusion–wave equations with three space variables, Afr. Math. 25 (2014), pp. 161–181. doi: 10.1007/s13370-012-0101-y
  • R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, Time fractional diffusion: A discrete random walk approach, Nonlinear Dyn. 29 (2002), pp. 129–143. doi: 10.1023/A:1016547232119
  • J.F. Huang, N.M. Nie, and Y.F. Tang, A second order finite difference-spectral method for space fractional diffusion equations, Sci. China Math. 57(6) (2014), pp. 1303–1317. doi: 10.1007/s11425-013-4716-8
  • J.F. Huang, Y.F. Tang, L. Vázquez, and J.Y. Yang, Two finite difference schemes for time fractional diffusion–wave equation, Numer. Algor. 64 (2013), pp. 707–720. doi: 10.1007/s11075-012-9689-0
  • J.F. Huang, Y.F. Tang, and L. Vázquez, Convergence analysis of a block-by-block method for fractional differential equations, Numer. Math. Theor. Meth. Appl. 5 (2012), pp. 229–241. doi: 10.4208/nmtma.2012.m1038
  • R.C. Koeller, Application of fractional calculus to the theory of viscoelasticity, J. Appl. Mech. 51 (1984), pp. 229–307. doi: 10.1115/1.3167616
  • C.P. Li, Z.G. Zhao, and Y.Q. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl. 62 (2011), pp. 855–875. doi: 10.1016/j.camwa.2011.02.045
  • X.J. Li and C.J. Xu, A space–time spectral method for the time fractional differential equation, SIAM J. Numer. Anal. 47(3) (2009), pp. 2108–2131. doi: 10.1137/080718942
  • Y.M. Lin and C.J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys. 225 (2007), pp. 1533–1552. doi: 10.1016/j.jcp.2007.02.001
  • Q. Liu, F. Liu, I. Turner, and V. Anh, Finite element approximation for a modified anomalous subdiffusion equation, Appl. Math. Model. 35 (2011), pp. 4103–4116. doi: 10.1016/j.apm.2011.02.036
  • F. Liu, C. Yang, and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math. 231 (2009), pp. 160–176. doi: 10.1016/j.cam.2009.02.013
  • F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, and Q. Liu, Numerical methods for solving the multi-term time-fractional wave–diffusion equation, Fract. Calc. Appl. Anal. 16(1) (2013), pp. 9–25. doi: 10.2478/s13540-013-0002-2
  • J.C. Lopze-Marcos, A difference scheme for a nonlinear partial integrodifferential equation, SIAM J. Numer. Anal. 27(1) (1990), pp. 20–31. doi: 10.1137/0727002
  • Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal. 17(3) (1986), pp. 704–719. doi: 10.1137/0517050
  • R. Metzler and T.F. Nonnenmacher, Space- and time-fractional diffusion and wave equations, fractional Fokker–Planck equations, and physical motivation, Chem. Phys. 284 (2002), pp. 67–90. doi: 10.1016/S0301-0104(02)00537-2
  • S.G. Samko, A.A. Kilbas, and O.I. Marichev, Fractional Integrals and Derivative: Theory and Applications, Gordon and Breach, New York, 1993.
  • J. Shen, T. Tang, and L.L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, Berlin, 2011.
  • Z.Z. Sun and X.N. Wu, A fully discrete difference scheme for a diffusion–wave system, Appl. Numer. Math. 56 (2006), pp. 193–209. doi: 10.1016/j.apnum.2005.03.003
  • C. Tadjeran, M.M. Meerschaert, and H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation, J. Comput. Phys. 213 (2006), pp. 205–213. doi: 10.1016/j.jcp.2005.08.008
  • Z.B. Wang and S. Vong, A high-order ADI scheme for the two-dimensional time fractional diffusion–wave equation, Int. J. Comput. Math. 92(5) (2015), pp. 970–979. doi: 10.1080/00207160.2014.915960
  • Q.Q. Yang, I. Turner, F.W. Liu, and M. Ilic, Novel numerical methods for solving the time–space fractional diffusion equation in two equations, SIAM J. Sci. Comput. 33(3) (2011), pp. 1159–1180. doi: 10.1137/100800634
  • M. Zayernouri, M. Ainsworth, and G.E. Karniadakis, A unified Petrov–Galerkin spectral method for fractional PDEs, Comput. Methods Appl. Mech. Eng. 283 (2015), pp. 1545–1569. doi: 10.1016/j.cma.2014.10.051
  • F.H. Zeng, Second-order stable finite difference schemes for the time-fractional diffusion–wave equation, J. Sci. Comput., doi: 10.1007/s10915-014-9966-2.
  • Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Comput. Math. 215 (2009), pp. 524–529. doi: 10.1016/j.amc.2009.05.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.