214
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A backward approach to certain class of transport equations in any dimension based on the Shannon sampling theorem

ORCID Icon &
Pages 1943-1967 | Received 21 Dec 2015, Accepted 06 Aug 2016, Published online: 19 Jan 2017

References

  • L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2004), pp. 227–260. doi: 10.1007/s00222-004-0367-2
  • V.I. Arnold, Ordinary Differential Equations, Springer, Berlin Heidelberg, 1992.
  • P.L. Butzer and R.L. Stens, Sampling theory for not necessarily band-limited functions: A historical overview, SIAM Rev. 34 (1992), pp. 40–53. doi: 10.1137/1034002
  • C. Cattani, Shannon wavelet analysis, in Computational Science – ICCS 2007, Y. Shi, G. van Albada, J. Dongarra, and P. Sloot, eds., Lecture Notes in Computer Science, Vol. 4488, Springer, Berlin Heidelberg, 2007, pp. 982–989.
  • C. Cattani, Shannon wavelets theory, Math. Prob. Eng. 2008 (2008), pp. 1–24.
  • I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
  • R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989), pp. 511–547. doi: 10.1007/BF01393835
  • R. Gobbi, S. Palpacelli and R. Spigler, Numerical treatment of a nonlinear nonlocal transport equation modeing crystal precipitation, Math. Models Methods Appl. Sci. 18 (2008), pp. 1505–1527; Erratum, Mathematical Models and Methods in Applied Sciences 20 (2010), pp. 349–350. doi: 10.1142/S021820250800311X
  • R. Gobbi, S. Palpacelli and R. Spigler, Numerical solution of certain classes of transport equations in any dimension by Shannon sampling, J. Comput. Phys. 229 (2010), pp. 3502–3522. doi: 10.1016/j.jcp.2010.01.013
  • R.M. Goodwin, A growth cycle, in Socialism Capitalism and Economic Growth, C. Feinstein, ed., Cambridge University Press, Cambridge, 1967.
  • S. Gottlieb and C.W. Shu, Total variation diminishing Runge–Kutta schemes, Math. Comput. 67 (1998), pp. 73–85. doi: 10.1090/S0025-5718-98-00913-2
  • L. Greengard, J.Y. Lee and S. Inati, The fast sinc transform and image reconstruction from nonuniform samples in k-space, Commun. Appl. Math. Comput. Sci. 1 (2006), pp. 121–131. doi: 10.2140/camcos.2006.1.121
  • A.J. Jerri, The Shannon sampling theorem – Its various extensions and applications: A tutorial review, Proc. IEEE 65 (1977), pp. 1565–1596. doi: 10.1109/PROC.1977.10771
  • D. Kuzmin, A Guide to Numerical Methods for Transport Equations, University Erlangen-Nuremberg, Erlangen, 2010.
  • A.J. Lotka, Contribution to the theory of periodic reactions, J. Phys. Chem. 14 (1909), pp. 271–274. doi: 10.1021/j150111a004
  • J. Lund and K. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992.
  • S.G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), pp. 674–693. doi: 10.1109/34.192463
  • S.G. Mallat, A Wavelet Tour of Signal Processing, 2nd ed., Academic Press, Burlington, 2009.
  • S. Maymon and A.V. Oppenheim, Sinc interpolation of nonuniform samples, IEEE Trans. Signal Process. 59 (2011), pp. 4745–4758. doi: 10.1109/TSP.2011.2160054
  • S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, 1st ed., Springer, New York, 2002.
  • A. Papoulis, Error analysis in sampling theory, Proc. IEEE 54 (1966), pp. 947–955. doi: 10.1109/PROC.1966.4940
  • V. Peikert and A. Schenk, A Wavelet Method to Solve High-dimensional Transport Equations in Semiconductor Devices, 2011 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), September, 2011, pp. 299–302.
  • B. Perthame, Transport Equations in Biology, Birkhauser, Basel, 2007.
  • S. Sastry, Nonlinear Systems: Analysis, Stability and Control, Springer, New York, 1999.
  • J.A. Sethian, Level Set Methods, Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, 2nd ed., Cambridge University Press, New York, USA, 1999.
  • C.E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), pp. 10–21. doi: 10.1109/JRPROC.1949.232969
  • F. Stenger, Approximations via Whittaker's cardinal function, J. Approx. Theory 17 (1976), pp. 222–240. doi: 10.1016/0021-9045(76)90086-1
  • F. Stenger, A ‘sinc-Galerkin’ method of solution of boundary value problems, Math. Comput. 33 (1979), pp. 85–109.
  • F. Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), pp. 165–224. doi: 10.1137/1023037
  • M. Unser, Sampling-50 years after Shannon, Proc. IEEE 88 (2000), pp. 569–587. doi: 10.1109/5.843002
  • T. Wang, New characteristic difference method with adaptive mesh for one-dimensional unsteady convection-dominated diffusion equations, Int. J. Comput. Math. 82 (2005), pp. 1247–1260. doi: 10.1080/00207160412331291143
  • Q. Wu, F. Shi and Z. Luo, A Backward Method for Transport Equation Based on Shannon Wavelets and Characteristics, 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference, December, 2015, pp. 142–145.
  • Z. Zhang, Y. Wang and Q. Wang, A characteristic centred finite difference method for a 2d air pollution model, Int. J. Comput. Math. 88 (2011), pp. 2178–2198. doi: 10.1080/00207160.2010.534139

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.