196
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Dissipativity and passivity analysis of Markovian jump impulsive neural networks with time delays

, &
Pages 1479-1500 | Received 20 Aug 2015, Accepted 22 Mar 2016, Published online: 06 Jun 2016

References

  • S. Arik, On the global dissipativity of dynamical neural networks with time delays, Phys. Lett. A 326 (2004), pp. 126–132.
  • W.J. Chang, C.C. Ku, and P.H. Huang, Robust fuzzy control for uncertain stochastic time-delay Takagi-Sugeno fuzzy models for achieving passivity, Fuzzy Sets Syst. 161 (2010), pp. 2010–2032.
  • Y. Chen, S. Fei, and K. Zhang, Improved asymptotic stability conditions for neural networks with discrete and distributed delays, Int. J. Comput. Math. 89 (2012), pp. 1938–1951.
  • W.-X. Cui, J.-A. Fang, Y.-L. Shen, and W.-B. Zhang, Dissipativity analysis of singular systems with Markovian jump parameters and mode-dependent mixed time-delays, Neurocomputing 110 (2013), pp. 121–127.
  • M. Fan and Ju.H. Park, A multiple integral approach to stability of neutral time-delay systems, Appl. Math. Comput. 224 (2013), pp. 714–718.
  • K. Gu, V.L. Kharitonov, and J. Chen, Stability of Time Delay Systems, Birkhauser, Boston, 2003.
  • Z. Guo, J. Wang, and Z. Yan, Global exponential dissipativity and stabilization of memristor-based recurrent neural networks with time-varying delays, Neural Netw. 48 (2013), pp. 158–172.
  • C. Han, L. Wu, P. Shi, and Q. Zeng, On dissipativity of Takagi-Sugeno fuzzy descriptor systems with time-delay, J. Franklin Inst. 349 (2012), pp. 3170–3184.
  • S. Lakshmanan, Ju.H. Park, H.Y. Jung, O.M. Kwon, and R. Rakkiyappan, A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays, Neurocomputing 111 (2013), pp. 81–89.
  • T.H. Lee, M.-J. Park, Ju.H. Park, O.-M. Kwon, and S.-M. Lee, Extended dissipative analysis for neural networks with time-varying delays, IEEE Trans. Neural Netw. Learn. Syst. 25 (2014), pp. 1936–1941.
  • X. Li, Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type, Appl. Math. Comput. 215 (2010), pp. 4370–4384.
  • C. Lia, C. Li, and T. Huang, Exponential stability of impulsive high-order Hopfield-type neural networks with delays and reaction-diffusion, Int. J. Comput. Math. 88 (2011), pp. 3150–3162.
  • J. Liang, Z. Wang, and X. Liu, On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case, IEEE Trans. Syst. Man Cybern. B, Cybern. 40 (2010), pp. 964–969.
  • Z. Lin, J. Liu, W. Zhang, and Y. Niu, Stabilization of interconnected nonlinear stochastic Markovian jump systems via dissipativity approach, Automatica 47 (2011), pp. 2796–2800.
  • H. Lin, H. Su, Z. Shu, Z.G. Wu, and Y. Xu, Optimal estimation in UDP-like networked control systems with intermittent inputs: Stability analysis and suboptimal filter design, IEEE Trans. Autom. Control, doi: 10.1109/TAC.2015.2479195.
  • X. Lin, X. Zhang, and Y. Wang, Robust passive filtering for neutral-type neural networks with time-varying discrete and unbounded distributed delays, J. Franklin Inst. 350 (2013), pp. 966–989.
  • Y. Liu, Z. Wang, and X. Liu, On synchronization of coupled neural networks with discrete and unbounded distributed delays, Int. J. Comput. Math. 85 (2008), pp. 1299–1313.
  • Y. Liu, Z. Wang, J. Liang, and X. Liu, Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays, IEEE Trans. Neural Netw. 20 (2009), pp. 1102–1116.
  • Z.X. Liu, J. Yu, D.Y. Xu, and D.T. Peng, Triple-integral method for the stability analysis of delayed neural networks, Neurocomputing 99 (2013), pp. 283–289.
  • R. Lu, Y. Xu, and A. Xue, H∞ filtering for singular systems with communication delays, Signal Process. 90 (2010), pp. 1240–1248.
  • R. Lu, H. Wu, and J. Bai, New delay-dependent robust stability criteria for uncertain neutral systems with mixed delays, J. Franklin Inst. 351 (2014), pp. 1386–1399.
  • Q. Ma, S. Xu, Y. Zou, and J. Lu, Stability of stochastic Markovian jump neural networks with mode-dependent delays, Neurocomputing 74 (2011), pp. 2157–2163.
  • S. Muralisankar, N. Gopalakrishnan, and P. Balasubramaniam, An LMI approach for global robust dissipativity analysis of T-S fuzzy neural networks with interval time-varying delays, Expert Syst. Appl. 39 (2012), pp. 3345–3355.
  • R. Raja, U. Karthik Raja, R. Samidurai, and A. Leelamani, Dissipativity of discrete-time BAM stochastic neural networks with Markovian switching and impulses, J. Franklin Inst. 350 (2015), pp. 250–260.
  • R. Rakkiyappan, A. Chandrasekar, and J. Cao, Passivity and passification of memristor-based recurrent neural networks with additive time varying delays, IEEE Trans. Neural Netw. Learn. Syst. 26 (2014), pp. 2043–2057.
  • R. Sakthivel, A. Arunkumar, K. Mathiyalagan, and S. Marshal Anthoni, Robust passivity analysis of fuzzy Cohen–Grossberg BAM neural networks with time-varying delays, Appl. Math. Comput. 218 (2011), pp. 3799–3809.
  • R. Sakthivel, M. Rathika, S. Santra, and Q. Zhu, Dissipative reliable controller design for uncertain systems and its application, Appl. Math. Comput. 263 (2015), pp. 107–121.
  • A. Seuret and F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica 49 (2013), pp. 2860–2866.
  • K. Shi, H. Zhu, S. Zhong, Y. Zeng, and Y. Zhang, Less conservative stability criteria for neural networks with discrete and distributed delays using a delay-partitioning approach, Neurocomputing 140 (2014), pp. 273–282.
  • Q. Song and J. Cao, Passivity of uncertain neural networks with both leakage delay and time-varying delay, Nonlinear Dynam. 67 (2012), pp. 1695–1707.
  • Y. Sun and B.-T. Cui, Dissipativity analysis of neural networks with time-varying delays, Int. J. Autom. Comput. 5 (2008), pp. 290–295.
  • D. Tong, W. Zhou, H. Wang, J. Zhou, X. Zhou, and Y. Xu, Adaptive estimation for delayed neural networks with Markovian jumping parameters, Optik 126 (2015), pp. 2960–2964.
  • J.-L. Wang, H.-N. Wu, and Z.-C. Yang, Passivity analysis of impulsive complex networks, Int. J. Autom. Comput. 8 (2011), pp. 484–489.
  • J. Wang, Ju.H. Park, H. Shen, and J. Wang, Delay-dependent robust dissipativity conditions for delayed neural networks with random uncertainties, Appl. Math. Comput. 221 (2013), pp. 710–719.
  • S. Wen, Z. Zeng, T. Huang, and Y. Chen, Passivity analysis of memristor-based recurrent neural networks with time-varying delays, J. Franklin Inst. 350 (2013), pp. 2354–2370.
  • L. Wu and W.X. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems, Automatica 45 (2009), pp. 2120–2127.
  • S.-L. Wu, K.-L. Li, and T.-Z. Huang, Global dissipativity of delayed neural networks with impulses, J. Franklin Inst. 348 (2011), pp. 2270–2291.
  • Z.-G. Wu, Ju.H. Park, H. Sua, and J. Chu, Passivity analysis of Markov jump neural networks with mixed time-delays and piecewise-constant transition rates, Nonlinear Anal. Real World Appl. 13 (2012), pp. 2423–2431.
  • Z.-G. Wu, Ju.H. Park, H. Su, and J. Chu, Dissipativity analysis of stochastic neural networks with time delays, Nonlinear Dynam. 70 (2012), pp. 825–839.
  • Z.-G. Wu, P. Shi, H. Su, and J. Chu, Asynchronous L2−L∞ filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities, Automatica 50 (2014), pp. 180–186.
  • Y.-Q. Wu, H. Su, R. Lu, Z.-G. Wu, and Z. Shu, Passivity-based non-fragile control for Markovian jump systems with aperiodic sampling, Systems Control Lett. 84 (2015), pp. 35–43.
  • X. Xing, D. Yao, Q. Lu, and X. Li, Finite-time stability of Markovian jump neural networks with partly unknown transition probabilities, Neurocomputing 159 (2015), pp. 282–287.
  • S. Xu, W.X. Zheng, and Y. Zou, Passivity analysis of neural networks with time-varying delays, IEEE Trans. Circuits Syst. II 56 (2009), pp. 325–329.
  • R. Xu, Y. Kao, and C. Gao, Exponential synchronization of delayed Markovian jump complex networks with generally uncertain transition rates, Appl. Math. Comput. 271 (2015), pp. 682–693.
  • H. Zhang, F. Yang, X. Liu, and Q. Zhang, Stability analysis for neural networks with time-varying delay based on quadratic convex combination, IEEE Trans. Neural Netw. Learn. Syst. 24 (2013), pp. 513–521.
  • H. Zhang, J. Wang, Z. Wang, and H. Liang, Mode-dependent stochastic synchronization for Markovian coupled neural networks with time-varying mode-delays, IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), pp. 2621–2634.
  • X. Zhang, Y. Zheng, Y. Gao, and X. Li, Passivity analysis of impulsive neural networks with time delays and Markovian jump parameters, Proc. Int. Conf. Intell. Comput. Technol. Autom., 1 (2008), pp. 222–226.
  • Y. Zhang, S. Xu, and Y. Chu, Global synchronization of complex networks with interval time-varying delays and stochastic disturbances, Int. J. Comput. Math. 88 (2011), pp. 249–264.
  • C.-D. Zheng and Z. Wang, Novel passivity criteria for neural networks with discrete and unbounded distributed time-varying delays, Int. J. Comput. Math. 90 (2013), pp. 1782–1795.
  • C.-D. Zheng, J.-W. Lia, and Z. Wang, New stability criteria for neutral-type Cohen–Grossberg neural networks with discrete and distributed delays, Int. J. Comput. Math. 89 (2012), pp. 443–466.
  • C.-D. Zheng, Y. Wang, and Z. Wang, New stability results of neutral-type neural networks with continuously distributed delays and impulses, Int. J. Comput. Math. 91 (2014), pp. 1880–1896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.